
Ekológia (Bratislava)

140

THE APPLICATION OF DIRECTIONAL UNIVARIATE 
STRUCTURE FUNCTIONS ANALYSIS FOR STUDYING 
THE SPATIAL ANISOTROPY OF ENVIRONMENTAL 
VARIABLES

DARIA SVIDZINSKA

Department of Physical Geography and Geoecology, Faculty of Geography, Taras Shevchenko National University 
of Kyiv, 2A Akademika Glushkova ave., MSP-680, Kyiv, Ukraine; e-mail: d.svidzinska@gmail.com

Abstract

Svidzinska D.: The application of directional univariate structure functions analysis for studying the 
spatial anisotropy of environmental variables. Ekológia (Bratislava), Vol. 38, No. 2, p. 140–153, 2019.

As anisotropy is a fundamental property of the real-world environmental spatial variables, the 
conventional omnidirectional variograms and correlograms do not provide means enough to 
characterise spatial dependence between observations. The purpose of this article is to introduce 
directional univariate structure functions analysis to explore and quantify the spatial anisotropy of 
environmental variables. Analysis of six environmental variables within three physical–geograph-
ical regions proved the leading role of relief for landscape differentiation; it also defined the size 
and extension of major landforms responsible for the organisation of spatial pattern. The arrange-
ment of the vegetation patches demonstrated linkage with the major landforms. The other relief 
derivatives, being prone to noise and artefacts in the original data, showed a random-variable type 
of behaviour. In the lack of any particular spatially anisotropic structure, the results of the analysis 
can provide a clue about meaningful distances of interest at finer scales. The approach can also 
be an exploratory tool for discrete measurements to recognise the features of spatial continuity.

Key words: autocorrelation, environmental variable, Kanivs’kiy Nature Reserve, semivariance, 
spatial analysis, spatial anisotropy.

Introduction

Most of the real-world environmental variables are inherently anisotropic, which means that 
spatial dependence between a variable’s values is not the same for all geographic directions con-
sidered (Cressie, 1993; Legendre, Legendre, 2012; Rossi et al., 1992). It is important to account 
for the presence and features of this dependence to understand spatial patterns in the data (Leg-
endre, Fortin, 1989; Rossi et al., 1992; Turner, Gardner, 2015), to catch the scale of data variability 
(Legendre, Legendre, 2012), to reveal links between variables (Rossi et al., 1992; Turner, Gardner, 
2015) and to describe the main features of spatial anisotropy (Rossi et al., 1992). This information 
is routinely used to hypothesise on the nature and scale of a pattern-generating process (Legendre, 
Fortin, 1989; Turner, Gardner, 2015) and to develop sampling schemes (Cressie, 1993).
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The tools to characterise spatial dependence between observations are the univariate 
structure functions of semivariance and autocorrelation (Cressie, 1993; Legendre, Legendre, 
2012; Rossi et al., 1992). Both are calculated across a distance, whilst the semivariance is 
a measure of the variance and the autocorrelation is a measure of the correlation of a re-
gionalised variable (Cressie, 1993; Legendre, Legendre, 2012). When used simultaneously, 
these functions provide insights on the existence of a spatial pattern in the data, degree of its 
spatial variability and critical distances at which significant similarities or dissimilarities are 
observed (Legendre, Fortin, 1989; Rossi et al., 1992; Turner, Gardner, 2015).

Traditionally, a single semivariance or autocorrelation value is calculated for each 
distance class, producing the so-called omnidirectional variograms and correlograms. 
But Legendre and Legendre (2012) argued that for spatial environmental variables, when 
anisotropy is the case, it is necessary to account for a directional change in the values 
of the univariate structure functions. Whilst the directional univariate structure func-
tions analysis is recognised to be more appropriate for the spatially anisotropic real-
world data, its practical implementation may be limited by a small number of irregularly 
spread observations (Legendre, Legendre, 2012) as well as the lack of ready-to-apply 
analytical and visualisation techniques (Legendre, Fortin, 1989; Rosenberg, 2000; Rossi 
et al., 1992).

Here, I describe how to apply the directional univariate structure functions analysis 
to the real-world environmental data. I examined the set of six raster environmental 
variables for the three sub-areas of different physical–geographical regions. Using the 
data, I illustrate how the results can identify and quantify complex spatial patterns and 
their scales. This, in turn, helped to recognise factors and/or processes responsible for 
landscape heterogeneity at different scales.

Material and methods

Study area

The study area of 1,528 km2 covers the overall extent of the Kanivs’kyi Nature Reserve, Ukraine, and its sur-
roundings, defined by a 2-km buffer zone (Copernicus Programme, 2015; Hansen, DeFries, 2007) (Fig. 1). As 
a part of the Dnieper River valley, the area encompasses three contrast physical–geographical regions (Mar-
ynych et al., 2003) (Fig. 2). Elevated erosionally dissected loess plains with gray podzolic soils under the sec-
ondary oak-hornbeam forests and arable lands on typical chernozems represent the first region. The second 
region is the fragment of a floodplain and alluvial terrace with meadow soils on alluvial deposits and soddy-
podzolic soils on ancient alluvial deposits under meadow vegetation and pine forests, respectively. The third 
region within the left bank of the Dnieper includes the floodplain with soddy weakly-podzolic sandy soils 
under meadow vegetation and the first-third terraces with gray podzolic soils under the pine forests and typi-
cal chernozems under the arable lands.

The area harmoniously combines unique cultural and natural landscapes that has led to the consolidation 
and expansion of the existing protected areas and their recognition as the Key Biodiversity Area and Emerald 
sites (BirdLife International, 2018; Chorny, Chorna, 2013; European Environment Agency, 2017). Despite the 
importance of the area for the preservation of natural heritage and biodiversity, there is still the shortage of 
detailed information on the spatial pattern of its landscapes. In this respect, understanding of the main features 
of the spatial structure of environmental variables could provide a basis for field research, habitats inventory 
and landscape mapping necessary for the spatially precise data-driven decision making on nature conservation 
and land management.



142

Fig. 1. Location and general view of the study area.

Materials

As landforms are an important factor of landscape heterogeneity (Swanson et al., 1988), terrain parameters com-
posed a primary set of environmental variables. The Advanced Land Observing Satellite (ALOS) global digital sur-
face model (DSM) ‘ALOS World 3D – 30m’ (AW3D30) v.2.1 released in April 2018 represented the terrain of the 
study area. The AW3D30 is a DSM data set with a horizontal resolution of 1 arc-second latitude and longitude mesh 
generated from the 5-m resolution DSM based on the images collected during 2006−2011 (Tadono et al., 2016). For 
the purpose of the analysis, the original DSM data were reprojected using bilinear interpolation from the geographic 
coordinate system WGS84 to the projected coordinate system WGS84/UTM zone 36N with the resulting spatial 
resolution of 30 m.

Multiple geomorphometric parameters have been developed and used to characterise the terrain variability 
(Hengl, Reuter, 2009; Wilson, Gallant, 2000). At the same time, Lecours et al. (2017) argued that more than 70% 
of environmental variability related to the relief is captured through the limited set of the six parameters, namely, 
local mean, slope, local standard deviation, relative difference to mean, easterness and northerness. I derived the 
suggested parameters from the AW3D30 DSM in the SAGA GIS (Conrad et al., 2015) that provides the algorithms 
recommended by Lecours et al. (2017).
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The pattern of natural vegetation modified by the land-use practices is another important factor of landscape 
variegation. The continuous field variables of spectral vegetation indices can capture the short-term response of 
the vegetation to ecological and anthropogenic driving forces. For this purpose, I used the Enhanced Vegetation 
Index (EVI) with a spatial resolution of 10 m calculated from the Sentinel 2A Level 2A Bottom of Atmosphere 
(BOA) reflectance product of the image captured on 22 July 2017. The EVI was chosen instead of the commonly 
used Normalised Difference Vegetation Index because it incorporates adjustments for the canopy background and 
atmospheric effects, which increase its sensitivity to the vegetation signal (Huete et al., 2002).

Covariation is a common property of many environmental variables, especially of those derived from a single 
data source such as digital elevation model (DEM) (Graham, 2003; Lecours et al., 2017). To avoid possible data 
redundancy, I performed the correlation analysis to account for confounding spatial variables (Dutilleul et al., 1993; 
Osorio, Vallejos, 2014; R Core Team, 2017). Following the results of the correlation analysis, local standard deviation 
was excluded from the initial set of variables because of its strong (0.99) and significant (p ≤ 0.01) correlation with 
slope. The final data set included 6 environmental variables (Fig. 2).

Methods

The analysis documented as a series of scripts for the R environment (R Core Team, 2017) and based on the packages 
EcoGenetics (Roser et al., 2017), geoR (Ribeiro Jr., Diggle, 2016), raster (Hijmans, 2016), rgdal (Bivand et al., 2017) 
and sp (Bivand et al., 2013; Pebesma, Bivand, 2005). The workflow included the following steps: 

1. Import of a variable’s raster layer to the computing environment and calculation of the default distance of 
interest as the one-third of the diagonal of the raster extent. This limitation is necessary to ensure that each lag 
contains a sufficient number of pairs of points to produce a reliable univariate structure function value (Legendre, 

Fig. 2. Environmental variables selected for the analysis. Numbers of the sub-areas in brackets refer to the number-
ing scheme from Marynych et al. (2003).
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Legendre, 2012). Turner and Gardner (2015) recommended the overall linear extent of the data set to be at least 
twice the maximum distance (scale) to examine in order to encompass the process of a certain scale. In such a way, 
the distance limitation narrows down the scale of the analysis to the processes that reveal within the area of interest.

 2. A random sampling of the raster by the user-defined number of points. The sample has to be limited be-
cause of computational requirements, and taking into account the distance limitation, usually 1000−3000 points 
are enough to produce reliable results. For the purpose of this analysis, in each case, I limited the sample size to 
5000 points. The sample was exported to the ESRI Shapefile and stored as a separate data object for further analysis.

3. The calculation of the lag based on the maximum possible number of the pairs of points in the distance matrix 
by using the following formula:

where  is the total number of the pairs of points in the distance matrix and  is the total number of not-null pixels in 
the raster.

The definition of the possible number of classes and lag distance relies on Sturges’ rule:

where is a distance lag and  is the maximum distance defined in the first step. The denominator of the formula 
defines the number of distance classes. For the convenience, the lag value is rounded to be a multiple of 5.

On the basis of these values, the distance bins are defined by incrementing the lag by the number of classes from 
zero up to the maximum distance. All the results (the lag, number of classes, distance bins) are stored in intermedi-
ary data objects to be used in the following steps.

There is also a possibility for a user to manually define the lag and/or maximum distance of interest. But the 
simultaneous predefinition of both is not recommended because it deprives the analysis of its sense. The approach, 
when the lag and distance bins are based on the data properties, ensures that semivariance and autocorrelation val-
ues are calculated from the number of pairs of points that is large enough to produce reliable values. This is especially 
important with the limited sample size (Legendre and Legendre, 2012; Shaukat et al., 2016), which may be an issue 
for the sample-based analysis of the univariate structure functions of large data sets, such as rasters of continuous 
environmental variables.

 4. Semivariance analysis using the parameters derived in the previous step (Cressie, 1993). The variograms are 
calculated for the nine directions from 0° to 180° with the increment of 22.5° and tolerance angle of 11.25°. In addi-
tion to these directions, an omnidirectional variogram is also calculated. For better control of the validity of the val-
ues, the minimal number of pairs of points for semivariance calculation is limited to 50 (Legendre, Legendre, 2012).

Because semivariance characterises the variables with different measurement units and levels of spatial vari-
ability, it is necessary to standardise its values for meaningful compatibility and interpretation. For this purpose, I 
applied the approach by Rossi et al. (1992) when the values of semivariance are divided by the overall sample vari-
ance. The results are stored as a CSV-file and include the semivariance values (both original and standardised) for 
bins’ centres, number of pairs within each bin and their standard deviation.

5. Spatial autocorrelation analysis based on Moran’s I coefficient (Rosenberg, 2000). The omnidirectional and 
nine-directional (from 0° to 180° with the increment of 22.5°) correlation coefficients are calculated for the defined 
distance bins. The results are stored as a CSV-file and include the autocorrelation values, number of pairs within 
each bin, mean distance between them and p-values calculated by permutations.

Visual analytical exploration of the results relies on two-dimensional or planimetric variograms and correlograms 
(Legendre, Fortin, 1989; Rosenberg, 2000; Rossi et al., 1992; Wickham, 2009). The resulting polar plot consists of two 
parts. The top part displays the change in semivariance (or autocorrelation and its significance) values in the space of 
the directions from 0° to 180°. As the plot is symmetric about its origin, the bottom 180−360° part would mirror the top 
one. But instead of mirroring the directional values, the bottom part is used to visualise the omnidirectional values (to 
be identical in all directions). The combination of the directional and omnidirectional values in a single plot simplifies 
the exploration and understanding of the presence and features of the spatial anisotropy in the data.

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  
𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × (𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1)

2  

𝑙𝑙 =  𝐿𝐿
1 + 3.322 × 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
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Results

The data-derived parameters calculated from the rasters by the sub-areas enable the explo-
ration of spatial dependencies over the scales within the range from zero to the maximum 
distance with the grain of the lag (Table 1).

T a b l e  1. The parameters of the univariate structure functions analysis.

Variable Lag, m Number of distance classes Maximum distance, m
Sub-area 1

DEM derivatives 415 37 15 355
EVI 350 44 15 400

Sub-area 2
DEM derivatives 270 34 9 180
EVI 225 39 8 775

Sub-area 3
DEM derivatives 410 38 15 580
EVI 350 45 15 750

Sub-area 1

The local mean variable demonstrates a well-identifiable spatially anisotropic structure (Fig. 
3). According to the variogram, the main direction of the data variability goes along the 
90−270°1 axis with the contours elongating along 135−315° and shrinking along 22.5−202.5°. 
Two primary semivariance peaks of 1.3 and 1.2 occur at a distance of 7 km (the 22.5−202.5° 
axis) and 11 km (the 157.5−337.5° axis), respectively. The overall data variability reaches its 
maximum of 2.1 at a distance of 13 km. The correlogram demonstrates the presence of sig-
nificant positive autocorrelation up to 5 km with the elongation of the contours up to 8 km 
in the 146.25−326.25° direction. An additional contour of zero autocorrelations appears at a 
distance of 12 km.

The comparison of plots with the map of local mean suggests the presence of a two-level 
hierarchy in the arrangement of relief spatial structures. The variability of a finer scale is 
present at a distance of 5–7 km. It refers to the elevated ranges of the prevailing NW–SE 
orientation resulted from the dissection of hills by major elements of the erosion network. 
The broad-scale differences are the most clearly pronounced along the N–S direction and 
attribute to the landforms of a linear size of 12−13 km, which supposed to be the hills and 
lowlands referring to the morphostructures formed by horsts and grabens.

Some signs of the fine-scale structure of the slope variable at a distance of less than 1 km 
present at the variogram and correlogram. The overall variability of the values pronounces in the 
90−270° direction and reaches its maximum of 1.7 at a distance of 15 km. The autocorrelation 

1 Here and thereafter for convenience, the directional axes are given for the whole circle of 0−360° because, owing 
to the symmetry, the bottom (180−360°) part of the plot would mirror the top (0−180°) part.
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values change most rapidly along the 0−180° axis with the elongation of the contour of zero cor-
relations in the latitudinal direction from 7 km to the distance exceeding the extent of the analysis.

Fig. 3. The two-dimensional planimetric variograms (a) and correlograms (b) for sub-area 1. Black dots mark insig-
nificant (p > 0.01) autocorrelation values.

The variogram and correlogram of the local difference from mean variable demonstrate 
the absence of any spatially structured anisotropy with the semivariance values fluctuating 
around one and zero correlations of low significance.

According to the variogram, the spatial anisotropy for the northerness variable is not evi-
dent, as all semivariance values are around 1. But the correlogram demonstrates weak positive 
significant correlations up to a distance of 3 km with the elongation of the contours in the 
146.25−326.25° direction up to a distance of 5 km. This is because sub-area 1 represents the el-
evated erosionally dissected landforms with pronounced slopes. As it was shown by the analysis 
of the local mean variable, the ranges of these landforms are mostly oriented along the NW–SE 
direction. These features are captured and reflected in the northerness spatial variability.

Similarly, for the easterness variable, there is no clear pattern on the variogram, but the 
correlogram demonstrates weak positive significant correlations up to a distance of 3.5 km 
(with the slight elongation of the contours along 90−270°). This is because easterness, being 
a direction-dependent variable, most clearly pronounces for the landforms oriented along 
the N–S direction.
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The features of the EVI spatial structure are not obvious from the variogram. According 
to the correlogram, weak positive significant correlations persist up to 3−5 km with minor 
fluctuations, depending on the direction. This distance refers to the major size of the vegeta-
tion patches. The scale of vegetation pattern variability is, to some extent, linked to the local 
mean variable that may be explained by the landforms-driven distribution of land-use pat-
tern in the area. As a result, the large patches of the vegetation (semi-natural or agricultural) 
coincide in their size with the size of the most prominent landforms.

Sub-area 2

The local mean variogram demonstrates the presence of a spatially anisotropic structure with 
the broad-scale trend of the data variability oriented along the 22.5−202.5° direction and 
its possible maximum extended beyond the distance of interest (Fig. 4). On a finer scale, 
the data reach the plateau of 1 at a distance of 4 km with the contours elongated in the 
101.25−281.25° direction. The correlogram demonstrates the most rapid change in values in 
the 67.5−247.5° direction. The contour of zero correlations is located at a distance of 4.5 km 
with fluctuations of ±0.5 km depending on the direction. The second contour of zero correla-
tions appears along the 135−315° direction at a distance of 8 km.

Fig. 4. The two-dimensional planimetric variograms (a) and correlograms (b) for sub-area 2. Black dots mark insig-
nificant (p > 0.01) autocorrelation values.
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According to the variogram, the major trend of the local mean variability oriented per-
pendicularly to the river valley along the ENE–WSW direction. As the trend does not reach 
its plateau within the distance of interest, it may identify the influence of the landform of a 
broader spatial scale than the area of interest (the right-bank low terrace). On a larger scale 
related to the landforms of a linear size of 3−4 km, a single structural element is present. It 
represents an elevation in the central part of the sub-area with the slight expansion in the 
NNW–SSE direction and conveys not the relief but rather a perforated fragment of pine 
forest vegetation fixed in the AW3D30 data as an artefact. As the vegetation artefacts have 
not been removed from the DSM, they become especially evident in the flat areas with no 
prominent relief features (which is the case for sub-area 2).

The slope variogram demonstrates symmetry about the 90−270° direction. Two variabil-
ity maximums of 1.4 registered at a distance of 5 km on both the sides of the 0−180° axis. The 
correlogram demonstrates the presence of weak positive significant correlations up to a dis-
tance of 2 km, marked by the contour of zero correlations. This means that slope variability 
is symmetric in respect to N–S direction with the most rapid changes along the NW–SE and 
ENE–WSW diagonals and the overall extent of data similarity of 2 km. These features refer 
to the geometry and linear size of a forest vegetation-related artefact.

The variogram of the local difference from mean variable demonstrates some subtle fea-
tures of a structured symmetry about 90−270° direction with the moderate peaks of 1.2 at a 
distance of 5 km along the 22.5−202.5° and 157.5−337.5° directions. It can be assumed that 
overall data variability related to a general convexity–concavity pattern of the surface, which, 
in turn, may be attributed to the vegetation artefact fixed in the DEM. But the correlogram 
with zero values of low significance shows no evidence of any particular spatial structure.

The univariate structure functions of the northerness and easterness variables fluctuate 
around the semivariance values of one and zero correlations of low significance. This type of 
functions’ behaviour rejects the presence of any spatial structure for these variables.

According to the EVI variogram, there is no evidence of any clearly pronounced spatial 
structure, because most of the values do not exceed 1 or fluctuate around it. However, two 
moderate peaks of 1.2 occur at a distance of 8 km in the 22.5−202.5° and 157.5−337.5°direc-
tions. This pattern is linked to the variograms of the slope and local difference from mean 
variables and reflects the shape and geometry of the vegetation artefact. The correlogram 
demonstrates almost spatially isotropic weak positive significant correlations up to a distance 
of 3 km, marked by the contour of zero correlations. This distance refers to the generalised 
linear size of vegetation patches in the area.

Sub-area 3

The local mean variogram reaches its plateau at a distance of 9 km along the 90−270° direc-
tion (Fig. 5). The directions of maximum variability of 1.5 are oriented along the 45−225° and 
157.5−337.5° diagonals. The local mean correlogram demonstrates the presence of positive 
significant correlations up to a distance of 10 km with the general latitudinal elongation of 
the contours. The fragments of the secondary contours of zero correlations appear in the 
longitudinal direction at a distance of 13 km.
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According to the variogram and correlogram, within sub-area 3, the relief of the area 
demonstrates low variability with the main spatial structures latitudinally oriented along the 
river valley and the most rapid changes occurring along the NE–SW and WNW–ESE direc-
tions. Comparing this information with the map, it can be concluded that major landforms 
responsible for the differentiation are the floodplain and first, second and the fragment of the 
third terraces of the Dnieper clearly identifiable in the relief.

According to the slope variogram, the main direction of the data variability orients along 
the 135−315° direction and reaches its maximum of 1.4 at a distance of 15 km. The overall 
plateau of the variogram is most clearly pronounced in the latitudinal direction at a distance 
of 12 km. At the correlogram, the contour of zero correlations elongates latitudinally and 
passes at distances from 6 to 13 km depending on the direction. Within sub-area 3, the slope 
variable is most clearly linked to the variable of local mean. This is because the main changes 
in the slope values are strictly related to the curbs and ledges of the river terraces.

The variogram of local difference from mean demonstrates some resemblance of its con-
tours pattern to the slope variogram. The trend of the maximum variability lies along the 
135−315°(NW–SE) direction. A possible explanation for this is that the distribution of noise 
and artefacts registered by local difference from mean in this sub-area related to the distribu-
tion pattern of vegetation patches (forest and agricultural), which in turn coincide with the 

Fig. 5. The two-dimensional planimetric variograms (a) and correlograms (b) for sub-area 3. Black dots mark insig-
nificant (p > 0.01) autocorrelation values.
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major landforms. At the same time, the correlogram does not reveal any pattern and presents 
close to zero correlation values of low significance.

The semivariance values of northerness and easterness fluctuate around 1; correlograms 
demonstrate zero correlation values of low significance. The univariate structure functions 
do not confirm the presence of any spatial structure within sub-area 3 for the variables of 
northerness and easterness.

The EVI variogram demonstrates the major trend of the data variability oriented along 
the 90−270° direction and reaches its maximum of 1.3 at a distance of 15 km with a possible 
plateau probably exceeding the distance of interest. At the correlogram, the contour of zero 
correlations elongates latitudinally and passes at distances from 7 to 13 km depending on 
the direction. For this sub-area, the driving forces of vegetation pattern are tracked at two 
levels. At the first level, there is a fine-scale variability within a distance of 1 km related to the 
internal heterogeneity of vegetation patches such as individual agricultural fields, meadows 
and forests. At the second level, these are broad-scale patterns explained by overall land-use 
differences: the areas mostly dominated by the agricultural vegetation as opposed to the areas 
under (semi)natural vegetation. At this level, the EVI plots demonstrate some resemblance to 
the plots of local mean, slope and local difference from mean. This is because the distribution 
of land-use pattern in the area coincides with the major landforms. The floodplain and first 
terrace are covered with meadows, the second terrace is under agricultural land use and pine 
forest grows on the fragments of the third terrace.

Discussion

At a given scale of the analysis, not all environmental variables turned out to be equally re-
sponsible for the presence of a spatial pattern and informative for its explanation within the 
study area. The local mean variable within each sub-area demonstrates a clearly identifiable 
spatial structure with the obvious features of spatial anisotropy. Comparison of the distances 
and directions of the maximum semivariance and zero autocorrelations with the linear size 
and orientation of the landforms allowed assuming the scale of the landforms, which define 
the major features of the spatial structure of the area as well as their linkages to the other 
variables. For sub-area 1, these are the NW–SE oriented elevated ranges with a length of 5−7 
km. For sub-area 3, these are latitudinally oriented structural elements of the river valley (the 
floodplain and terraces). In both the cases, the vegetation pattern demonstrates linkages with 
the relief because the spatial distribution of the land use tends to follow the major landforms.

The other DEM derivatives are less informative. The pattern of the slope variable spatial 
anisotropy usually inherits small-scale features of the local mean variable. The variable of 
local difference from mean for all sub-areas, excluding sub-area 2, demonstrates a type of 
behaviour close to a random variable characterised by the flat variograms (the values fluctu-
ating around 1) and zero correlations of low significance (p > 0.01). Similarly, the variables of 
northerness and easterness behave randomly, excluding sub-area 1.

The random type of behaviour symbolises the absence of any detectable spatial trends or 
patterns and can be attributed to two reasons. First, the structure may reveal itself at a much 
larger scale being registered at the scale of the analysis as a random noise. Second, the de-



151

rivatives of an initial surface are prone to be affected by the noise represented by speckle and 
artefacts in the original data, which make the spatial structure less detectable.

In addition, in flat areas, vegetation tends to be registered in the DEM as artefacts. This 
primarily affects the resulting values of slope and local difference from mean, which char-
acterise the shape of a surface (steepness, convexity–concavity). Because this shape reflects 
a vegetation pattern, the variograms and correlograms of slope, local difference from mean 
and EVI may demonstrate resemblance, as within sub-areas 2 and 3.

Nevertheless, even if the variables demonstrate a weakly detectable structure, the results 
of the analysis usually suggest the potential distances of interests at a larger scale, similar to 
that in the case of EVI for all the sub-areas or northerness/easterness within sub-area 1. This 
prevents arbitrary decisions and multiple tests and trials for choosing the parameters for a 
further detailed exploration.

Variograms and correlograms of a single variable usually demonstrate the overall resem-
blance accompanied by some discrepancies in the directions and characteristic distances of 
the contours’ expansion. These discrepancies could make interpretation more difficult. Rossi 
et al. (1992) argued that it is necessary to jointly interpret variograms and correlograms be-
cause they differently account for local variability and thus highlight different aspects of the 
data. Variograms do not filter out lag means and variances, so they reveal a lag-to-lag local 
variability and underline the dissimilarity of values. Correlograms, on the contrary, account 
for regional patterns because of filtering out local variability and accentuate similarity in 
values. Also, because variograms do not filter out a large-scale variability, they tend to over-
estimate characteristic scales of spatial anisotropy. These differences partially explain the dis-
similarities of variograms against correlograms.

Another part of the explanation attributed to the differences between the algorithms in 
definition and calculation of the direction. Variograms are calculated with the ±11.25° direc-
tional tolerance, which slightly blurs the resulting values (Cressie, 1993; Ribeiro Jr., Diggle, 
2016). The calculation of correlograms involves the weighing of distance matrix elements 
based on their association with a certain fixed direction (Rosenberg, 2000; Roser et al., 2017). 
These features of the algorithms may also add up to the inconsistencies in patterns.

Conclusion

Comparing to conventional single-dimensional omnidirectional univariate structure functions, di-
rectional functions conveyed through an appropriate visualisation identify main features of spatial 
anisotropy of environmental variables. Joint exploration of directional correlograms and variograms 
allows for the confirmation or rejection of the existence of a spatial pattern and, in the case of its 
presence, to describe its spatial anisotropy; to quantify the data variability range, the scale(s) of maxi-
mum variances and zero correlations; and to check for the links between variables. These character-
istics help to identify main features of spatial variability and its scales, to investigate the dissimilarities 
in the spatial patterns related to the processes of different scale and to hypothesise on the underlying 
factors and/or processes responsible for landscape heterogeneity at a certain scale.

In the case of absence of clearly identifiable spatial anisotropy, the analysis based on the 
data-derived parameters should be considered as an exploratory technique. Its results can 
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be applied to guide further investigation and to identify informative scales and distances of 
potential interest.

For DEM derivatives, which are prone to be distorted by noise and artefacts, the quality 
of the data affected the ability to identify large-scale spatial patterns. This question requires 
further investigation in the context of both DEM preprocessing techniques (Gallant et al., 
Dowling, 2012) and the potential to use newly available more detailed sources of elevation 
data (Grohmann, 2018).
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