Influence of Salinity on Physiological Response of the Bearded Horse Mussel Modiolus barbatus and Noah’s Ark Shell Arca noae

Open access

Abstract

Bearded horse mussel Modiolus barbatus and Noah’s ark shell Arca noae are a species of interest for the diversifying shellfish aquaculture on the south-eastern coast of the Adriatic. In this study, oxygen consumption (OC), total ammonia excretion (TAM) and clearance rate (CR) responses to the changes in seawater salinity (37, 30, 25 and 20) were investigated in the laboratory. There is a statistically significant influence of salinity on oxygen consumption and TAM excretion of Noah’s ark shell, while the time of exposure to different salinities is significantly correlated to TAM excretion by the bearded horse mussel. Mean OC of Noah’s ark shell ranged from 0.14 ± 0.06 to 0.54 ± 0.27 mg O2g−1h−1 and that of bearded horse mussel from 0.18 ± 0.17 to 0.26 ± 0.14 mg O2g−1h−1. Mean values of TAM excretion of Noah’s ark shell ranged from 2.14 ± 1.52 to 7.22 ± 6.04 μmol g−1 h−1 and for bearded horse mussel from 0.98 ± 0.53 to 2.78 ± 2.96 μmol g−1 h−1. Salinity and exposure time have a significant influence on the CR of Noah’s ark shell, whilst salinity has been found to be the determining factor for the bearded horse mussels’ CR. Mean values of Noah’s ark shell CR ranged from 0.96 ± 0.54 to 4.18 ± 1.15 l h−1g−1 and for bearded horse mussel from 2.43 ± 0.99 to 4.23 ± 0.84 l h−1g−1. Higher oxygen consumption to total ammonia excretion (O:N) ratios at lower salinities indicated the use of proteins as a metabolic substrate for both species. Noah’s ark shell has greater energy expenditure related to respiration and TAM excretion than the bearded horse mussel.

Albentosa, M., Fernández-Reiriz, M.J., Labarta, U. & Pérez-Camacho A. (2007). Response of two species of clams, Ruditapes decussatus and Venerupis pullastra, to starvation: physiological and biochemical parameters. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol., 146(2), 241−249. DOI: 10.1016/j.cbpb.2006.10.109.

Almada-Villela, P.C. (1984). The effects of reduced salinity on the shell growth of small Mytilus edulis. J. Mar. Biol. Assoc. UK, 64, 171−182. DOI:10.1017/S0025315400059713.

Bayne, B.L. & Thompson R.J. (1970). Some physiological consequences of keeping Mytilus edulis in the laboratory. Helgol. Wiss. Meersunters., 20(1−4), 526−552.

Bayne, B.L. & Scullard C. (1977a). An apparent specific dynamic action in Mytilus edulis L. J. Mar. Biol. Assoc. UK, 57(02), 371−378. DOI: 10.1017/S0025315400021810

Bayne, B.L. & Scullard C. (1977b). Rates of nitrogen excretion by species of Mytilus (Bivalvia: Mollusca). J. Mar. Biol. Assoc. UK, 57(02), 355−369. DOI: 10.1017/S0025315400021809.

Bayne, B.L. & Newell R.C. (1983). Physiological energetics of marine molluscs. In A.S.M. Saleuddin & K.M. Wilbur (Eds.), The mollusca (pp. 407−515). Vol. 4 Physiology, Part 1. New York: Academic Press.

Berger, V.J. & Kharazova A.D. (1997). Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia, 355, 115−126. DOI: 10.1007/978-94-017-1907-0_12.

Brown, M.R. (1991). The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol., 145(1), 79−99. DOI: 10.1016/0022-0981(91)90007-J

Corner, E.D.S. & Cowey C.B. (1968). Biochemical studies on the production of marine zooplankton. Biol. Rev., 43(4), 393−426. DOI: 10.1111/j.1469-185X.1968.tb00965.x.

Coughlan, J. (1969). The estimation of filtering rate from the clearance of suspensions. Mar. Biol., 2, 356−358. DOI: 10.1007/BF00355716.

Ezgeta-Balić, D., Rinaldi, A., Peharda, M., Prusina, I., Montalto, V., Niceta, N. & Sarà G. (2011). An energy budget for the subtidal bivalve Modiolus barbatus (Mollusca) at different temperatures. Mar. Environ. Res., 71(1), 79–85. DOI: 10.1016/j.marenvres.2010.10.005.

Gilek, M., Tedengren M. & Kautsky N. (1992). Physiological performance and general histology of the blue mussel, Mytilus edulis L., from the Baltic and North seas. Neth. J. Sea Res., (30), 11−21. DOI:10.1016/0077-7579(92)90041-C.

Glavić, N., Vlašić, M., Bolotin, J., Dupčić Radić, I., Hrustić, E., Kožul, V. & Antolović N. (2018). The size driven variations in physiological responses of the Bearded Horse Mussel Modiolus barbatus and the Noah’s Ark Shell Arca noae. Turk. J. Fish. Aquat. Sc., 18, 1355−1362. DOI: 10.4194/1303-2712-v18_12_03.

Hamer, B., Jakšić, Ž., Pavičić-Hamer, D., Perić, L., Medaković, D., Ivanković, D., Pavičić, J., Zilberberg, C., Schröder, H.C., Mϋller, W.E.G., Smodlaka, N. & Batel R. (2008). Effect of hypoosmotic stress by low salinity acclimation of Mediterranean mussels Mytilus galloprovincialis on biological parameters used for pollution assessment. Aquat. Toxicol., 89, 137−151. DOI: 10.1016/j.aquatox.2008.06.015.

Hawkins, A.J.S., Salkeld, P.N., Bayne, B.L., Gnaiger, E. & Lowe D.M. (1985). Feeding and resource allocation in the mussel Mytilus edulis: Evidence for time-averaged optimization. Mar. Ecol. Prog. Ser., 20(3), 273−287. https://www.jstor.org/stable/24816905

Hawkins, A.J.S., Magoulas A., Heral M., Bougrier S., Naciri-Graven Y., Day A.J. & Kotoulas G. (2000). Separate effects of triploidy, parentage and genomic diversity upon feeding behaviour, metabolic efficiency and net energy balance in the Pacific oyster Crassostrea gigas. Genet. Res., 76(03), 273−284.

Hawkins, A.J.S., Duarte, P., Fang, J.G., Pascoe, P.L., Zhang, J.H., Zhang, X.L. & Zhu M.Y. (2002). A functional model of responsive suspension-feeding and growth in bivalve shellfish, configured and validated for the scallop Chlamys farreri during culture in China. J. Exp. Mar. Biol. Ecol., 281(1), 13−40. DOI: 10.1016/S0022-0981(02)00408-2.

Ivančić, I. & Degobbis D. (1984). An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res., 18(9), 1143−1147. DOI: 10.1016/0043-1354(84)90230-6.

Jasprica, N., Carić, M., Bolotin, J. & Rudenjak-Lukenda M. (1997). The Mediterranean mussel (Mytilus galloprovincialis Lmk.) growth rate response to phytoplankton and microzooplankton population densities in the Mali Ston Bay (Southern Adriatic). Period. Biol., 99(2), 255−264.

Kang, J., Lee, S.S. & Han K.N. (2014). Clearance rate and feeding according to water temperature and salinity condition in the surf clam, Mactra veneriformis. Korean Journal of Malacology, 30(2), 101−106. DOI: 10.9710/kjm.2014.30.2.101.

Koehn, R.K. & Bayne B.L. (1989). Towards a physiological and genetical understanding of the energetics of the stress response. Biol. J. Linn. Soc. 37(1−2), 157–171. DOI: 10.1111/j.1095-8312.1989.tb02100.x.

Landes, A., Dolmer, P., Poulsen, L.K., Petersen, J.K. & Vismann B (2015). Growth and respiration in blue mussels (Mytilus spp.) from different salinity regimes. J. Shellfish Res., 34(2), 373−382. DOI: 10.2983/035.034.0220.

Levinton, J., Doall, M., Ralston, D., Starke, A. & Allam B. (2011). Climate change, precipitation and impacts on an estuarine refuge from disease. PLoS One, 6(4), e18849. DOI: 10.1371/journal.pone.0018849.

Mladineo, I., Peharda, M., Orhanović, S., Bolotin, J., Pavela-Vrančić, M. & Treursić B. (2007). The reproductive cycle, condition index and biochemical composition of the horse-bearded mussel Modiolus barbatus. Helgol. Mar. Res., 61(3), 183−192. DOI: 10.1007/s10152-007-0065-8.

Navarro, J.M. (1988). The effects of salinity on the physiological ecology of Choromytilus chorus (Molina, 1782) (Bivalvia : Mytilidae). J. Exp. Mar. Biol. Ecol., 122 (1), 19−33. DOI: 10.1016/0022-0981(88)90209-2.

Navarro, J.M. & Gonzalez C.M. (1998). Physiological responses of the Chilean scallop Argopecten purpuratus to decreasing salinities. Aquaculture, 167 (3–4), 315−327. DOI: 10.1016/S0044-8486(98)00310-X.

Paganini, A, Kimmerer, WJ & Stillman J.H. (2010). Metabolic responses to environmental salinity in the invasive clam Corbula amurensis. Aquatic Biology, 11(2), 139−147. DOI: 10.3354/ab00304.

Peharda, M., Richardson, C.A., Onofri, V., Bratoš, A. & Crnčević M. (2002). Age and growth of the bivalve Arca noae L. in the Croatian Adraitic Sea. J. Molluscan Stud., 68, 307−310. DOI: 10.1093/mollus/68.4.307.

Peharda, M., Mladineo, I., Bolotin, J., Kekez, L. & Skaramuca B. (2006). The reproductive cycle and potential protoandric development of the Noah’s Ark shell, Arca noae L.: Implications for aquaculture. Aquaculture, 252, 317−327. DOI: 10.1016/j.aquaculture.2005.07.007.

Peharda, M., Richardson, C.A., Mladineo, I., Šestanović, S., Popović, Z., Bolotin, J. & Vrgoč N. (2007). Age, growth and population structure of Modiolus barbatus from the Adriatic. Mar. Biol., 151, 629−638. DOI: 10.1007/s00227-006-0501-3.

Peharda, M., Ezgeta-Balić, D., Davenport, J. & Vrgoč N. (2013). The potential for aquaculture of the bearded horse mussel (Modiolus barbatus) and Noah’s Ark shell (Arca noae) in southern Croatia. Aquac. Int., 21(3), 639−653. DOI: 10.1007/s10499-012-9598-1.

Pierce, Jr S.K. & Greenberg M.J. (1972). The nature of cellular volume regulation in marine bivalves. J. Exp. Biol., 57, 681−692.

Pleissner, D., Lundgreen, K., Lüskow, F. & Riisgård H.U. (2013). Fluorometer controlled apparatus designed for long-duration algal-feeding experiments and environmental effect studies with mussels. J. Mar. Biol., 2013. DOI: 10.1155/2013/401961.

Pörtner, H-O. (2012). Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Prog. Ser., 470, 273−290. DOI: 10.3354/meps10123.

Resgalla, Jr C., Brasil, E.S. & Salomão L.C. (2007). The effect of temperature and salinity on the physiological rates of the mussel Perna perna (Linnaeus 1758). Braz. Arch. Biol. Technol., 50(3), 543−556. DOI: 10.1590/S1516-89132007000300019.

Rodrigues, L.H.R., Arenzon, A., Raya-Rodriguez, M.T. & Fontoura N.F. (2011). Algal density assessed by spectrophotometry: a calibration curve for the unicellular algae Pseudokirchneriella subcapitata. Journal of Environmental Chemistry and Ecotoxicology, 3(8), 225−228.

Savina, M. & Pouvreau S. (2004). A comparative ecophysiological study of two infaunal filter-feeding bivalves: Papia rhomboϊdes and Glycymeris glycymeris. Aquaculture, 239(1−4), 289−306. DOI: 10.1016/j.aquaculture.2004.05.029.

Shin, Y.K., Kim, B.H., Oh, B.S., Jung, C.G., Sohn, S. & Lee J.S. (2006). Physiological responses of the ark shell Scapharca broughtonii (Bivalvia: Arcidae) to decreases in salinity. Fisheries and Aquatic Sciences, 9(4), 153−159. DOI: 10.5657/fas.2006.9.4.153.

Sobral, P. & Widdows J. (1997). Effects of elevated temperatures on the scope for growth and resistance to air exposure of the clam Ruditapes decussatus (L.), from southern Portugal. Sci. Mar., 61, 163−171.

Solorzano, L. (1969). Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr., 14(5), 799−801. DOI: 10.4319/lo.1969.14.5.0799.

Tang, B., Liu, B., Yang, H. & Xiang J. (2005). Oxygen consumption and ammonia-N excretion of Meretrix meretrix in different temperature and salinity. Chin. J. Oceanol. Limnol., 23, 469–474. DOI: 10.1007/BF02842693.

Wang, Y., Hu, M., Wong, W.H., Shin, P.K. & Cheung S.G. (2011). The combined effects of oxygen availability and salinity on physiological responses and scope for growth in the green-lipped mussel Perna viridis. Mar. Pollut. Bull., 63(5), 255−261. DOI: 10.1016/j.marpolbul.2011.02.004.

Widdows, J. (1978). Physiological indices of stress in Mytilus edulis. J. Mar. Biol. Assoc. UK, 58(01), 125−142. DOI: 10.1017/S0025315400024450.

Widdows, J. & Johnson D. (1988). Phyisological energetics of Mytilus edulis: Scope for growth. Mar. Ecol. Prog. Ser., 46, 113−121. www.jstor.org/stable/24827572.

Widdows, J., Burns, K.A., Menon, N.R., Page, D.S. & Soria S. (1990). Measurement of physiological energetics (scope for growth) and chemical contaminants in mussels (Arca zebra) transplanted along a contamination gradient in Bermuda. J. Exp. Mar. Biol. Ecol., 138(1−2), 99−117. DOI: 10.1016/0022-0981(90)90179-G.

Widdows, J. & Staff F. (2006). Biological effects of contaminants: measurement of scope for growth in mussel. ICES Techniques in Marine Environmental Sciences, 40, 1−30.

Williams, J.B. (1984). Respiratory changes in the euryhaline clam, Mulinia lateralis (Say), over a range of temperature and salinity combinations. J. Exp. Mar. Biol. Ecol., 81(3), 269−280. DOI: 10.1016/0022-0981(84)90146-1.

Ekológia (Bratislava)

The Journal of Institute of Landscape Ecology of Slovak Academy of Sciences

Journal Information


CiteScore 2017: 0.52

SCImago Journal Rank (SJR) 2017: 0.211
Source Normalized Impact per Paper (SNIP) 2017: 0.324

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 172 172 43
PDF Downloads 119 119 19