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Retinoic acid (RA), an active form of vitamin A, regulates the embryonic development, male 
and female reproduction and induces important eff ects on the cell development, proliferation, 
and diff erentiation. Th ese eff ects are mediated by the retinoid (RAR) and rexinoid nuclear re-
ceptors (RXR), which are considered to be a ligand-activated, DNA-binding, trans-acting, and 
transcription-modulating proteins, involved in a general molecular mechanism responsible for 
the transcriptional responses in target genes. Organotin compounds are typical environmental 
contaminants and suspected endocrine disrupting substances. Th ey may aff ect processes of repro-
ductive system in mammals, predominantly via nuclear receptor signaling pathways. Triorgano-
tins, such as tributyltin chloride (TBTCl) and triphenyltin chloride (TPTCl), are capable to bind 
to RXR molecules, and thus represent potent agonists of RXR subtypes of nuclear receptors not 
sharing any structural characteristics with endogenous ligands of nuclear receptors. Th is article 
summarizes selected eff ects of biologically active retinoids and rexinoids on both male and female 
reproduction and also deals with the eff ects of organotin compounds evoking endocrine disrupt-
ing actions in reproduction. 
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Retinoic acids are vitamin A (retinol)-derived, 
nonpeptidic, small lipophilic molecules that serve 
as ligands for two families of nuclear receptors, the 
retinoic acid (RA) receptors (RARs) and the reti-
noid X receptors (RXRs). Retinoids are involved in 
the complex arrangements of physiological and de-
velopmental responses in many tissues of higher 
vertebrates that include embryonic development, vi-
sion, reproduction, bone formation, haematopoiesis, 
metabolism, growth and diff erentiation of a variety 
of cell types, apoptosis, and processes of carcinogen-
esis. It is well known that retinoids are also terato-
gens and their therapeutic doses are contraindicated 
during pregnancy (Brtko 2007). In mammals, excess 
of vitamin A leads to a loss of germ cells (Lamano 

Carvalho et al. 1978), and vitamin A defi ciency leads 
to an arrest in spermatogenesis at early meiosis (Ak-
mal et al. 1998). Experimental studies have suggested 
that RA is critical for the initiation of meiosis (Bowles 
et al. 2006; Koubova et al. 2006; Doyle et al. 2007) 
and spermiogenesis (Chung et al. 2005; Doyle et al. 
2007). Some tissues contain small cytosolic proteins 
that specifically bind RA (rat brain, skin, testis, adre-
nals) (Bailey and Siu 1990). Th ese are cellular retinoic 
acid-binding protein (CRABP) and cellular retinoic 
acid-binding protein II [CRABP(II)], well described 
members of a large family that includes a number of 
fatty acid-binding proteins (Bass 1993). Th e roles for 
this family of proteins are thought to help in the solu-
bilization of their hydrophobic ligands and in some 



155Macejova, et al.

cases, particularly for the retinoid-binding proteins, 
to direct metabolism of the ligand. Zheng et al. (1999) 
have shown that the pattern of CRABP(II) messen-
ger RNA and protein expression correlated with the 
appearance of corpora lutea and the rise in proges-
terone production in rat as the corpora lutea get de-
veloped (Zheng et al. 1999). Th e level of RA present in 
a given tissue is fi nely tuned by the balance between 
its synthesis by RALDHs and its oxidative degrada-
tion by the following cytochrome P450 enzymes: cy-
tochrome P450, family 26, subfamily a, polypeptide 
1 (CYP26A1); cytochrome P450, family 26, subfam-
ily b, polypeptide 1 (CYP26B1) – an enzyme that de-
grades the potent morphogen RA); and cytochrome 
P450, family 26, subfamily c, polypeptide 1 (CY-
P26C1) (Duester 2008; Griswold et al. 2012).

Th e origin of RA in the urogenital system diff ers 
in various species. In humans, RA is produced di-
rectly in fetal gonads (Childs et al. 2011). In mouse, 
RA is produced in mesonephroi and diff uses to the 
gonads. However, the meiotic entry is triggered ex-
clusively in ovaries. In testes, RA is degraded, most 
probably in Sertoli and Leydig cells, and this action 
prevents meiotic entry (Bowles et al. 2006; Koubova 
et al. 2006; Kashimada et al. 2011). Also in birds, RA 
is synthesized in the gonads (in the ovarian cortex as 
well as the testis cords) and it is degraded by Sertoli 
cells (Smith et al. 2008; Piprek et al. 2013).

Th e RA:RAR/RXR complex binds to RA response 
elements (RAREs) in target genes, recruiting co-
repressors or coactivators and thereby inducing or 
repressing the transcriptional activity. Huang et al. 
(2015) have identifi ed the genes involved in the regu-
lation of RAR signaling pathway (ESR1, CYP26A1, 
TRIM16) and retinol metabolism-related enzyme 
genes (DHRS3, CYP2C9, CYP26A1) that were highly 
expressed in porcine endometrium during pregnan-
cy. It has been found that CYP26A1 might block the 
adverse eff ect of the RA in order to promote the suc-
cessful mouse embryo implantation (Ma et al. 2012). 
Th ese results have shown that, except the progester-
one and estrogen, the interaction between the RA 
and estrogen signaling may be also important for the 
embryo-maternal communications and endometri-
um remodeling during the early pregnancy.

Sertoli cells: the role of retinoic acid and 
retinoic acid receptors

Testicular function is infl uenced by both the en-
docrine (extra-testicular) and paracrine (intratesticu-
lar) factors. Maintenance of normal spermatogenesis 
is dependent on the anterior pituitary hormones, 

luteinizing hormone (LH), and follicle-stimulating 
hormone (FSH), which are synthesized and secreted 
under control of the hypothalamic gonadotropin-re-
leasing hormone (GnRH). Signals from the gonado-
tropins exert directly on the Sertoli cells, which reg-
ulate spermatogenesis. LH and FSH signal through 
the luteinizing hormone receptor (LHR) and follicle-
stimulating hormone receptor (FSHR), which are ex-
pressed by the Leydig and Sertoli cells, respectively. 
Th e paracrine regulation of spermatogenesis is pro-
vided by steroids, such as testosterone and estradiol, 
secreted by Leydig cells and by proteins such as in-
hibin and activin, a member of the TGFβ superfam-
ily, synthesized by Sertoli cells (Cooke and Saunders 
2002). Interactions between Sertoli cells and germ 
cells through physical interaction and the secretion 
of signaling molecules are essential for the healthy 
progression of spermatogenesis (Sylvester and Gris-
wold 1994). Inhibin primary negatively regulates the 
FSH secretion from the pituitary gland, whereas the 
activin has been proposed to aff ect germ cell matura-
tion at the step when gonocytes diff erentiate into the 
spermatogonia (de Kretser et al. 2001).

It has been shown that vitamin A defi cient (VAD) 
animals are infertile (McCarthy and Cerecedo 1952) 
and this condition can be reversed by retinol (Gris-
wold et al. 1989). Basal serum FSH and LH levels in 
VAD rats were higher than those of controls (Huang 
et al. 1985). Moreover, a synergistic eff ect of vitamin 
A and FSH on diff erentiation of the testicular germ 
cell has been observed in the adult cryptorchid testis, 
which only consists of an undiff erentiated spermato-
gonia and Sertoli cells (Haneji et al. 1984). RA, bio-
logically active form of vitamin A, is primarily syn-
thesized by the Sertoli cells in the testis (Deltour et al. 
1997). RA is required for the diff erentiation of Sertoli 
cells, proliferation of spermatogonia, the initiation of 
meiosis, and maturation of spermatids (reviewed in 
Santos and Kim 2010). Nourashrafeddin (2015) has 
suggested that gonadotropins may trigger the diff er-
entiation of spermatogonia and their meiotic entry 
through regulation of RA signaling in the seminif-
erous tubules within the testis and provide a novel 
working hypothesis on the mechanisms of gonado-
tropins to control spermatogenesis via RA, which is 
considered to be responsible for the cyclic diff erentia-
tion of germ cells in the adult testis and the continual 
production of sperm.

In the Sertoli cells, all retinoid receptors are ex-
pressed, whereas RARγ and RXRβ are not expressed 
in the germ cells (Dufour and Kim 1999). Th e biologi-
cal eff ect of RA is mediated through RARα partner-
ing with RXRγ in germ cells and RXRα (Dufour and 
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Kim 1999). In adult mouse testes, RARα is localized 
in the nuclei of Sertoli cells, spermatogonia, prelep-
totene and pachytene spermatocytes, and round and 
elongating spermatids.

RARα plays an essential role in the regulation of 
germ cell development during the spermatogenesis 
(Akmal et al. 1998; Law 2013). RARAα-null animals 
have high neonatal mortality and exhibit male infer-
tility phenotype. Th e surviving males have depleted 
germ cells and vacuolization in the testis (Doyle et 
al. 2007), whereas RARβ and RARγ gene KO mice 
did not show any testicular phenotypes (Luo et al. 
1995). Transplantation studies have shown that 
RARα in germ cells is responsible for the coloniza-
tion and proliferation of germ cells in the basal area 
of the seminiferous tubules (Doyle et al. 2007). On 
the other hand, RARα in Sertoli cells were needed for 
the progression of germ cells through meiosis (Doyle 
et al. 2007). RARα has been shown to be important 
for Sertoli cell diff erentiation (Walker 2003) and in 
the synchronization of the stages of the spermato-
genic cycle (Chung et al. 2005). RARα was positively 
regulated by protein kinase C and MAPK (Braun et 
al. 2002). RA and FSH are important proliferation 
and diff erentiation factors for Sertoli cells. FSH in-
hibited the nuclear localization of RARα, leading to 
down-regulation of RARα transcriptional function 
via cAMP and protein kinase A (Santos and Kim 
2010) as RARα has two PKA consensus sites in the li-
gand-binding domain (Braun et al. 2000). Th erefore, 
FSH can stimulate Sertoli cell mitosis before puberty 
via controlling RARα. Th ereaft er, as FSH levels de-
crease around puberty (Eskola et al. 1993), RARα is 
able to translocate to the nucleus (Dufour and Kim 
1999) and may participate in the switch from Sertoli 
cell proliferation to diff erentiation (Santos and Kim 
2010).

Granulosa cells: the role of retinoic acid and 
retinoic acid receptors

Early studies have shown the presence of vitamin 
A in the ovary and its fluctuation in serum during the 
menstrual cycle, indicating that vitamin A may play 
a role in the ovarian function (Laurence and Sobel 
1953). In humans, the role of RA in meiosis has been 
demonstrated only in the ovary (Childs et al. 2011; 
Griswold et al. 2012). Moreover, recent studies have 
shown the presence of all RXR isoforms in the mam-
malian ovary (Tatone et al. 2016).

Human ovarian granulosa cells undergo a com-
plex diff erentiation process during the growth and 
maturation of the ovarian follicles (Richards 1980). 

Th is process depends on the sequential eff ects of 
the two principal gonadotropins, FSH and LH. FSH 
acts on early antral follicles to stimulate growth, ste-
roidogenesis, and the expression of cell surface LH 
receptors, which mediate the granulosa cell ability 
to respond to circulating LH. Subsequently, LH, in 
synergy with FSH, acts on the FSH-stimulated fol-
licles to maintain growth and estradiol production 
and leads to full development of the dominant fol-
licle, the only follicle reaching the preovulatory stage. 
Finally, the LH triggers ovulation and conversion of 
the residual follicle into a corpus luteum that, in turn, 
produces progesterone preparing the endometrium 
for a possible implantation (Tatone et al. 2016). It 
has been shown that the ability of FSH to stimulate 
the induction of LHR in rat granulosa cells is me-
diated, at least in part, by cAMP, since exogenously 
added cAMP or other agents that increase intracel-
lular levels of cAMP mimic the action of FSH (Mine-
gishi et al. 2000). Th e presence of RARs in ovarian 
cells, including granulosa and some luteal cells, in-
dicate that these cells would also be targets for RA 
(Zhuang et al. 1994). Th ese data have suggested that 
RA may regulate the ovarian function by autocrine 
and/or paracrine action. In rat granulosa cells, RA 
(0.1 nM) and retinol (10 nM) each synergistically en-
hance the ability of FSH to induce LHR and stimulate 
the formation of cAMP and progesterone. At higher 
concentrations, both retinoids inhibited these eff ects 
of FSH in rat granulosa cells. Minegishi et al. (2000) 
have shown that the receptor depletion by RA is con-
centration-dependent and RA (1 nM) abolished the 
eff ect of FSH on LHR mRNA in rat granulosa cells. 
Th is study has provided evidence for a down-regula-
tion of the LHR when RA is added to granulosa cells 
in the presence of FSH. Th e response of LH-R protein 
and LH-R mRNA to cAMP analogs was inhibited by 
RA in granulosa cells in this experiment, suggesting 
that RA diminished the action of FSH at sites distal 
to cAMP generation in the granulosa cells. Th e ob-
served inhibition of mRNA levels of LHR by RA may 
be the result of decreased LHR gene transcription 
and/or mRNA stability.

In mice, RA and a CYP26 inhibitor stimulated 
granulosa cell proliferation in a dose-response man-
ner. It has been shown that RAR-mediated signaling is 
involved in both RA- and activin-induced granulosa 
cell proliferation (Kipp et al. 2011). Kipp et al. (2011) 
have provided a new insight into the mechanisms of 
activin action in the ovary and have suggested CY-
P26B1 and RA to be novel candidates for regulating 
postnatal follicle formation and development. To ex-
amine signaling mechanisms involved in the stimu-
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latory eff ect of RA, Kipp et al. (2011) have treated the 
mouse granulosa cells with RA in the presence of the 
pan-RAR inhibitor AGN193109 (Johnson et al. 1999). 
AGN193109 completely blocked the stimulatory ef-
fect of RA on granulosa cell proliferation, suggesting 
that the eff ect was mediated through RARs. Because 
activin stimulates mouse granulosa cell proliferation 
and also suppresses Cyp26B1 expression, some of the 
proliferative eff ects of the activin may be mediated by 
decreased Cyp26B1, leading to increased RA levels.

Retinoic acid and initialization of meiosis

It has been shown that RA can stimulate the ex-
pression of the premeiotic marker gene Stra8 (stimu-
lated by RA gene 8) and meiosis in mice in both sexes 
(Griswold et al. 1989). Stra8 was fi rst described as one 
of the group of RA-responsive genes (Oulad-Abdel-
ghani et al. 1996) and deletion of Stra8 resulted in the 
prevention of the meiosis in the germ cells of both 
sexes (Baltus et al. 2006). RA appears to be present in 
both male and female embryonic urogenital ridges. 
In the mouse ovary, induction of Stra8 in fetal germ 
cells expressing Dazl, an intrinsic factor, is required 
for meiotic DNA replication and the subsequent 
events of meiotic prophase (Baltus et al. 2006; Lin et 
al. 2008). In mouse testes, RA action and the subse-
quent entry of gonocytes into meiosis in the embry-
onic male is inhibited by the presence of the enzyme 
cytochrome P450, family 26, subfamily b, polypep-
tide 1 (CYP26B1) (Bowles et al. 2006; Koubova et al. 
2006). CYP26B1 degrades RA into metabolites, some 
of which are inactive. If CYP26B1 is inhibited in 
mouse embryonic testes in culture or if the gene en-
coding CYP26B1 is ablated, Stra8 mRNA is synthe-
sized in male mouse germ cells and meiosis is initiat-
ed (Bowles et al. 2006; Koubova et al. 2006; MacLean 
et al. 2007). Aft er birth, RA induces Stra8 in testicular 
germ cells, leading to meiotic initiation (Koubova et 
al. 2006; Anderson et al. 2008). Induction of Stra8 in 
the embryonic male germ cells is suffi  cient to induce 
the synthesis of downstream markers of meiosis, such 
as synaptonemal complex protein 3 (SCP3) and the 
meiosis-specifi c recombinase DMC1 (Bowles et al. 
2006). Th erefore, the expression of Stra8 is necessary 
for germ cells to enter into meiosis and is an excellent 
marker for the action of RA.

However, Koubova et al. (2014) have discovered 
that RA activates meiosis in two independent ways, 
both requiring Dazl expression in the germ cells. It 
has been shown that germ cells in Stra8-defi cient 
murine fetal ovaries express Rec8 (Baltus et al. 2006), 
encoding a meiosis-specifi c component of the cohe-

sin complex. Rec8 is required for completion of sister 
chromatid cohesion, proper synapsis, and chiasmata 
formation (Bannister et al. 2004). A chromatin im-
munoprecipitation-sequencing (ChIP-Seq) study in 
embryonic stem cells identifi ed RAR binding sites 
in both Stra8 and Rec8 promoter regions, suggesting 
that Stra8 and Rec8 may be regulated by RA directly 
(Oulad-Abdelghani et al. 1996; Mahony et al. 2011). 
However, in the same study, Dmc1, which is depen-
dent on Stra8, does not show RAR binding sites, con-
sistent with Stra8 and Rec8 being regulated directly, 
unlike Stra8’s downstream targets (Koubova et al. 
2014).

It has also been suggested that the actual physio-
logical role of RAR antagonists may be diff erent from 
their reported functions because these compounds 
may exert nonspecifi c eff ects on other receptors (Ku-
mar et al. 2011), based on a known case involving the 
RAR antagonist Ro 41-5253 (Schupp et al. 2007). Th is 
is a fair point, although the two pan-RAR antagonists 
that have been shown to inhibit meiosis are BMS-
204493 and AGN193109, not Ro 41-5253 (Bowles et 
al. 2006; Koubova et al. 2006).

Retinoic acid and primordial germ cells

In mouse, germ cell formation begins in utero with 
primordial germ cells (PGCs), precursor cells devel-
oping into ova and spermatozoa that form around 
embryonic day 6.25 (E6.25) and migrate from the 
proximal epiblast through the hindgut towards the 
genital ridge around E10.5 (Saitou and Yamaji 2012). 
From here, female (XX) and male (XY) PGCs enter 
two distinct pathways. While XX PGCs continue to 
proliferate until E13.5 and subsequently enter meio-
sis, XY PGCs are enclosed by testicular cords, be-
come prospermatogonia or gonocytes around E12.5 
(McLaren 1984) and are then arrested at G0-like state 
around E13.5. Gonocytes remain quiescent around 
E16.5 until shortly aft er birth (Vergouwen et al. 1991).

Koshimizu et al. (1995) have found that RA is a 
potent growth activator of mouse PGCs in vitro and 
promotes the proliferation of PGCs and slows down 
the degeneration of colonizing PGCs in culture as a 
mitogen both in vitro and in vivo (Koshimizu et al. 
1995). It has been also found that RA acts as both a 
mitogen and a survival factor for germ cells during 
fetal mouse oogenesis in vitro and in vivo (Morita and 
Tilly 1999).

Mouse embryonic stem cells can be induced into 
primordial germ cell-like cells (PGCLCs) by RA and 
promote the self-renewal of PGCs in vitro (Geijsen 
et al. 2004; Eguizabal et al. 2009). It has been found 
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that cultures with the presence of RA attain PGC-like 
identity and continue to proliferate. Furthermore, 
the expression patterns of Prmt5 and H3K27me3 
in newly formed PGCs are similar to those of 11.5-
dpc PGCs in vivo (Eguizabal et al. 2009). Tan et al. 
(2016) have found that RA induced the expressions 
of cell cycle-related genes. CCND1 is an important 
regulator of G1-to-S phase progression (Dalton 1999), 
and CDK2 can interact with cyclin E to drive cells 
through the G1-to-S transition and combine with cy-
clin A through the S-phase (Jirawatnotai et al. 2012). 
Th e increasing expressions of cell cycle-related genes 
suggested that cell cycle was aff ected aft er RA expo-
sure. Meanwhile, the increase in the percentage of 
SSEA-1-positive PGCs suggested that RA could pro-
mote the proliferation of PGCs derived from mouse 
embryos in vitro, and CCND1 and CDK2 were also 
up-regulated aft er RA treatment, which was similar 
to PGCLCs cultured in vitro (Tan et al. 2016).

In chickens, Yu et al. (2011) have further verifi ed 
that RA promotes the proliferation of chicken PGCs 
via the protein kinase C and PI3K/Akt signaling 
pathways. RA treatment increased the expressions 
of CCND1, CCNE1, CDK6, and CDK2, genes critical 
for G1-to-S phase progression in the cell cycle (Yu et 
al. 2011). Moreover, it has been confi rmed that RA-
treated chicken PGC populations have signifi cantly 
increased proportion of S-phase cells (Yu et al. 2012; 
Tan et al. 2016).

Organotins derivates – RXR ligands – 
and reproduction

Organotin compounds are typical environmental 
contaminants and suspected endocrine disrupting 
substances (Brtko and Dvorak 2015). Humans are 
exposed to tributyltin (TBT), previously used as an 
antifouling paint in ships, mainly through fi sh con-

sumption. A remarkable breakthrough in the fi eld 
came out with the recent fi ndings that triorganotin 
compounds are agonists of RXR subtypes of NRs 
(Figure 1), not sharing any structural characteris-
tics with any endogenous ligands of NRs. It has been 
shown that RXRα with its NR cysteine residue (C432) 
of helix H11 at the entrance to the ligand binding 
pocket was found to covalently interact with trial-
kyltin or triaryltin (Grun 2014; Brtko and Dvorak 
2015). Aft er crossing the cell membrane, triorgano-
tins could bind to NRs, which reside in the cytoplasm 
(e.g. glucocorticoid receptors) or in the nucleus (e.g. 
RXRs, PPARs) (Toporova et al. 2016). Upon ligand 
binding, triorganotin-NRs translocate to the nucleus 
where they form a complex triorganotin-NRs and co-
activators, which binds to the response elements on 
the DNA and induces transcription of target genes, 
changes in the expression of some proteins, as well as 
mitochondrial and cell dysfunctions. TBT has been 
largely released into water from special paintings. At 
very low concentrations (pM or nM), TBT induced an 
irreversible sexual abnormality “imposex” in marine 
gastropods (Nakanishi 2008). Triorganotins have 
been suggested to have teratogenic and pathologic 
eff ects of on endocrine and reproductive system of 
mammals in both genders (Delgado Filho et al. 2011), 
and endocrine disrupting eff ects, such as induction 
of progesterone biosynthesis, eff ects on aromatase 
activity, and capability to induce transcriptional ac-
tivity of thyroid hormone receptor (Brtko a Dvorak 
2015; Illes et al. 2015; Hiromori et al. 2016). Th ere are 
many reports regarding the biological eff ects of or-
ganotin compounds, which vary in their toxic eff ects 
on eukaryotes (reviewed in Delgado Filho et al. 2011). 
In vitro exposure of the human choriocarcinoma cell 
lines to TBT or triphenyltin (TPT) (300 nM) marked-
ly decreased DNA and protein synthesis (Nakanishi 
et al. 2002). In the same concentration ranges, TPT 

Figure 1. Th e eff ect of 
trioganiotin-based endo-
crine disrupting chemicals 
on nuclear retinoid X recep-
tor (RXR) and retinoic acid 
receptor (RAR) pathways.
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also inhibited the catalytic activity of human aroma-
tase (Lo et al. 2003) and other steroidogenic enzymes, 
aff ecting sexual development in male and female rats 
(Delgado Filho et al. 2011).

Organotin compounds can cross the placental bar-
rier and accumulate in large quantities in the placen-
ta and fetal tissues inducing morphological changes 
(Cooke et al. 2008; Delgado Filho et al. 2011). Kishta 
et al. (2007) have reported reduced number of gono-
cytes, Sertoli and Leydig cells of fetal testis aft er in 
utero exposure to TBTCl in pregnant rats. Growth 
retardation, delayed ossifi cation of the fetal skeleton 
and reduced body weight were also detected in male 
off spring. Additionally, a reduced testosterone con-
centration as well as a signifi cant delay in the age 
at preputial separation (Grote et al. 2009) has been 
found aft er in utero exposure to TBT of rats, without 
aff ecting the male reproductive system (Adeeko et al. 
2003).

Th e placenta plays a vital role in the maintaining 
pregnancy. Th e production of steroid hormones, such 
as progesterone and estrogens, is a crucial function 
of the primate placenta. In human placenta, steroid 
biosynthesis is regulated by various steroidogenic 
enzymes. Th e enzyme 3β-hydroxysteroid dehydroge-
nase/isomerase (3β-HSD) catalyzes the conversion of 
3-hydroxy-5-ene-steroids (dehydroepiandrosterone 
and pregnenolone) to 3-oxo-4-ene-steroids (andro-
stenedione and progesterone) (Simard et al. 2005). 
Placental production of progesterone is required to 
protect the conceptus during gestation (Malassine 
et al. 2003), the ingestion of progestins (i.e., natural 
and synthetic progesterone and testosterone deriva-
tives that produce biologic eff ects similar to those of 
progesterone) during pregnancy is associated with 
an increased risk of hypospadias (Carmichael et al. 
2005). Th erefore, the developmental and reproduc-
tive toxicities of environmental contaminants known 
to have endocrine disrupting eff ects plausibly might 
involve placental 3β-HSD I in humans. It has been 
shown that TBT inhibits the catalytic activity of hu-
man 5α-reductase I and II, rat 3β-HSD, and porcine 
17β-hydroxysteroid dehydrogenase (17β-HSD). TPT 
has been found to inhibit the catalytic activity of hu-
man aromatase, human 5α-reductase II, 17β-HSD I 
and III (Doering et al. 2002; McVey and Cooke 2003; 
Ohno et al. 2005).

It has been shown that exposure of human cho-
riocarcinoma JAr cells to nontoxic concentrations 
of both TBT and TPT enhanced 17β-HSD I mRNA 
transcription and enzyme activity in a dose-depen-
dent fashion and enhanced aromatase activity (Na-
kanishi et al. 2006). Moreover, TBT and TPT act as 

nanomolar agonists for both the RXR and peroxi-
some proliferator-activated receptor gamma (PPARγ) 
(Hiromori et al. 2009). PPARγ regulates the tran-
scription of genes by heterodimerizing with RXR and 
by binding to the PPAR response elements in the tar-
get gene promoter (Kliewer et al. 1992). Th e promo-
tion of estrogen biosynthesis by the organotin com-
pounds involves the activation of RXR rather than 
PPARγ (Nakanishi et al. 2006).

Hiromori et al. (2009) have found that some or-
ganotin compounds, including TBT and TPT, pro-
mote human chorionic gonadotropin (hCG) pro-
duction (Hiromori et al. 2009). hCG is a luteotropic 
factor and its stimulation by hCG governs not only 
progesterone production in the corpus luteum dur-
ing the fi rst trimester, but also the testosterone pro-
duction within the fetal testes. hCG is a crucial target 
gene of PPARγ in human placenta and its production 
and mRNA transcription is ligand-dependently con-
trolled by PPARγ (Tarrade et al. 2001). To investigate 
the eff ects of RXR and PPARγ agonists on progester-
one production and 3β-HSD I mRNA transcription, 
Hiromori et al. (2016) have treated JAr cells with LG 
(RXR agonist) or Rosi (PPARγ agonist). Both LG and 
Rosi enhanced progesterone production and 3β-HSD 
I mRNA transcription. Th ese data suggest that the 
RXR and PPARγ signaling pathways may be involved 
in organotin-induced progesterone production in hu-
man placental cells.

Moreover, Hiromori et al. (2016) have show that 
triorganotins, TPrTCl, TBTCl, TChTOH, and TPT-
Cl, signifi cantly enhanced the progesterone produc-
tion in a concentration-dependent manner in hu-
man choriocarcinoma JAr cells. Among metabolites 
of both TBTCl and TPTCl, DBTCl2, MPTCl3, and 
DPTCl2 altered progesterone production, and the 
level of stimulation increased proportionally with 
the alkylation or arylation of these organotin com-
pounds (tri- > di- > mono-). However, the presence 
of a fourth alkyl group on the tin atom decreased 
the potency of the organotin compounds, inducing 
the progesterone production, because tertbutyltin 
(TeBT) failed to stimulate this placental function at 
doses <100 nM. Th e organotin compounds that en-
hanced progesterone production also signifi cantly 
increased the mRNA transcription of 3β-HSD I. All 
active organotins increased the mRNA transcription 
of 3β-HSD I in a concentration-dependent manner.

Several studies addressing the eff ect of TBT on 
male reproductive functions have been reported 
(Omura et al. 2001; Grote et al. 2004; Delgado Filho et 
al. 2011). Omura et al. (2001) have shown that dietary 
treatment with TBTCl resulted in decreased testis, 
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epididymis, ventral prostate, and body weight during 
two generation study in rats. In other studies, a sig-
nifi cant decrease in the weight of the seminal vesicle 
and the weights of all reproductive organs has been 
reported in rodents (Grote et al. 2004). Prostate atro-
phy, as a consequence of aromatase inhibition, is also 
well known. Moreover, TBT induces morphological-
functional changes in the testes, including vacuoliza-
tion of seminiferous epithelium, delayed spermiation, 
spermatid retention into the germinative epithelium, 
and germ cell degeneration near the basement mem-
brane. Th e frequencies of these impairments in male 
sex organs were greater and considered to be abnor-
mal in the TBT-treated F2 generation in rats, although 
there was a dose-dependent increase in the serum 
testosterone levels of the rats fed by TBTCl diets and 
a decrease in serum estrogen levels in the F1 genera-
tion (Omura et al. 2001). In rats, the count of caudal 
epididymal and testicular sperm (Yu et al. 2003) and 
of homogenization-resistant spermatids decreased 
(Omura et al. 2001), and the motility, mean angular 
displacement, lateral head displacement, and dance 
of sperm from the vas deferens, were also reduced 
(Yu et al. 2003). Decreased serum concentrations of 
thyroxine and triiodothyronine were observed in an-
other study, in association with extensive damage to 
the thyroid gland, and low expression of thyroid hor-
mone receptor alpha in marine fi sh testes (Adeeko et 
al. 2003; Zhang et al. 2009).

A large number of studies have shown that expo-
sure to organotins can cause reproductive disruption 
in the female reproductive system of mammals (re-
viewed in Delgado Filho et al. 2011). Treatment with 
organotins in pseudopregnant rats resulted in a de-
crease in uterine weight and serum progesterone lev-
els, but ovarian weight, number of corpora lutea and 
estrogen levels remained at average levels. In utero 
exposure to high doses of TBT led to a decrease in the 
maternal weight gain and fetal weight, induced pre- 
and post-implantation losses (Nakanishi et al. 2005), 
provoked fetal toxicity (Itami et al. 1990), altered the 
anogenital distance of female pups on postnatal day 

1 (Ogata et al. 2001), caused precocious completion 
of vaginal opening in postnatal females (Grote et al. 
2009), reduced by about 45% the number of germ 
cells, and induced morphological-functional changes 
in the ovaries of fetal female rats (a large number of 
germ cells with pyknotic nuclei) (Kishta et al. 2007). 
In human choriocarcinoma cell lines, TBT and TPT 
increased levels of hCG secretion and aromatase 
activity in a dose- and time-dependent fashion fol-
lowing exposure to nontoxic concentration ranges 
(Nakanishi et al. 2002). In human choriocarcinoma 
JAr cells, trialkyltins and TPT enhanced 17β-HSD 
I mRNA transcription and enzyme activity in a 
dose-dependent fashion at nontoxic concentrations. 
(Nakanishi et al. 2006). However, in human gran-
ulosa-like cell line, TBT and TPT suppressed both 
aromatase activity and gene expression (Saitoh et al. 
2001). Based on these results, it has been suggested 
that organotin compounds function as a powerful 
agonist for nuclear receptors rather than an aroma-
tase inhibitor (Nakanishi 2008).

In conclusion, the eff ects of triorganotins have 
been associated with gender-specifi c morphological-
functional changes in mammalian reproductive or-
gans. Organotin compounds have been shown to act 
potentially as inhibitors of steroidogenic enzymes 
(Delgado Filho et al. 2011) and proteasome (Saitoh 
et al. 2001), or enhancers of histone acetyltransferase 
(Nakanishi et al. 2006). Moreover, eff ects of trior-
ganotins have been shown on epigenetic regulation 
of gene expression (Stel and Legler 2015). Since re-
cent studies have also shown that triorganotin com-
pounds can exhibit anti-tumor activity (Tabassum 
and Pettinary 2006; Hunakova et al. 2015; Macejova 
et al. 2015), the further studies on triorganotin com-
pound characteristics and action are essential.
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