Soil Heterogeneity Reflected in Biogeography of Beech Forests in the Borderland Between the Bohemian Massif and the Outer Western Carpathians

Open access

Abstract

Soil environment characteristics naturally affect the biogeographical classification of forests in central Europe. However, even on the same localities, different systems of vegetation classification de-scribe the forest types according to the naturally dominant tree species with different accuracy. A set of 20 representative natural beech stands in the borderland between the Bohemian Massif (Hercyni-an biogeographical subprovince) and the Outer Western Carpathians (Westcarpathian subprovince) was selected in order to compare textural, hydrostatic, physico-chemical and chemical properties of soils between the included geomorphological regions, bioregions and biotopes. Differences in the soils of the surveyed beech stands were mainly due to volume weight and specific weight, maximum capillary capacity (MCC), porosity, base saturation (BS), total soil nitrogen (Nt) and fulvic acids. Specifics in the relations between these soil characteristics indicated that transient trans-Hercynian beech forests developed in the borderland between the two compared subprovinces. Soils of the investigated Hercynian beech forests were generally characterized by lower BS and lower Nt. Soils of the trans-Hercynian beech forests were more similar to the Carpathian beech forest soils than soils in the other Hercynian beech forests. Soils of the trans-Hercynian and Carpathian beech forests showed similarly higher BS, deeper occurrence of humic substances, lower specific weight and also higher MCC. Higher content of humic substances as well as MCC indicated an equal effect on forest ecology, which may contribute to more accurate classification of forests.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Allison F.E. (1973). Soil organic matter and its role in crop production. Amsterdam London: Elsevier.

  • Barbati A. Corona P. & Marchetti M. (2007). European forest types. Categories and types for sustainable forest man- agement reporting and policy. Copenhagen Luxembourg: European Environment Agency.

  • Berger T.W. & Hager H. (2000). Physical top soil properties in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. For. Ecol. Manag. 136 159-172. DOI: 10.1016/S0378-1127(99)00286-8.

  • Borken W. Xu Y.-J. Davidson E.A. & Beese F. (2002). Site and temporal variation of soil respiration in European beech Norway spruce and Scots pine forests. Global Change Biology 8(12) 1205-1216. DOI: 10.1046/j.1365- 2486.2002.00547.x.

  • Box G.E.P. & Cox D.R. (1964). An analysis of transformations. Journal of Royal Statistical Society Series B 26 211-246. URL: http://www.jstor.org/stable/2984418.

  • BuČek A. Maděra P. & ÚŘadníČek L. (2007). Ecological network creation in the Czech Republic. Journal of Land- scape Ecology 1: 12-24.

  • Casper B.B. & Jackson R.B. (1997). Plant competition underground. Ann. Rev. Ecol. Syst. 28 545-570. DOI: 10.1146/annurev.ecolsys.28.1.545.

  • Christensen M. Hahn K. Mountford E. P. Ódor P. Standová T Rozenbergar D. Diaci J. Wijdeven S. Meyer P. Winter S. & VrŠka T (2005). Dead wood in European beech (Fagus sylvatica) forest reserves. For. Ecol. Manag. 210 267-282. DOI: 10.1016/j.foreco.2005.02.032.

  • Cienciala E. Exnerová Z. Mackě J. & Henžlík V. (2006). Forest topsoil organic carbon content in Southwest Bo- hemia region. J. For. Sci. 52 387-398.

  • Chytrý M. (2012). Vegetation of the Czech Republic: diversity ecology history and dynamics. Preslia 84 427-504.

  • Chytrý M. KuČera T. & KoČí M. (Eds.) (2001). Katalog biotopů České republiky. Praha: AOPK ČR.

  • Craine J.M. (2007). Plant strategy theories: replies to Grime and Tilman. J. Ecol 95 235-240. DOI: 10.1111/j.1365- 2745.2007.01212.x.

  • Culek M. (Ed.) (1996). Biogeografické Členění České republiky. Praha: Enigma.

  • Davi H. Dufrêne E. Granier A. Le Dantec V. Barbaroux C Francois C. & Bréda N. (2005). Modelling carbon and water cycles in a beech forest. Part II: Validation of the main processes form organ to stand scale. Ecol. Model. 185 387-407. DOI: 10.1016/j.ecolmodel.2005.01.003.

  • Demek J. (1987). Hory a nížiny. Zeměpisný lexikon ČSR. Praha: Academia.

  • Diaci J. & Rozenbergar D. (2003). Interactions of light soil properties and regeneration in the Slovenian Dinaric Alps: Patterns in virgin and managed forests. In F. Hamor & B. Commarmot (Eds.) Natural forests in the tem-perate zone of Europe - values and utilization (pp. 58-59). Mukachevo Rakhiv Birmensdorf: Carpathian Bio- sphere Reserve Swiss Federal Research Institute.

  • Driessen P. Deckers J. & Nachtergaele F. (Eds.) (2001). Lecture notes on the major soils of the world. Rome: FAO.

  • Ellenberg H. (1996). Vegetation Mitteleuropas mit den Alpen in ökologischer und historischer Sicht. Stuttgart: Verlag Eugen Ulmer GmbH.

  • Finzi A.C. Canham CD. & van Breemen N. (1998). Canopy tree soil interactions within temperate forests: Species efects on pH and cations. Ecol. Appl. 8 447-454. DOI: 10.1890/1051-0761(1998)008[0447:CTSIWT]2.0.CO;2

  • Fitzsimmons K.E. Markoviě S.B. & Hambach U. (2012). Pleistocene environmental dynamics recorded in the loess of the middle and lower Danube basin. Quaternary Science Reviews 41 104-118. DOI: 10.1016/j.quasci- rev.2012.03.002.

  • Gaston K.J. & Spicer J.I. (2004). Biodiversity: an introduction. Oxford: Blackwell Publishing.

  • Gégout J.-C. & Križová E. (2003). Comparison of indicator values of forest understory plant species in Western Carpathians (Slovakia) and Vosges Mountains (France). For. Ecol. Manag. 182 1-11. DOI: 10.1016/S0378- 1127(03)00068-9.

  • Godefroid S. Massant W. & Koedam N. (2005). Variation in the herb species response and the humus quality across a 200-year chronosequence of beech and oak plantations in Belgium. Ecography 28 223-235. DOI: 10.1111/j.0906-7590.2005.03877.x.

  • Gömöry D. Hynek V. & Paule V. (1998). Original article Delineation of seed zones for European beech (Fa- gus sylvatica L.) in the Czech Republic based on isozyme gene markers. Ann. For. Sci. 55 425-436. DOI: 10.1051/forest:19980403.

  • Green R.N. Trowbridge R.L. & Klinka K. (1993). Towards a taxonomic classification of humus forms. For. Sci. (Monograph 29) 39(Suppl. 1) a0001-z0002.

  • Grunda B. (1993). Objemová hmotnost pědy v půdní mikrobiologii. Lesnictví-Forestry 41 38-41.

  • HoráČek M. HoluŠa O. & Samec P. (2011). Line of border of the Polonic and Westcarpathian biogeographical sub- provinces in the Czech Republic. Acta Musei Beskidensis 3 17-31.

  • Houba V.G.J. van der Lee J.J. Novozamsky I. & Walinga I. (1989). Soil analysis procedures. Soil and plant analysis Part 5. Wageningen: Wageningen Agricultural University.

  • Kaplan Z. (2012). Flora and phytogeography of the Czech Republic. Preslia 84 505-573.

  • Knollová I. & Chytrý M. (2004). Oak-hornbeam forests of the Czech Republic: geographical and ecological ap- proaches to vegetation classification. Preslia 76 291-311.

  • KuČera A. RejŠek K. Dundek P. Marosz K. Samec P. & Sýkora J. (2011). Specification of the beechwood soil environment based on chosen soil properties aiming at the Faseta paupera habitat. J. For. Sci. 57 185-191.

  • Lisá L. & Uher P. (2006). Provenance of Würmian loess and loess-like sediments of Moravia and Silesia (Czech Republic): a study of zircon typology and cathodoluminiscence. Geol. Carpathica 57 397-403.

  • Magri D. Vendramin G.G. Comps B. Dupanloup I. Geburek T. Gömöry D. LataŁowa M. Litt T. Paule L. Roure J.M. Tantau I. van der Knaap W.O. Petit R.J. & de Beaulieu J.-L. (2006). A new scenario for the Quarternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol. 171 199-221. DOI: 10.1111/j.1469-8137.2006.01740.x.

  • Ngao J. Epron D. Brechet C. & Granier A. (2005). Estimating the contribution of leaf litter decomposi- tion to soil CO2 efux in a beech forest using 13C-depleted litter. Global Change Biology 11(10) 1768-1776. DOI: 10.1111/j.1365-2486.2004.01014.x.

  • Patzel N. & Ponge J.-F. (2001). The heterogeneity of humus components in a virgin beech forests. Eur. J. Soil Biol. 37 117-124. DOI: 10.1016/S1164-5563(01)01076-7.

  • Pott R. (2000). Palaeoclimate and vegetation - long-term vegetation dynamics in central Europe with particular reference to beech. Phytocoenologia 30 285-333. DOI: 10.1127/phyto/30/2000/285.

  • Purdon M. Cienciala E. Metelka V. Beranová J. Hunová I. & Černý M. (2004). Regional variation in forest health under long-term air pollution mitigated by lithological conditions. For. Ecol. Manag. 195 355-371. DOI: 10.1016/j.foreco.2004.02.039.

  • Qian H. & Ricklefs R.E. (2004). Geographical distribution and ecological coservatism of disjunct genera of vascular plants in eastern Asia and eastern North America. J. Ecol 92 253-265. DOI: 10.1111/j.0022-0477.2004.00868.x.

  • Rand W.M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66 846-850. DOI: 10.1080/01621459.1971.10482356.

  • Seynave I. Gégout J.-G. Hervé J.-C Dhôte J.-F. 2008: Is the spatial distribution of European beech (Fagus syl- vatica L.) limited by its potential height growth? Journal of Biogeography 35: 1851-1862. DOI: 10.1111/j.1365- 2699.2008.01930.x.

  • Schmid I. (2002). The influence of soil type and interspecific competition of the fine root system of Norway spruce and European beech. Basic and Applied Ecology 3 339-346. DOI: 10.1078/1439-1791-00116.

  • Simon J. (Ed.) (2003). Monitorovací plochy soustavy NATURA 2000 v České republice (1. Část). Brno: Paido. Simon J. (2004). Management strategies on territories with special status of protection in the Czech Republic. J. For. Sci. 50 510-513.

  • Simon J. (Ed.) (2010). Strategie managementu lesních území se zvláŠtním statutem ochrany. Obecná Část I. Kostelec nad Černými lesy: Lesnická práce.

  • Sugiero D. Jaszczak R. Rączka G. Strzelinski P. Węgiel A. & Wierzbicka A. (2009). Species composition in low mountain beech (Fagus sylvatica) stands in the Bieszczady National Park under the global warming. J. For. Sci. 55 244-250.

  • Svobodová H. Reille M. & Goeury C. (2001). Past vegetation dynamics of Vltavský luh upper Vltava river valley in th Šumava mountains. Czech Republic. Veg. Hist. Archaebot 10 185-199. DOI: 10.1007/PL00006930.

  • Tan K.H. (2003). Humic matter in soil and the environment: principles and controversies. New York: Marcel Dekker Inc.

  • USDA-NRSC (1996). Soil survey laboratory methods manual. Washington.

  • van der Poel P.W. (1976). Influence of environmental factors in the growth of the beech. Catena 3 203-214. DOI: 10.1016/0341-8162(76)90010-2.

  • VavŘíČek D. Šimková P. Samec P. & Formánek P. (2006). Soil aspects of forest site revitalization afer windrow cultivation by heavy mechanization on the KruŠné hory Mts. Plateau. J. For. Sci. 52 1-12.

  • Verdú M. Dávila P. García-Fayos P. Flores-Hernandes N. & Valiente-Banuet A. (2003). ’Convergent’ traits of Mediterranean woody plants belong to pre-mediterranean linkage. Biol. J. Linn. Soc 78 415-427. DOI: 10.1046/j.1095-8312.2003.00160.x.

  • Viewegh J. (2002). South-Moravian foodplain forest herb vegetation in the period 1978-1997. J. For. Sci. 48 88-92.

  • Voženílek V. (2000). Regionální Členění reliéfu ČR mapa 1: 1 250 000. Olomouc: Katedra geografe UP Olomouc.

  • Walkley A. & Black I.A. (1934). An examination of the Degtjaref method for determinating soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37 29-38.

  • Wheeler P.A. & Ward R.B. (1998). Te non-toxic farming handbook. Austin: Acres U.S.A.

  • White R.E. (1987). Introduction to the principles and practice of soil science. Oxford: Blackwell Scientific Publica- tions.

  • Zar J. (1994). Biostatistical analysis. New Jersey: Prentice Hall Int.

  • Zinke P.J. (1962). The pattern of influence of individual forest trees on soil properties. Ecology 43 130-133. DOI: 10.2307/1932049.

Search
Journal information
Impact Factor


CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.283
Source Normalized Impact per Paper (SNIP) 2018: 0.534

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 143 75 5
PDF Downloads 61 47 5