Progress in micro RNA focused research in endocrinology

Open access

Abstract

Micro RNAs (miRNAs) are small regulatory molecules of increasing biologists’ interest. miRNAs, unlikely mRNA, do not encode proteins. It is a class of small double stranded RNA molecules that via their seed sequence interact with mRNA and inhibit its expression. It has been estimated that 30% of human gene expression is regulated by miRNAs. One miRNA usually targets several mRNAs and one mRNA can be regulated by several miRNAs. miRNA biogenesis is realized by key enzymes, Drosha and Dicer. miRNA/mRNA interaction depends on binding to RNA-induced silencing complex. Today, complete commercially available methodical proposals for miRNA investigation are available. There are techniques allowing the identification of new miRNAs and new miRNA targets, validation of predicted targets, measurement of miRNAs and their precursor levels, and validation of physiological role of miRNAs under in vitro and in vivo conditions. miRNAs have been shown to influence gene expression in several endocrine glands, including pancreas, ovary, testes, hypothalamus, and pituitary.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Baccarini A Chauhan H Gardner TJ Jayaprakash AD Sachidanandam R Brown BD. Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol 21 369-376 2011. http://dx.doi.org/10.1016/j.cub.2011.01.067

  • Balcells I Cirera S Busk PK. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol 11 70 2011. http://dx.doi.org/10.1186/1472-6750-11-70

  • Balakrishnan A Stearns AT Park PJ Dreyfuss JM Ashley SW Rhoads DB Tavakkolizadeh A. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts. Exp Cell Res 316 3512-3521 2010. http://dx.doi.org/10.1016/j.yexcr.2010.07.007

  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 136 215-233 2009. http://dx.doi.org/10.1016/j.cell.2009.01.002

  • Benes V Castoldi M. Expression profiling of microRNA using real-time quantitative PCR how to use it and what is available. Methods 50 244-249 2010. http://dx.doi.org/10.1016/j.ymeth.2010.01.026

  • Berezikov E Chung WJ Willis J Cuppen E Lai EC. Mammalian mirtron genes. Mol Cell 28 328-336 2007. http://dx.doi.org/10.1016/j.molcel.2007.09.028

  • Bernstein E Caudy AA Hammond SM Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409 363-366 2001. http://dx.doi.org/10.1038/35053110

  • Burgos KL Javaherian A Bomprezzi R Ghaffari L Rhodes S Courtright A Tembe W Kim S Metpally R Van Keuren-Jensen K. Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA 19 712-722 2013. http://dx.doi.org/10.1261/rna.036863.112

  • Calado A Treichel N Muller EC Otto A Kutay U. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J 21 6216-6224 2002. http://dx.doi.org/10.1093/emboj/cdf620

  • Chang TC Yu D Lee YS Wentzel EA Arking DE West KM Dang CV Thomas-Tikhonenko A Mendell JT. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40 43-50 2008. http://dx.doi.org/10.1038/ng.2007.30

  • Cheloufi S Dos Santos CO Chong MM Hannon GJ. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465 584-589 2010. http://dx.doi.org/10.1038/nature09092

  • Chen C Ridzon DA Broomer AJ Zhou Z Lee DH Nguyen JT Barbisin M Xu NL Mahuvakar VR Andersen MR Lao KQ Livak KJ Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33 e179 2005. http://dx.doi.org/10.1093/nar/gni178

  • Chen X Ba Y Ma L Cai X Yin Y Wang K Guo J Zhang Y Chen J Guo X Li Q Li X Wang W Zhang Y Wang J Jiang X Xiang Y Xu C Zheng P Zhang J Li R Zhang H Shang X Gong T Ning G Wang J Zen K Zhang J Zhang CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18 997-1006 2008. http://dx.doi.org/10.1038/cr.2008.282

  • Cheng HY Papp JW Varlamova O Dziema H Russell B Curfman JP Nakazawa T Shimizu K Okamura H Impey S Obrietan K. MicroRNA modulation of circadian-clock period and entrainment. Neuron 54 813-829 2007. http://dx.doi.org/10.1016/j.neuron.2007.05.017

  • Chendrimada TP Gregory RI Kumaraswamy E Norman J Cooch N Nishikura K Shiekhattar R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436 740-744 2005. http://dx.doi.org/10.1038/nature03868

  • Choi JW Kang SM Lee Y Hong SH Sanek NA Young WS Lee HJ. MicroRNA profiling in the mouse hypothalamus reveals oxytocin-regulating microRNA. J Neurochem 126 331-337 2013. http://dx.doi.org/10.1111/jnc.12308

  • Corcoran DL Pandit KV Gordon B Bhattacharjee A Kaminski N Benos PV. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 4 e5279 2009. http://dx.doi.org/10.1371/journal.pone.0005279

  • Correa-Medina M Bravo-Egana V Rosero S Ricordi C Edlund H Diez J Pastori RL. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns 9 193-199 2009. http://dx.doi.org/10.1016/j.gep.2008.12.003

  • da Costa Martins PA Bourajjaj M Gladka M Kortland M van Oort RJ Pinto YM Molkentin JD De Windt LJ. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118 1567-1576 2008. http://dx.doi.org/10.1161/CIRCULATIONAHA.108.769984

  • Dai A Sun H Fang T Zhang Q Wu S Jiang Y Ding L Yan G Hu Y. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett 587 2474−2482 2013. http://dx.doi.org/10.1016/j.febslet.2013.06.023

  • Davis TH Cuellar TL Koch SM Barker AJ Harfe BD McManus MT Ullian EM. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28 4322-4330 2008a. http://dx.doi.org/10.1523/JNEUROSCI.4815-07.2008

  • Davis BN Hilyard AC Lagna G Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454 56-61 2008b. http://dx.doi.org/10.1038/nature07086

  • Denli AM Tops BB Plasterk RH Ketting RF Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 432 231-235 2004. http://dx.doi.org/10.1038/nature03049

  • Diederichs S Haber DA. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131 1097-1108 2007. http://dx.doi.org/10.1016/j.cell.2007.10.032

  • Dogini DB Pascoal VD Avansini SH Vieira AS Pereira TC Lopes-Cendes I. Th e new world of RNAs. Genet Mol Biol 37 285-293 2014. http://dx.doi.org/10.1590/S1415-47572014000200014

  • Ebert MS Sharp PA. MicroRNA sponges: progress and possibilities. RNA 16 2043−2050 2010. http://dx.doi.org/10.1261/rna.2414110

  • Elia L Quintavalle M Zhang J Contu R Cossu L Latronico MV Peterson KL Indolfi C Catalucci D Chen J Courtneidge SA Condorelli G. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Diff er 16 1590-1598 2009. http://dx.doi.org/10.1038/cdd.2009.153

  • Eskildsen TV Jeppesen PL Schneider M Nossent AY Sandberg MB Hansen PB Jensen CH Hansen ML Marcussen N Rasmussen LM Bie P Andersen DC Sheikh SP. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci 14 11190−11207 2013. http://dx.doi.org/10.3390/ijms140611190

  • Feng Y Zhang X Song Q Li T Zeng Y. Drosha processing controls the specificity and efficiency of global microRNA expression. Biochem Biophys Acta 1809 700-707 2011. http://dx.doi.org/10.1016/j.bbagrm.2011.05.015

  • Figueredo Dde S Gitai DL Andrade TG. Daily variations in the expression of miR-16 and miR-181a in human leukocytes. Blood Cells Mol Dis 54 364−368 2015. http://dx.doi.org/10.1016/j.bcmd.2015.01.004

  • Filipowicz W. RNAi: the nuts and bolts of the RISC machine. Cell 122 17-20 2005. http://dx.doi.org/10.1016/j.cell.2005.06.023

  • Fire A Xu S Montgomery MK Kostas SA Driver SE Mello CC. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 391 806-811 1998. http://dx.doi.org/10.1038/35888

  • Forman JJ Legesse-Miller A Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 105 14879−14884 2008. http://dx.doi.org/10.1073/pnas.0803230105

  • Frezzetti D Reale C Cali G Nitsch L Fagman H Nilsson O Scarfo M De Vita G Di Lauro R. Th e microRNA-processing enzyme Dicer is essential for thyroid function. PLoS One 6 e27648 2011. http://dx.doi.org/10.1371/journal.pone.0027648

  • Fukuda T Yamagata K Fujiyama S Matsumoto T Koshida I Yoshimura K Mihara M Naitou M Endoh H Nakamura T Akimoto C Yamamoto Y Katagiri T Foulds C Takezawa S Kitagawa H Takeyama K O’Malley BW Kato S. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9 604-611 2007. http://dx.doi.org/10.1038/ncb1577

  • Gaken J Mohamedali AM Jiang J Malik F Stangl D Smith AE Chronis C Kulasekararaj AG Thomas NS Farzaneh F Tavassoli M Muft i GJ. A functional assay for microRNA target identification and validation. Nucleic Acids Res 40 e75 2012. http://dx.doi.org/10.1093/nar/gks145

  • Georgi SA Reh TA. Dicer is required for the transition from early to late progenitor state in the developing mouse retina. J. Neurosci 30 4048-4061 2010. http://dx.doi.org/10.1523/JNEUROSCI.4982-09.2010

  • Godoy J Nishimura M Webster NJ. Gonadotropin-releasing hormone induces miR-132 and miR-212 to regulate cellular morphology and migration in immortalized LbetaT2 pituitary gonadotrope cells. Mol Endocrinol 25 810−820 2011. http://dx.doi.org/10.1210/me.2010-0352

  • Gregory RI LaTP Cooch N Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123 631−640 2005. http://dx.doi.org/10.1016/j.cell.2005.10.022

  • Griffiths-Jones S Grocock RJ van Dongen S Bateman A Enright AJ. miRBase: microRNA sequences targets and gene nomenclature. Nucleic Acids Research 34 Database issue 140-4 2006. http://dx.doi.org/10.1093/nar/gkj112

  • Gu S Jin L Zhang F Huang Y Grimm D Rossi JJ Kay MA. Th ermodynamic stability of small hairpin RNAs highly influences the loading process of different mammalian Argonautes. Proc Natl Acad Sci U S A 108 9208-9213 2011. http://dx.doi.org/10.1073/pnas.1018023108

  • Han J Lee Y Yeom KH Nam JW Heo I Rhee JK Sohn SY Cho Y Zhang BT Kim VN. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125 887-901 2006. http://dx.doi.org/10.1016/j.cell.2006.03.043

  • Harfe BD McManus MT Mansfield JH Hornstein E Tabin CJ. Th e RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 102 10898-10903 2005. http://dx.doi.org/10.1073/pnas.0504834102

  • Hassan MQ Gordon JA Lian JB van Wijnen AJ Stein JL Stein GS. Ribonucleoprotein immunoprecipitation (RNP-IP): a direct in vivo analysis of microRNA-targets. J Cell Biochem 110 817-822 2010. http://dx.doi.org/10.1002/jcb.22562

  • He L Thomson JM Hemann MT Hernando-Monge E Mu D Goodson S Powers S Cordon-Cardo C Lowe SW Hannon GJ Hammond SM. A microRNA polycistron as a potential human oncogene. Nature 435 828-833 2005. http://dx.doi.org/10.1038/nature03552

  • He L He X Lim LP de Stanchina E Xuan Z Liang Y Xue W Zender L Magnus J Ridzon D Jackson AL Linsley PS Chen C Lowe SW Cleary MA Hannon GJ. A microRNA component of the p53 tumour suppressor network. Nature 447 1130-1134 2007. http://dx.doi.org/10.1038/nature05939

  • Heo I Joo C Cho J Ha M Han J Kim VN. Lin28 mediates the terminal uridylation of let-7 precursor Micro- RNA. Molecular Cell 32 276-284 2008. http://dx.doi.org/10.1016/j.molcel.2008.09.014

  • Holley CL Topkara VK. An introduction to small non-coding RNAs: miRNA and snoRNA. Cardiovasc Drugs Th er 25 151-159 2011. http://dx.doi:10.1007/s10557-011-6290-z

  • Hock J Meister G. The Argonaute protein family. Genome Biol 9 210 2008. http://dx.doi.org/10.1186/gb-2008-9-2-210

  • Hrustincova A Votavova H Dostalova Merkerova M. Circulating MicroRNAs: Methodological Aspects in Detection of Th ese Biomarkers.Folia Biologica (Praha) 61 203−218 2015.

  • Hu HY Yan Z Xu Y Hu H Menzel C Zhou YH Chen W Khaitovich P. Sequence features associated with microRNA strand selection in humans and fl ies. BMC Genomics 10 413 2009. http://dx.doi.org/10.1186/1471-2164-10-413

  • Hu Z Shen WJ Cortez Y Tang X Liu LF Kraemer FB Azhar S. Hormonal regulation of microRNA expression in steroid producing cells of the ovary testis and adrenal gland. PLoS One 8 e78040 2013. http://dx.doi.org/10.1371/journal.pone.0078040

  • Hutvagner G Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297 2056-2060 2002. http://dx.doi.org/10.1126/science.1073827

  • Imbar T Eisenberg I. Regulatory role of microRNAs in ovarian function. Fertil Steril 101 1524−1530 2014. http://dx.doi.org/10.1016/j.fertnstert.2014.04.024

  • Kawai S Amano A. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J Cell Biol 197 201-208 2012. http://dx.doi.org/10.1083/jcb.201110008

  • Kentwell J Gundara JS Sidhu SB. Noncoding RNAs in endocrine malignancy. Oncologist 19 483−491 2014. http://dx.doi: 10.1634/theoncologist.2013-0458

  • Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6 376-385 2005. http://dx.doi.org/10.1038/nrm1644

  • Krol J Sobczak K Wilczynska U Drath M Jasinska A Kaczynska D Krzyzosiak WJ. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design. J Biol Chem 279 42230-42239 2004. http://dx.doi.org/10.1074/jbc.M404931200

  • Kuehbacher A Urbich C Zeiher AM Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101 59-68 2007. http://dx.doi.org/10.1161/CIRCRESAHA.107.153916

  • Kuhn DE Martin MM Feldman DS Terry AV Jr Nuovo GJ Elton TS. Experimental validation of miRNA targets. Methods 44 47−54 2008. http://dx.doi.org/10.1016/j.ymeth.2007.09.005

  • Lal A Th omas MP Altschuler G Navarro F O’Day E Li XL Concepcion C Han YC Thiery J Rajani DK Deutsch A Hofmann O Ventura A Hide W Lieberman J. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet 7 e1002363 2011. http://dx.doi.org/10.1371/journal.pgen.1002363

  • Landthaler M Yalcin A Tuschl T. Th e human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14 2162-2167 2004. http://dx.doi.org/10.1016/j.cub.2004.11.001

  • Lannes J L’Hote D Garrel G Laverriere JN Cohen-Tannoudji J Querat B. Rapid communication: A microRNA-132/212 pathway mediates GnRH activation of FSH expression. Mol Endocrinol 29 364−372 2015. http://dx.doi.org/10.1210/me.2014-1390

  • Lee RC Feinbaum RL Ambros V. Th e C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75 843-854 1993. http://dx.doi.org/10.1016/0092-8674(93)90529-Y

  • Lee Y Jeon K Lee JT Kim S Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21 4663-4670 2002. http://dx.doi.org/10.1093/emboj/cdf476

  • Lee Y Ahn C Han J Choi H Kim J Yim J Lee J Provost P Radmark O Kim S Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature 425 415-419 2003. http://dx.doi.org/10.1038/nature01957

  • Lee Y Kim M Han J Yeom KH Lee S Baek SH Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23 4051-4060 2004a. http://dx.doi.org/10.1038/sj.emboj.7600385

  • Lee YS Nakahara K Pham JW Kim K He Z Sontheimer EJ Carthew RW. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117 69-81 2004b. http://dx.doi.org/10.1016/S0092-8674(04)00261-2

  • Lee EJ Baek M Gusev Y Brackett DJ Nuovo GJ Schmittgen TD. Systematic evaluation of microRNA processing patterns in tissues cell lines and tumors. RNA 14 35-42 2008. http://dx.doi.org/10.1261/rna.804508

  • Lee KH Kim SH Lee HR Kim W Kim DY Shin JC Yoo SH Kim KT. MicroRNA-185 oscillation controls circadian amplitude of mouse Cryptochrome 1 via translational regulation. Mol Biol Cell 24 2248-2255 2013. http://dx.doi.org/10.1091/mbc.E12-12-0849

  • Lewis BP Burge CB Bartel DP. Conserved seed pairing oft en flanked by adenosines indicates that thousands of human genes are microRNA targets. Cell 120 15-20 2005. http://dx.doi.org/10.1016/j.cell.2004.12.035

  • Li X Carthew RW. A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123 1267-1277 2005. http://dx.doi.org/10.1016/j.cell.2005.10.040

  • Liu F Song Y Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6 1258−1266 1999. http://dx.doi.org/10.1038/sj.gt.3300947

  • Liu N Bezprozvannaya S Williams AH Qi X Richardson JA Bassel-Duby R Olson EN. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22 3242-3254 2008. http://dx.doi.org/10.1101/gad.1738708

  • Ma W Hu S Yao G Xie S Ni M Liu Q Gao X Zhang J Huang X Zhang Y. An androgen receptor-microrna-29a regulatory circuitry in mouse epididymis. J Biol Chem 288 29369−29381 2013. http://dx.doi.org/10.1074/jbc.M113.454066

  • MacRae IJ Zhou K Li F Repic A Brooks AN Cande WZ Adams PD Doudna JA. Structural basis for doublestranded RNA processing by Dicer. Science 311 195-198 2006. http://dx.doi.org/10.1126/science.1121638

  • Matera AG Terns RM Terns MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8 209-220 2007. http://dx.doi.org/10.1038/nrm2124

  • Matranga C Tomari Y Shin C Bartel DP Zamore PD. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123 607-620 2005. http://dx.doi.org/10.1016/j.cell.2005.08.044

  • Melo SA Ropero S Moutinho C Aaltonen LA Yamamoto H Calin GA Rossi S Fernandez AF Carneiro F Oliveira C Ferreira B Liu CG Villanueva A Capella G Schwartz S Jr Shiekhattar R Esteller M. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41 365−370 2009. http://dx.doi.org/10.1038/ng.317

  • Mitchell PS Parkin RK Kroh EM Fritz BR Wyman SK Pogosova-Agadjanyan EL Peterson A Noteboom J O’Briant KC Allen A Lin DW Urban N Drescher CW Knudsen BS Stirewalt DL Gentleman R Vessella RL Nelson PS Martin DB Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105 10513-10518 2008. http://dx.doi.org/10.1073/pnas.0804549105

  • Miyaki S Sato T Inoue A Otsuki S Ito Y Yokoyama S Kato Y Takemoto F Nakasa T Yamashita S Takada S Lotz MK Ueno-Kudo H Asahara H. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 24 1173−1185 2010. http://dx.doi.org/10.1101/gad.1915510

  • Monteys AM Spengler RM Wan J Tecedor L Lennox KA Xing Y Davidson BL. Structure and activity of putative intronic miRNA promoters. RNA 16 495-505 2010. http://dx.doi.org/10.1261/rna.1731910

  • Morita S Horii T Kimura M Goto Y Ochiya T Hatada I. One Argonaute family member Eif2c2 (Ago2) is essential for development and appears not to be involved in DNA methylation. Genomics 89 687-696 2007. http://dx.doi.org/10.1016/j.ygeno.2007.01.004

  • Mornet E Dupont J Vitek A White PC. Characterization of two genes encoding human steroid 11 beta-hydroxylase (P-450(11) beta). J Biol Chem 264 20961−20967 1989.

  • Murchison EP Stein P Xuan Z Pan H Zhang MQ Schultz RM Hannon GJ. Critical roles for Dicer in the female germline. Genes Dev 21 682-693 2007. http://dx.doi.org/10.1101/gad.1521307

  • Nagel R Clijsters L Agami R. The miRNA-192/194 cluster regulates the Period gene family and the circadian clock. FEBS J 276 5447-5455 2009. http://dx.doi.org/10.1111/j.1742-4658.2009.07229.x

  • Nelson PT Baldwin DA Scearce LM Oberholtzer JC Tobias JW Mourelatos Z. Microarray-based high-throughput gene expression profiling of microRNAs. Nat Methods 1 155-161 2004. http://dx.doi.org/10.1038/nmeth717

  • Nemoto T Mano A Shibasaki T. Increased expression of miR-325-3p by urocortin 2 and its involvement in stressinduced suppression of LH secretion in rat pituitary. Am J Physiol Endocrinol Metab 302 E781−E787 2012. http://dx.doi.org/10.1152/ajpendo.00616.2011

  • Newman MA Thomson JM Hammond SM. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14 1539-1549 2008. http://dx.doi.org/10.1261/rna.1155108

  • Noland CL Doudna JA. Multiple sensors ensure guide strand selection in human RNAi pathways. RNA 19 639-648 2013. http://dx.doi.org/10.1261/rna.037424.112

  • Okamura K Hagen JW Duan H Tyler DM Lai EC. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130 89-100 2007. http://dx.doi.org/10.1016/j.cell.2007.06.028

  • Ozcan S. Minireview: microRNA function in pancreatic β cells. Mol Endocrinol 28 1922−1933 2014. http://dx.doi.org/10.1210/me.2014-1306

  • Ozsolak F Poling LL Wang Z Liu H Liu XS Roeder RG Zhang X Song JS Fisher DE. Chromatin structure analyses identify miRNA promoters. Genes Dev 22 3172-3183 2008. http://dx.doi.org/10.1101/gad.1706508

  • Pare JM Tahbaz N Lopez-Orozco J LaPointe P Lasko P Hobman TC. Hsp90 regulates the function of argonaute 2 and its recruitment to stress granule and P-bodies. Mol Biol Cell 20 3273-3284 2009. http://dx.doi.org/10.1091/mbc.E09-01-0082

  • Park CY Choi YS McManus MT. Analysis of microRNA knockouts in mice. Hum Mol Genet 19 169−75 2010. http://dx.doi.org/10.1093/hmg/ddq367

  • Parker R Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell 25 635−646 2007. http://dx.doi.org/10.1016/j.molcel.2007.02.011

  • Plaisance V Abderrahmani A Perret-Menoud V Jacquemin P Lemaigre F Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281 26932−26942 2006. http://dx.doi.org/10.1074/jbc.M601225200

  • Poy MN Eliasson L Krutzfeldt J Kuwajima S Ma X Macdonald PE Pfeffer S Tuschl T Rajewsky N Rorsman P Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432 226−230 2004. http://dx.doi.org/10.1038/nature03076

  • Poy MN Hausser J Trajkovski M Braun M Collins S Rorsman P Zavolan M Stoffel M. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 106 5813-5818 2009. http://dx.doi.org/10.1073/pnas.0810550106

  • Raver-Shapira N Marciano E Meiri E Spector Y Rosenfeld N Moskovits N Bentwich Z Oren M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26 731-734 2007. http://dx.doi.org/10.1016/j.molcel.2007.05.017

  • Reinhart BJ Slack FJ Basson M Pasquinelli AE Bettinger JC Rougvie AE Horvitz HR Ruvkun G. Th e 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403 901-906 2000. http://dx.doi.org/10.1038/35002607

  • Riester A Issler O Spyroglou A Rodrig SH Chen A Beuschlein F. ACTH-dependent regulation of microRNA as endogenous modulators of glucocorticoid receptor expression in the adrenal gland. Endocrinology 153 212−222 2012. http://dx.doi.org/10.1210/en.2011-1285

  • Robertson S MacKenzie SM Alvarez-Madrazo S Diver LA Lin J Stewart PM Fraser R Connell JM Davies E. MicroRNA-24 is a novel regulator of aldosterone and cortisol production in the human adrenal cortex. Hypertension 62 572−578 2013. http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01102

  • Rodriguez A Griffiths-Jones S Ashurst JL Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 14 1902-1910 2004. http://dx.doi.org/10.1101/gr.2722704

  • Romero DG Plonczynski MW Carvajal CA Gomez-Sanchez EP Gomez-Sanchez CE. Microribonucleic acid-21 increases aldosterone secretion and proliferation in H295R human adrenocortical cells. Endocrinology 149 2477−2483 2008. http://dx.doi.org/10.1210/en.2007-1686

  • Shende VR Goldrick MM Ramani S Earnest DJ. Expression and Rhythmic Modulation of Circulating MicroRNAs Targeting the Clock Gene Bmal1 in Mice. PLoS One 6 e22586 2011. http://dx.doi.org/10.1371/journal.pone.0022586

  • Shi R Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39 519−525 2005. http://dx.doi.org/10.2144/000112010

  • Schmittgen TD Jiang J Liu Q Yang L. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32 e43 2004. http://dx.doi.org/10.1093/nar/gnh040

  • Schmittgen TD Lee EJ Jiang J Sarkar A Yang L Elton TS Chen C. Real-time of PCR quantification precursor and mature microRNA. Methods 44 31-38 2008. http://dx.doi.org/10.1016/j.ymeth.2007.09.006

  • Schwarz DS Hutvagner G Du T Xu Z Aronin N Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115 199-208 2003. http://dx.doi.org/10.1016/S0092-8674(03)00759-1

  • Suh N Baehner L Moltzahn F Melton C Shenoy A Chen J Blelloch R. MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 20 271-277 2010. http://dx.doi.org/10.1016/j.cub.2009.12.044

  • Tang R Li L Zhu D Hou D Cao T Gu H Zhang J Chen J Zhang CY Zen K. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res 3 504-515 2012. http://dx.doi.org/10.1038/cr.2011.137

  • Thomson JM Newman M Parker JS Morin-Kensicki EM Wright T Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20 2202-2207 2006. http://dx.doi.org/10.1101/gad.1444406

  • Timmermans S Van Hauwermeiren F Puimege L Dejager L Van Wonterghem E Vanhooren V Mestdagh P Libert C Vandenbroucke RE. Determining differentially expressed miRNAs and validating miRNA−target relationships using the SPRET/Ei mouse strain. Mamm Genome 26 94−107 2015. http://dx.doi.org/10.1007/s00335-014-9550-y

  • Van Nieuwerburgh F Soetaert S Podshivalova K Ay-Lin Wang E Schaff er L Deforce D Salomon DR Head SR Ordoukhanian P. Quantitative bias in Illumina TruSeq and a novel post amplification barcoding strategy for multiplexed DNA and small RNA deep sequencing. PLoS One 6 e26969 2011. http://dx.doi.org/10.1371/journal.pone.0026969

  • van Rooij E. Th e art of microRNA research. Circ Res 108 219−234 2011. http://dx.doi.org/10.1161/CIRCRESAHA.110.227496

  • Vasudevan S. Functional validation of microRNA-target RNA interactions. Methods 58 126−134 2012. http://dx.doi.org/10.1016/j.ymeth.2012.08.002

  • Ventura A Young AG Winslow MM Lintault L Meissner A Erkeland SJ Newman J Bronson RT Crowley D Stone JR Jaenisch R Sharp PA Jacks T. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132 875-886 2008. http://dx.doi.org/10.1016/j.cell.2008.02.019

  • Wang Y Medvid R Melton C Jaenisch R Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39 380-385 2007. http://dx.doi.org/10.1038/ng1969

  • Wang D Zhang Z O’Loughlin E Lee T Houel S O’Carroll D Tarakhovsky A Ahn NG Yi R. Quantitative functions of Argonaute proteins in mammalian development. Genes Dev 26 693-704 2012. http://dx.doi.org/10.1101/gad.182758.111

  • Wang L Xu C. Role of microRNAs in mammalian spermatogenesis and testicular germ cell tumors. Reproduction 149 R127-137 2015. http://dx.doi.org/10.1530/REP-14-0239

  • Wickramasinghe NS Manavalan TT Dougherty SM Riggs KA Li Y Klinge CM. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancercells. Nucleic Acids Res 37 2584−2595 2009. http://dx.doi.org/10.1093/nar/gkp117

  • Wu Q Song R Ortogero N Zheng H Evanoff R Small CL Griswold MD Namekawa SH Royo H Turner JM Yan W. Th e RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 287 25173-25190 2012. http://dx.doi.org/10.1074/jbc.M112.362053

  • Wu S Sun H Zhang Q Jiang Y Fang T Cui I Yan G Hu Y. MicroRNA-132 promotes estradiol synthesis in ovarian granulosa cells via translational repression of Nurr1. Reprod Biol Endocrinol 13 94 2015. http://dx.doi.org/10.1186/s12958-015-0095-z

  • Xu S Witmer PD Lumayag S Kovacs B Valle D. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem 282 25053−25066 2007. http://dx.doi.org/10.1074/jbc.M700501200

  • Yan Y Salazar TE Dominguez JM 2nd Nguyen DV Li Calzi S Bhatwadekar AD Qi X Busik JV Boulton ME Grant MB. Dicer expression exhibits a tissue-specifi c diurnal pattern that is lost during aging and in diabetes. PLoS One 8 e80029 2013. http://dx.doi.org/10.1371/journal.pone.0080029

  • Yang WJ Yang D Na S Sandusky G Zhang Q Zhao G. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 280 9330-9335 2004. http://dx.doi.org/10.1074/jbc.M413394200

  • Yang M Lee JE Padgett RW Edery I. Circadian regulation of a limited set of conserved microRNAs in Drosophila. BMC Genomics 9 83 2008. http://dx.doi.org/10.1186/1471-2164-9-83

  • Yang Y Chang S Zhao Z Hou NI He K Wang X Gao L Wang L Cai D Guo BO Tong D Song T Huang C. MicroRNA-214 suppresses the proliferation of human hepatocellular carcinoma cells by targeting E2F3. Oncol Lett 10 3779-3784 2015. http://dx.doi.org/10.3892/ol.2015.3745

  • Yi R Qin Y Macara IG Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17 3011-3016 2003. http://dx.doi.org/10.1101/gad.1158803

  • Yin M Lu M Yao G Tian H Lian J Liu L Liang M Wang Y Sun F. Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovariangranulosa cells by targeting RBMS1. Mol Endocrinol 26 1129−1143 2012. http://dx.doi.org/10.1210/me.2011-1341

  • Zhang X Zeng Y. Regulation of mammalian microRNA expression. J Cardiovasc Transl Res 3 197-203 2010. http://dx.doi.org/10.1007/s12265-010-9166-x

  • Zhang Z Qin YW Brewer G Jing Q. MicroRNA degradation and turnover: regulating the regulators. Wiley Interdiscip Rev RNA 3 593-600 2012. http://dx.doi.org/10.1002/wrna.1114

  • Zhang N Lin JK Chen J Liu XF Liu JL Luo HS Li YQ Cui S. MicroRNA 375 mediates the signaling pathway of corticotropin-releasing factor (CRF) regulating pro-opiomelanocortin (POMC) expression by targeting mitogen-activated protein kinase 8. J Biol Chem 288 10361-10373 2013. http://dx.doi.org/10.1074/jbc.M112.425504

Search
Journal information
Impact Factor


CiteScore 2018: 1.27

SCImago Journal Rank (SJR) 2018: 0.411
Source Normalized Impact per Paper (SNIP) 2018: 0.441

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 520 333 19
PDF Downloads 272 181 7