Delineation Lithuanian agricultural land for agro-ecological suitability for farming using soil and terrain criteria

Open access

Abstract

The aim of investigation is to analyse and classify the state of agricultural land affected by naturalbiophysical, that is, soil and terrain-slope, handicaps on its overall agro-ecological suitability for agricultural use. For the classification of land for suitability with respect to sustainable use and efficient protection, the following actual criteria were selected: soil texture, soil drainage and terrainslope. For identifying the relatively homogeneous areas, the Ward hierarchical cluster method was used. According to our estimates, Lithuanian agricultural land with unfavourable soil texture, poorly soil drainage and steep slopes covers an area of 33.59, 4.76 and 1.03% of total agricultural area, respectively. On the basis of functional classification of state of agro-ecological conditions of Lithuania, two orders of suitability (S-suitable, N-not suitable) and five land suitability classes were identified and delineated: S1 (highly suitable) included 10 district municipalities, S2 (moderately suitable) included 12 district municipalities, S3 (marginally suitable) included 15 district municipalities, N1 (currently not suitable) included 10 district municipalities and N2 (permanently not suitable) included 4 district municipalities. S3 occupies the largest (29.80%) share of the Lithuanian territory and N2 the least (5.66%). The land suitable for agriculture means with suitability classes S1, S2 and S3 was found on an area of 2,960,562 ha, which is 81.6% of the total land. In addition, soil texture was the most important factor causing differences in the classes of suitability. On the basis of natural limiting factors from an agronomic and eco-environmental perspective, the optimal sustainable development in agrosphere and a balanced-practical concept of land management and proper land use policy is presented. It is a reasonable base for agroecological regionalisation of Lithuania.

Abalikštienė, E. & Aleknavičius P. (2013). Tendencies of agricultural land use in municipalities containing nonproductive land. Žemės Ūkio Mokslai, 20(3), 159-169. DOI:10.6001/zemesukiomokslai.v20i3.2739.

Aleknavičius, P. (2007). Land use problems in rural territories. Žemės Ūkio Mokslai, 14(1), 82-90.

Backhaus, K., Erichson, B., Plinke, W. & Weiber R. (1996). Multivariate analysemethoden: eine anwendungsorientierte einfuhrung. Berlin: Springer.

Bašić, F., Bogunović, M., Božić, M., Husnjak, S., Jurić, I., Kisić, I., Mesić, M., Mirošević, N., Romić, D. & Žugec I. (2007). Regionalisation of Croatian agriculture. Agric. Conspec. Sci., 72(1), 27-38.

Böttcher, K., Eliasson, A., Jones, R.R., le Bas, C., Nachtergaele, F., Pistocchi, A., Ramos, F.F., Rossiter, D., Terres, J.M., Van Orshooven, J. & Van Velthuizen H. (2009). Guidelines for application of common criteria to identify agricultural areas with natural handicaps. JRC Technical Note.

Bryman, A.E. & Cramer D. (1997). Quantitative data analysis with SPSS for Windows: a guide for social scientists. Routledge.

Bykovienė, A., Pupka, D. & Aleknavičius A. (2014). Analysis of agricultural land area registration and its changes in Lithuania. Žemės Ūkio Mokslai, 21(4), 250-264. DOI:10.6001/zemesukiomokslai.v21i4.3028.

Caballero, R. (2011). The Common Agricultural Policy (CAP) towards 2020: How can fit farming in the marginal areas of the EU. Recent Researches in Energy, Environment, Entrepreneurship, Innovation, 13, 88-102.

Costantini, E.A.C. & Lorenzetti R. (2013). Soil degradation processes in the Italian agricultural and forest ecosystems. Italian Journal of Agronomy, 8(28), 233-243. DOI:10.4081/ija.2013.e28.

Deng, F., Li, X., Wang, H., Zhang, M., Li, R. & Li X. (2014). GIS-based assessment of land suitability for alfalfa cultivation: a case study in the dry continental steppes of northern China. Spanish Journal of Agricultural Research, 12(2), 364-375. DOI:10.5424/sjar/2014122-4672.

Dzienia, S., Pużyński, S. & Wrzesińska E. (2012). Communes of less favoured areas in landscape parks of West Pomeranian Voivodeship. Acta Scientatiarum Polonorum, Agricultura, 11(1), 5-11.

Eidukevičienė, M. & Vasiliauskienė V. (2001). Soils of Lithuania. Vilnius: Science and Arts of Lithuania.

Eliasson, A. (2007). Review of land evaluation methods for quantifying natural constraints to agriculture. Ispra: The Institute for Environment and Sustainability, Joint Research Centre.

Eliasson, A., Terres, J.M. & Bamps C. (2007). Common biophysical criteria for defining areas which are less favourable for agriculture in Europe. Ispra: The Institute for Environment and Sustainability, Joint Research Centre.

Eliasson, A., Jones, R.R., Nachtergaele, F., Rossiter, D., Terres, J.M., Van Orshooven, J., Van Velthuizen, H., Bottcher, K., Haastrup, P. & Le Bas, C. (2010). Common criteria for the redefinition of Intermediate Less Favoured Areas in the European Union. Environmental science & Policy, 13, 766-777. DOI:10.1016/j.envsci. 2010.08.003.

FAO (1976). A framework for land evaluation. FAO. Soils Bulletin 32. Rome: FAO.

FAO/IIASA (2007). Global Agro-Ecological Zoning for 2007.

Fischer, G., Van Velthuizen, H., Shah, M. & Nachtergaele F.O. (2002). Global agro-ecological assessment for agriculture in the 21st century: methodology and results. Research report RR-02-02. Laxenburg: International Institute for Applied Systems Analysis.

Fontes, M.P.F., Fontes, R.M.O. & Carneiro P.A.S. (2009). Land suitability, water balance and agricultural technology as a geographic-technological index to support regional planning and economic studies. Land Use Policy, 26, 589-598. DOI:10.1016/j.landusepol.2008.08.010.

Gurklys, V., Aleknavičius, P., Staugaitis, G. & Kavoliutė F. (2011). Scientific approaches for the use of the land resources. Kaunas: Aleksandras Stulginskis University.

Gurklys, V. & Kvaraciejus A. (2013). Expediency of the reconstruction of drainage systems. Žemės Ūkio Mokslai, 20(3), 170-178. DOI:10.6001/zemesukiomokslai.v20i3.2740.

Hodgson, J.M., Hollis, J.M., Jones R.J.A. & Palmer R.C. (1976). A comparison of field estimates and laboratory analyses of the silt and clay contents of some west Midland soils. Journal of Soil Science, 27, 411-419. DOI:10.1111/j.1365-2389.1976.tb02011.x.

Jankauskas, B. (2012). Soil erosion: case study, Lithuania. In Ch. Jakobsson (Ed.), Sustainable agriculture. Ecosystem health and sustainable agriculture (pp. 231-238). Uppsala: Baltic University Press.

Jankauskas, B., Jankauskiene, G. & Fullen M.A. (2004). Erosion preventive crop rotations and water erosion rates on undulating slopes in Lithuania. Canadian Journal of Soil Science, 84(2), 177-186. DOI:10.4141/S03-029.

Jarašiūnas, G. & Kinderienė I. (2015). Evaluation of generic farming conditions in Eastern Lithuania. Žemės Ūkio Mokslai, 22(2), 65-73. DOI:10.6001/zemesukiomokslai.v22i2.3111.

Jarasiunas, G. (2016). Assessment of the agricultural land under steep slope in Lithuania. Journal of Central European Agriculture, 17(1), 176-187. DOI:10.5513/JCEA01/17.1.1688.

Jarašiūnas, G. & Kinderienė I. (2016). Impact of agro-environmental systems on soil erosion processes and soil properties on hilly landscape in Western Lithuania. Journal of Environmental Engineering and Landscape Management, 24(1), 60-69. DOI:10.3846/16486897.2015.1054289.

Kinderienė, I., Jarašiūnas, G. & Karčauskienė D. (2013). Loss of plant nutrients (N, P, K) with soil loss and water runoff from hill slopes. Žemės Ūkio Mokslai, 20(1), 10-19. DOI:10.6001/zemesukiomokslai.v20i1.2634.

King, D., Le Bas, C., Daroussin, J., Thomasson, A.J. & Jones R.J.A. (1995). The EU map of soil water available for plants. In D. King, R.J.A. Jones & A.J. Thomasson (Eds.), European land information systems for agroenvironmental monitoring (pp. 131-142). Luxembourg: Office for Official Publications of the European Communities.

Kuliesis, G., Salengaite, D. & Kozlovskaja A. (2011). Land abandonment: problems and solutions. Vilnius: Lithuanian Agrarian Economics Institute.

Kuyvenhoven, A. (2004). Creating an enabling environment policy conditions for less-favored areas. Food Policy, 29, 407-429. DOI:10.1016/j.foodpol.2004.07.010.

MacDonald, D., Crabtree, J.R., Wiesinger, G., Dax, T., Stamou, N., Fleury, P., Gutierrez Lazpita, J. & Gibon A. (2000). Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J. Environ. Manag., 59(1), 47-69. DOI:10.1006/jema.1999.0335.

Marcinkevičienė, A. & Bogužas V. (2006). The influence of catch crops and manure on soil bioactivity in sustainable and organic farming. Zemdirbyste-Agriculture, 93(4), 146-154.

Mayr, T.R., Rounsevell, M.D.A., Loveland, P.J. & Simota C. (1996). Agro-climatic change and European soil suitability: regional modelling at monthly time-steps. International Agrophysics, 10, 155-170.

Mažvila, J., Staugaitis, G., Vaišvila, Z., Aleknavičius, P., Juozokas, A., Mockevičius, R. & Lukšienė L. (2011). The productivity of Lithuanian’s land. Kedainiai: Akademija.

Mueller, L., Schindler, U., Mirschel, W., Shepherd, T.G., Ball, B.C., Helming, K., Rogasik, J., Eulenstein, F. & Wiggering H. (2010). Assessing the productivity function of soils. A review. Agronomy for Sustainable Development, 30, 601-614. DOI:10.1051/agro/2009057.

Nori, S. & Gemini M. (2011). The Common Agricultural Policy vis-a-vis European pastoralists: principles and practices. Pastoralism: Research, Policy and Practice, 1(27), 1-8. DOI:10.1186/2041-7136-1-27.

Povilaitis, A., Lamsodis, R., Bastienė, N., Rudzianskaitė, A., Misevičienė, S., Miseckaitė, O., Gužys, S., Baigys, G., Grybauskienė, V. & Balevičius G. (2015). Agricultural drainage in Lithuania: a review of practices and environmental effects. Acta Agric. Scand. Sect. B - Soil Plant Sci., 65(suppl. 1), 14-29. DOI:10.1080/09064 710.2014.971050.

Roszkowska-Mądra, B., Gozdowski, D. & Mądry W. (2006). Diversity of rural less-favoured areas in Podlasie province, Poland. Journal of Central European Agriculture, 7(4), 723-729.

Rudow, K. (2014). Less Favoured Area payments - impacts on the environment, a German perspective. Agricultural Economics-Czech, 60(6), 260-272.

Sadowski, A. & Czubak W. (2013). The priorities of rural development in the EU countries in years 2007-2013. Agricultural Economics-Czech, 59(2), 58-73.

Špulerova, J., Drabova, M. & Lieskovsky J. (2016). Traditional agricultural landscape and their management in less favoured areas in Slovakia. Ekologia (Bratislava), 35(1), 1-12. DOI:10.1515/eko-2016-0001.

Taminskas, J., Švedas, K. & Konstantinova J. (2005). Fluctuation of the timescale of seasonal freeze in Lithuania. Geografijos Metrastis, 38(1), 18-28.

Taminskas, J., Švedas, K. & Švedienė I. (2006). The changes in seasonally frozen ground depth in Lithuania. Annales Geographicae, 39(1), 15-24.

Van Diepen, C.A., Van Keulen, H., Wolf, J. & Berkhout J.A.A. (1991). Land evaluation: from intuition to quantification. In B.A. Stewart (Ed.), Advances in Soil Science (pp. 139-204). New York: Springer.

Van Keulen, H. (2006). Heterogeneity and diversity in less-favoured areas. Agric. Syst., 88, 1-7. DOI:10.1016/j. agsy.2005.06.001.

Van Orshoven, J., Terres, J.M. & Toth T. (Eds) (2012). Updated common bio-physical criteria to define natural constraints for agriculture in Europe. Definition and scientific justification for the common criteria: technical factsheets. Luxembourg: Publications Office of the European Union. DOI:10.2788/91182.

Van Orshoven, J., Terres, J.M. & Eliasson A. (Eds). (2008). Common bio-physical criteria to define natural constraints for agriculture in Europe. Definition and scientific justification for the common criteria. Luxembourg: Office for Official Publications of the European Communities. DOI:10.2788/96289.

Zabel, F., Putzenlechner, B. & Mauser W. (2014). Global agricultural land resources - a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE, 9(9), e107522. DOI:10.1371/journal.pone.0107522.

Ekológia (Bratislava)

The Journal of Institute of Landscape Ecology of Slovak Academy of Sciences

Journal Information


CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.283
Source Normalized Impact per Paper (SNIP) 2018: 0.534

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 279 185 19
PDF Downloads 160 127 15