Remediation Potential of Forest Forming Tree Species Within Northern Steppe Reclamation Stands

Open access

Abstract

The aim of the research was to study the features of accumulation of heavy metals by assimilation apparatus of coniferous and deciduous arboreous plants. The research identified excess of factual concentrations for Arsenic in mining rock in relation to values stated in IPC (indicative permissible concentrations). It is stated that the metals can be divided into three groups according to their absolute content in unit of foliage biomass. The element of excessive concentration is Mn, medium concentration is characteristic for Pb and Zn and low concentration is observed for Sb, Cr, As, Cu, Ni and Sn. Calculation of coefficient of biological accumulation of the metals under research has shown its high values for Crimean pine. The data presented for Black locust indicate low values of coefficient of biological accumulation, which is best noticeable for Chromium, Antimony and Tin. It is determined that a small amount of Sb and Sn are a subject to uptake by Black locust leaves, whilst for Crimean pine needles, Sb and As are characterised by the lowest inflow. The average content of lead is 209.11 kg·ha−1 for Crimean pine in all age groups of trees, whilst for Black locust, this index is only 15.52 kg·ha−1, which is 13.5 times less. Zinc accumulation is better performed by Black locust leaves, and it gradually decreases with increasing age. No definite trend of redistribution and subsequent accumulation of copper depending on tree species and age was found.

Alekseenko, V.A., Pashkevich, M.A. & Alekseenko A.V. (2017). Metallisation and environmental management of mine site soils. Journal of Geochemical Exploration, 174, 121–127. DOI: 10.1016/j.gexplo.2016.06.010.

Alexander, M. (2000). Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ. Sci. Technol., 34, 4259–4265. DOI: 10.1021/es001069.

Allen, H.E, Huang, C.P., Bailey, G.W. & Bowers A.R. (1995). Metal speciation and contamination of soil. Boca Raton, FL: Lewis Publishers.

Appenroth, K.J. (2010). Definition of “heavy metals” and their role in biological systems. In Soil heavy metals. Soil biology, 19 (pp. 19–29). Berlin, Heidelberg: Springer. DOI: 10.1007/978-3-642-02436-8_2.

Avessalomov, I.A. (1987). Geochemical indicators in the study of landscapes (in Russian). Moscow: Publishing House of Moscow University.

Brown, P.H., Welch, R.M. & Madison J.T. (1990). Effect of nickel deficiency on soluble anion, amino acid and nitrogen levels in barley. Plant Soil, 125, 19–27.

Chodak, M. & Niklińska M. (2010). The effect of different tree species on the chemical andmicrobial properties of reclaimed mine soils. Biol. Fertil. Soils, 46(6), 555–566. DOI: 10.1007/s00374-010-0462-z.

Chudzińska, E., Celiński, K., Pawlaczyk, E. & Diatta J. (2016). Trace element contamination differentiates the natural population of Scots pine: evidence from DNA microsatellites and needle morphology. Environ. Sci. Pollut. Res. Int., 23(21), 22151–22162. DOI: 10.1007/s11356-016-7472-9.

Dmuchowski, W. & Bytnerowicz A. (1995). Monitoring environmental pollution in Poland by chemical analysis of Scots pine (Pinus sylvestris L.) needles. Environ. Pollut., 87, 87–104. DOI: 10.1016/S0269-7491(99)80012-8.

Eide, D.J. (2006). Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta, Molecular Cell Research. 1763(7), 711–722. DOI: 10.1016/j.bbamcr.2006.03.005.

Fernández, S., Poschenrieder, C., Marcenò, C., Gallego, J.R., Jiménez-Gámez, D., Bueno, A. & Afif E. (2017). Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mine wastes in the Cantabrian range, north of Spain. Journal of Geochemical Exploration. 174, 10–20. DOI: 10.1016/j.bbamcr.2006.03.005: 10.1016/j.gexplo.2016.05.015.

Grishko, V.M., Syschykov, D.V., Piskova, A.M., Danilchuk, O.V. & Mashtaler O.V. (2012). Heavy metals: intake in soil, translocation in plants and environmental hazards (in Ukrainian). Donetsk.

Hüttl, R. (1998). Ecology of post strip-mine landscapes in Lusatia, Germany. Environmental Science Pollution, 1, 129–135. DOI: 10.1016/S1462-9011(98)00014-8.

Hüttl, R. & Weber E. (2001). Forest ecosystem development in post-mine landscapes: a case study of the Lusatian lignite district. Naturwissenschaften, 88, 322–329. DOI: 10.1007/s001140100241.

Itoh, Y., Miura, S. & Yoshinaga S. (2006). Atmospheric lead and cadmium deposition within forests in the Kanto district, Japan. J. For. Res., 11(2), 137–142. DOI: 10.1007/s10310-005-0196-1.

Jarup, L. (2003). Hazards of heavy metal contamination. Br. Med. Bull., 68, 167–182. DOI: 10.1093/bmb/ldg032.

Kaar, E. (2002). Coniferous trees on exhausted oil shale opencast mines. Metsanduslikud Uurimused (Forestry Studies), 36, 120–125.

Kabata-Pendias, A. (2011). Trace elements in soil and plants. Boca Raton: CRC Press. DOI: 10.1201/b10158.

Khokhotva, A.P. (2010). Adsorption of heavy metals by a sorbent based on pine bark. Journal of Water Chemistry and Technology, 32(6), 336–340. DOI: 10.3103/S1063455X10060044.

Kubatbekov, T.S., Aitmatov, M.B. & Ibraimakunov M. (2012). Antimony in natural technogenic conditions of the biosphere: water, soil, plants (in Russian). Bulletin of the Russian University of Peoples’ Friendship, 4, 56–60.

Kuznetsova, T., Mandre, M., Klõseiko, J. & Pärn H. (2010). A comparison of the growth of Scots pine (Pinus sylvestris L.) in a reclaimed oil shale post-mine area and in a Calluna site in Estonia. Environ. Monit. Assess., 166, 257–265. DOI: 10.1007/s10661-009-0999-1.

Lakyda, P.I. (2003). Phytomass of Ukrainian forests (in Ukrainian). Ternopil: Sbruch.

Lin, Q., Chen, Y.X., He, Y.F. & Tian G.M. (2004). Root-induced changes of lead availability in the rhizosphere of Oryza sativa L. Agric. Ecosyst. Environ., 104, 605–613. DOI: 10.1016/j.agee.2004.01.001.

Marko-Worłowska, M., Chrzan, A. & Łaciak T. (2011). Scots pine bark, topsoil and pedofauna as indicators of transport pollutions in terrestrial ecosystems. J. Environ. Sci. Health, 46, 138–148. DOI: 10.1080/10934529.2010.500896.

Marmiroli, M., Pietrini, F., Maestri, E., Zacchini, M., Marmiroli, N. & Massacci A. (2011). Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol., 31, 1319–1334. DOI: 10.1093/treephys/tpr090.

Pietrzykowski, M. & Socha J. (2011). An estimation of Scots pine (Pinus sylvestris L.) ecosystem productivity on reclaimed post-mine sites in Poland (central Europe) using of allometric equations. Ecological Engineering, 37(2), 381–386. DOI: 10.1016/j.ecoleng.2010.10.006.

Pietrzykowski, M., Socha, J. & van Doorn N.S. (2014). Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Sci. Total Environ., 470–471, 501–510. DOI: 10.1016/j.scitotenv.2013.10.008.

Pöykiö, R., Hietala, J. & Nurmesniemi H. (2010). Scots pine needles as bioindicators in determine the aerial distribution pattern of sulphur emissions around industrial plants. World Academy of Science, Engineering and Technology, 44, 116–119.

Prasad, M.N.V. & Hagemeyer J. (1999). Heavy metal stress in plants. From molecules to ecosystems. Berlin Heidelberg: Springer-Verlag. DOI: 10.1007/978-3-662-07745-0.

Risto, P., Perämäki, P. & Niemelä M. (2005). The use of Scots pine (Pinus sylvestris L.) bark as a bioindicator for environmental pollution monitoring along two industrial gradients in the Kemi-Tornio area, northern. International Journal of Environmental Analytical Chemistry, 85, 127–139. DOI: 10.1080/03067310412331330758.

Saarelaa, K.-E., Harjua, L., Rajandera, J., Lillb, J.-O., Heseliusb, S.-J., Lindroosd, A. & Mattsson K. (2005). Elemental analyses of pine bark and wood in an environmental study. Sci. Total Environ., 343, 231–241. DOI: 10.1016/j.scitotenv.2004.09.043.

Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M. & Pinelli E. (2014). Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev. Environ. Contamin. Toxicol., 232, 1–44. DOI: 10.1007/978-3-319-06746-9_1.

Thapa, G., Sadhukhan, A., Panda, S.K. & Sahoo L. (2012). Molecular mechanistic model of plant heavy metal tolerance. Biometals, 25, 489–505. DOI: 10.1007/s10534-012-9541-y.

Verbruggen, N., Hermans, C. & Schat H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytol., 181(4), 759–776. DOI: 10.1111/j.1469-8137.2008.02748.x.

Wuana, R.A. & Okieimen F.E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 20. DOI: 10.5402/2011/402647.

Ekológia (Bratislava)

The Journal of Institute of Landscape Ecology of Slovak Academy of Sciences

Journal Information


CiteScore 2017: 0.52

SCImago Journal Rank (SJR) 2017: 0.211
Source Normalized Impact per Paper (SNIP) 2017: 0.324

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 181 181 13
PDF Downloads 56 56 6