The Application of Directional Univariate Structure Functions Analysis for Studying the Spatial Anisotropy of Environmental Variables

Open access

Abstract

As anisotropy is a fundamental property of the real-world environmental spatial variables, the conventional omnidirectional variograms and correlograms do not provide means enough to characterise spatial dependence between observations. The purpose of this article is to introduce directional univariate structure functions analysis to explore and quantify the spatial anisotropy of environmental variables. Analysis of six environmental variables within three physical–geographical regions proved the leading role of relief for landscape differentiation; it also defined the size and extension of major landforms responsible for the organisation of spatial pattern. The arrangement of the vegetation patches demonstrated linkage with the major landforms. The other relief derivatives, being prone to noise and artefacts in the original data, showed a random-variable type of behaviour. In the lack of any particular spatially anisotropic structure, the results of the analysis can provide a clue about meaningful distances of interest at finer scales. The approach can also be an exploratory tool for discrete measurements to recognise the features of spatial continuity.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • BirdLife International (2018). The world database of key biodiversity areas. http://www.keybiodiversityareas.org

  • Bivand R. Keitt T. & Rowlingson B. (2017). rgdal: Bindings for the geospatial data abstraction library. https://cran.r-project.org/package=rgdal

  • Bivand R.S. Pebesma E. & Gomez-Rubio V. (2013). Applied spatial data analysis with R. New York: Springer. http://www.asdar-book.org/

  • Chorny M.G. & Chorna L.O. (2013). Kaniv Nature Reserve: preconditions of foundation retrospective analysis of activities current status and development perspectives (in Ukrainian). Kiev: Taras Shevchenko National University.

  • Conrad O. Bechtel B. Bock M. Dietrich H. Fischer E. Gerlitz L. Wehberg J. Wichmann V. & Böhner J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development 8(7) 1991–2007. DOI: 10.5194/gmd-8-1991-2015.

  • Copernicus Programme (2015). N2K 2012 - Copernicus Land Monitoring Service. https://land.copernicus.eu/local/natura/natura-2000-2012?tab=metadata

  • Cressie N.A.C. (1993). Statistics for spatial data. Hoboken: John Wiley & Sons Inc. DOI: 10.1002/9781119115151.

  • Dutilleul P. Clifford P. Richardson S. & Hemon D. (1993). Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49(1) 305. DOI: 10.2307/2532625.

  • European Environment Agency (2017). Emeral Network - General Viewer. http://emerald.eea.europa.eu/

  • Gallant J.C. Read A.M. & Dowling T.I. (2012). Removal of tree offsets from SRTM and other digital surface models. ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences 39(B4) 275–280. DOI: 10.5194/isprsarchives-XXXIX-B4-275-2012.

  • Graham M.H. (2003). Confronting multicollinearity in ecological multiple regression. Ecology 84(11) 2809–2815. DOI: 10.1890/02-3114.

  • Grohmann C.H. (2018). Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM ASTER GDEM and ALOS AW3D30. Remote Sens. Environ. 212 121–133. DOI: 10.1016/j.rse.2018.04.043.

  • Hansen A.J. & DeFries R. (2007). Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17(4) 974–988. DOI: 10.1890/05-1098.

  • Hengl T. & Reuter H.I. (Eds.) (2009). Geomorphometry: concepts software applications. Developments in Soil Science 33. Amsterdam: Elsevier.

  • Hijmans R.J. (2016). raster: Geographic data analysis and modeling. https://cran.r-project.org/package=raster

  • Huete A. Didan K. Miura T. Rodriguez E. Gao X. & Ferreira L.(2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83(1–2) 195–213. DOI: 10.1016/S0034-4257(02)00096-2.

  • Lecours V. Devillers R. Simms A.E. Lucieer V.L. & Brown C.J. (2017). Towards a framework for terrain attribute selection in environmental studies. Environmental Modelling and Software 89 19–30. DOI: 10.1016/j.envsoft.2016.11.027.

  • Legendre P. & Fortin M.J. (1989). Spatial pattern and ecological analysis. Vegetatio 80(2) 107–138. DOI: 10.1007/BF00048036.

  • Legendre P. & Legendre L. (2012). Numerical ecology. Elsevier.

  • Marynych O.M. Parkhomenko G.O. Petrenko O.M. & Shishchenko P.G. (2003). The improved scheme of the physical-geographical zoning of Ukraine (in Ukrainian). Ukrainian Geographical Journal 1 16–21.

  • Osorio F. & Vallejos R. (2014). SpatialPack: Package for analysis of spatial data. http://cran.r-project.org/package=SpatialPack

  • Pebesma E.J. & Bivand R.S. (2005). Classes and methods for spatial data in R. R News 5(2) 9–13. https://cran.r-project.org/doc/Rnews/

  • R Core Team (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.r-project.org/

  • RibeiroP.J. Jr. & Diggle P.J. (2016). geoR: Analysis of geostatistical data. https://cran.r-project.org/package=geoR

  • Rosenberg M.S. (2000). The bearing correlogram: a new method of analyzing directional spatial autocorrelation. Geographical Analysis 32(3) 267–278. DOI: 10.1111/j.1538-4632.2000.tb00428.x.

  • Roser L. Vilardi J. Saidman B. & Ferreyra L. (2017). EcoGenetics: Spatial analysis of phenotypic genotypic and environmental data. https://cran.r-project.org/package=EcoGenetics

  • Rossi R.E. Mulla D.J. Journel A.G. & Franz E.H. (1992). Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol. Monogr. 62(2) 277–314. DOI: 10.2307/2937096.

  • Shaukat S.S. Rao T.A. & Khan M.A. (2016). Impact of sample size on principal component analysis ordination of an environmental data set: effects on eigenstructure. Ekológia (Bratislava) 35(2) 173–190. DOI: 10.1515/eko-2016-0014.

  • Swanson F.J. Kratz T.K. Caine N. & Woodmansee R.G. (1988). Landform effects on ecosystem patterns and processes. BioScience 38(2) 92–98. DOI: 10.2307/1310614.

  • Tadono T. Nagai H. Ishida H. Oda F. Naito S. Minakawa K. & Iwamoto H. (2016). Generation of the 30 m-mesh global digital surface model by ALOS PRISM. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences - ISPRS Archives 41 157–162. DOI: 10.5194/isprsarchives-XLI-B4-157-2016.

  • Turner M.G. & Gardner R.H. (2015). Landscape ecology in theory and practice. New York: Springer. DOI: 10.1007/978-1-4939-2794-4.

  • Wickham H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag. http://ggplot2.org

  • Wilson J.P. & Gallant J.C. (Eds.) (2000). Terrain analysis: Principles and applications. New York: Wiley.

Search
Journal information
Impact Factor


CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.283
Source Normalized Impact per Paper (SNIP) 2018: 0.534

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 161 16
PDF Downloads 144 144 15