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Abstract

Mkrtchian A.: The relations between land surface morphometry and spectral characteristics of 
ecosystems in the Ukrainian Carpathians. Ekológia (Bratislava), Vol. 32, No. 1, p. 87—94, 2013.

Spatial planning in mountainous areas requires careful consideration of relationships between 
abiotic conditions and various ecosystem properties. While detailed spatial databases of these 
and also detailed ecological databases built on field data are still lacking for many regions, satellite 
data are an indispensable source of spatially distributed detailed ecological information. Digital 
elevation models and multi-spectral images are especially useful for the acquisition of detailed, 
up-to-date and cheap spatial data. In this study,  principal component analysis and canonical 
correlation analysis were used to reveal the structure of the relationships between the land sur-
face reflectance values in different wavelength ranges and to investigate relationships between the 
principal components and the set of topographic characteristics and indexes for the study area 
in the Ukrainian Carpathians. The most important factor that influences the land and vegetation 
cover structure was found to be elevation, while other factors included a set of topographic cha-
racteristics and indices.
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Introduction

Mountainous areas are one of the major focal points for modern conservation activities due 
to their increased preservation of natural and semi-natural ecosystems, the presence of bio-
diversity hotspots, the increased exposure to some detrimental geomorphic and hydrologic 
processes and their significant recreational value; to name just a few.

Mountains are often characterized by dynamic processes and changes that can be acti-
vated by human impact. Abiotic conditions in mountains often show sharp spatial gradients 
which reflect on the distribution of species, ecosystems and their properties. Therefore, spatial 
planning in mountainous areas requires careful consideration of relationships between abiotic 
conditions and various ecosystem properties. 

Abiotic ecological factors include the characteristics of geologic substratum, relief, clima-
te, soils, and hydrological processes. Their spatial gradients are the major factor determining 
the richness of habitats and the β-diversity in a landscape (Whittaker, 1960). The gradients of 
ecological factors are often divided into direct gradients that have immediate physiological 
importance (e.g., temperature, illumination and soil pH) and indirect gradients that have no 
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direct physiological relevance, but imply some direct gradients or their combinations and are 
more easily measured in the field (e.g., elevation, geology and slope) (Austin, 1985; Austin, 
Smith, 1989).

Data on spatial distribution of the above-mentioned abiotic factors are therefore crucial for 
understanding the spatial distribution of ecosystems and their properties, to ensure effective 
management and land use planning in mountainous areas. These data, however, are often con-
tained in different sources, often in non-digital form, lacking metadata, and therefore require 
careful coordination before their joint utilization. New data acquisition requires laborious and 
time-consuming field studies, especially in the case of large study-area dimensions. These pro-
blems are especially relevant for developing nations with their out-dated data sources and lack 
of funds for fresh studies.

Recently, however, a new promising solution has emerged in the form of detailed spatially 
distributed datasets from satellites. These data sources have a set of advantages, among which 
are the availability and accessibility of timely datasets and their low costs (many datasets of 
rather high quality are available free of charge via specialized cites on the web). While satellite 
data can be an indispensable source of  spatially distributed detailed ecological information, 
they provide only indirect indicators and clues, posing the problem of correct and effective data 
interpretation to derive ecologically meaningful and valuable information. 

Two major types of satellite data are of particular interest for ecological studies: digital 
elevation models (DEMs) and multi-spectral images. DEMs are used for the characterization 
and analysis of land surface morphometry as the product of geo-morphological processes and 
geological structure. DEM data analysis calculates topographic variables that make efficient 
predictors of habitat characteristics (Guisan, Zimmermann, 2000). The multi-spectral images 
allow the analysis of the spectral characteristics of landscape that imply the vegetation cover 
structure, the composition and state of forest stands as well as the land use structure. DEMs 
and multi-spectral satellite radiometric images are the most commonly used ancillary environ-
mental data for the spatial prediction and mapping of soil and vegetation (Dobos et al., 2000). 
Datasets representing both types of data are presently available free of charge, and they provide 
sufficient spatial resolution and quality for regional ecological studies. DEM-derived topogra-
phic variables closely relate to factors and manifestations of processes that determine habitat 
characteristics, such as  solar energy and water redistribution, and soil erosion and accumulati-
on. One example is the Compound Topographic Index (CTI), introduced by Beven and Kirkby 
(1979) and defined as CTI= ln (As/tan ß), where As is a local catchment area and ß refers to the 
slope. This measures the balance of water accumulation and drainage in a local neighbourho-
od, and it has been shown to correlate well with this set of soil characteristics (Gessler et al., 
1995; Behrens et al., 2010). Since drainage and water availability and regimen strongly affect 
habitat characteristics, this index can also have significant value as an ecological indicator. For 
instance, it has been used for predicting wetlands in small catchments across a wide range of 
geological, topographic and climatic conditions (Merot et al., 2003). Thus, such a topographic 
index can be regarded as an indirect ecological gradient, sensu Austin (1985). 

The spatially distributed indices can also be derived from the transformations and com-
binations of different spectral channels of multi-spectral imagery. Such indexes characterize 
the reflective qualities of the landscape with respect to light of different wavelengths. The best-
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-known and most widely used of these is the Normalized Difference Vegetation Index (NDVI), 
which is easily determined and mapped using digital analysis of spatial imagery. It is calculated 
by the formula:

NDVI=(NIR-RED)/(NIR+RED)

where; RED and NIR are the spectral reflectance measurements acquired in the red and near-
-infrared spectral channels, respectively (Rouse et al., 1973). NDVI values can  be correlated 
with the Leaf Area Index, plant productivity, biomass, leaf chlorophyll concentration, fractional 
vegetation cover, and other combined ecosystem properties which indicate the degree of pre-
sence and the current state of natural vegetation in an area (Glenn et al., 2008). Another exam-
ple is the Normalized Difference Water Index (NDWI) which is sensitive to changes in liquid 
water content of vegetation canopies (Gao, 1996). This index has a similar structure to NDVI,  
but differs in the spectral channels used in it calculation.

While there are plenty of studies concerning digital relief morphometry analysis and the 
interpretation of multi-spectral image data, there is a lack of research aimed at combined ana-
lysis and integration of these two data types. Such analysis will clarify the notion of spatial dis-
tribution of basic ecosystem properties confronted with the spatial distribution of basic abiotic 
conditions. This analysis will enable insight into the spatial relationships between land cover 
and vegetation properties and the abiotic environment.

Material and methods

This study analyzes the relationships between the land surface reflectance in different spectral channels and the set 
of land surface morphometry characteristics. While the former is indicative of the vegetation cover structure, the 
composition and state of forest stands and the land use structure, the latter is the product of geo-morphological 
processes and geological structure and is indicative of  important abiotic ecological factors.

The case study area is a 90 by 70 km rectangular region in the central part of the Ukrainian Carpathians. The 
diagonal of the rectangle roughly matches the axis of the Carpathians arc, thus the study area encompasses parts of 
its northern and southern macroslopes and the surrounding foothill plains.

Two freely available geospatial datasets have been used in this study: SRTM v. 4.1 DEM and LANDSAT 7 ETM+ 
image set. The processed SRTM data version 4.1 (Jarvis et al., 2008) is available on-line from CGIAR Consortium for 
Spatial Information (http://srtm.csi.cgiar.org). These data are in decimal degrees, in geographic coordinate system 
with datum WGS84 and 90 m resolution. The LANDSAT 7 ETM+ multiband image (NASA, 2009) was obtained 
from the on-line USGS archive (http://glovis.usgs.gov). The LANDSAT 7 ETM+ image consists of 8 band layers 
acquired on October 13, 2009, each with 30 m resolution already projected to the UTM coordinate system (datum 
WGS84). LANDSAT images were acquired on the 2nd of May 2000 and have been terrain-corrected.  (The detailed 
metadata is contained in the glovis website).

Data pre-processing involved converting these to a common resolution and coordinate system. To achieve this, 
SRTM DEM was projected onto the UTM coordinate system, while the LANDSAT 7 ETM+ dataset was re-sampled 
to 90 m resolution to match that of  the DEM. 

 Data analysis consisted of two steps. In the first step, principal component analysis was applied to the set of 
LANDSAT 7 ETM+ image bands to isolate the three independent spatial components which together reveal the 
structural relationships between the land surface reflectance values in different wavelength ranges. The second step 
was applying canonical correlation analysis to analyze the relationships between these components and the set of 
topographic characteristics and indexes. Canonical correlation analysis is a statistical technique that investigates the 
relationship between two sets of variables, based on the extraction of canonical roots (variates) defined as the corre-
lated weighted sums of the variables in each set. Each canonical root can be conceived as describing some underly-
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ing "latent" variable that represents the type of relationship between the two sets (StatSoft, 2012). The relationships 
were analyzed in this way between the set of three LANDSAT 7 ETM+ image principal components and the second 
set which included such spatial variables as elevation values, slopes, the Compound topographic index, the index 
of relief erosion potential (Mitasova et al., 1996), and the index of solar energy redistribution by local topography 
(Kumar et al., 1997). These analytic processes derived the three roots which describe the independent components 
of the common spatial variation in the two sets of variables

Results

The results of the principal components analysis of the LANDSAT 7 ETM+ image data are gi-
ven in Tables 1—3. The first principal component shows quite strong negative correlations with 
most of the spectral bands, thus corresponding to the overall “brightness” of the surface (Fig. 
1). It also strongly correlates with elevation values, thus the increase in the surface elevation 
in the area is often accompanied by a decrease in its reflectivity. Visual analysis of its spatial 
structure and comparison with the topographic maps reveal its strong positive relationships 
with the presence and density of the forest stands. It is also positively correlated with the slope 
values.

The second component (Fig. 2) also positively correlates with the elevation values, but its 

Component Eigenvalue % Total - variance
1 3.008998 75.22
2 0.727110 18.18
3 0.248545   6.21

T a b l e  1.   Principal component analysis of LANDSAT 7 ETM+ image data: eigenvalues of correlation matrix.

Landsat band number Wavelengths (micrometers) Component 1 Component 2 Component 3
2 0.52—0.60 -0.95 0.18 0.23
3 0.63—0.69 -0.89 0.45 0.06
4  0.76—0.90 -0.70 -0.70 0.15
5 1.55—1.75 -0.91 -0.09 -0.41

T a b l e   2.    Principal component analysis of LANDSAT 7 ETM+ image data:  factor loadings of the spectral bands.

Topographical variables Component 1 Component 2 Component 3
Elevation 0.436 0.436 0.015

Slope 0.362 0.133 0.038
CTI -0.16 -0.079 -0.014

Erosivity factor 0.18 0.032 0.023
Solar factor -0.061 0.073 -0.052

T a b l e   3.    Principal component analysis of LANDSAT 7 ETM+ image data: correlations of principal components 
with topographical variables.

relationships with other topographic characteristics and indices are very different from the first 
component. This component appears to discriminate well between deciduous and coniferous 
forests: dense beech stands produced especially low values. This component also shows strong 
(r = 0.95) negative correlation with the well-known NDVI index. Low values of this component 
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Fig. 1.  LANDSAT 7 ETM+ principal component 1 image; the lighter tone corresponds to higher values.

Fig. 2. LANDSAT 7 ETM+ principal component 2 image; the lighter tone corresponds to higher values.
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(and high values of NDVI) generally indicate the presence of deciduous forests characterized 
by high values of biological productivity and biodiversity. The second component also better 
differentiates between different anthropogenic land uses and land cover types.

The first and the second principal components also correspond quite well to the two first 
components of the tasseled cap transformation (Crist, Cicone, 1984). While the third com-
ponent shows very weak linear correlation with the topographic characteristics and indices, 
visual analysis revealed that its high values strongly associate with the sub-alpic meadows. This 
component can thus effectively be used for mapping and monitoring the location and extent 
of valuable sub-alpic grassland communities with a number of rare and endangered species.

Canonical correlation analysis was used to analyze the relationships between these compo-
nents and the set of topographic characteristics and indices. Most of the variability in the two 
sets of variables is explained by the first canonical root which is strongly correlated with the 
elevation values (Tables  4—6). The second root positively correlates with the slope values and 
mass movement potential, and negatively with the solar radiation influx.

Root 1 Root 2 Root 3 Root 4
Eigenvalue 0.416 0.065 0.009 0.001

Canonical root Canonical - R Canonical - R-sqr. Chi-sqr.
1 0.645 0.416 477756.2
2 0.256 0.065 59963.7
3 0.094 0.009 7457.2
4 0.027 0.001 556.1

Topographical variables Root 1 Root 2 Root 3 Root 4
Elevation -0.98 -0.023 0.194 -0.016
Slope  -0.523 -0.729 0.405 0.03
Plan curvature  -0.143 -0.135 -0.336  0.386
Profile curvature  0.19 -0.012  0.224  0.583
CTI   0.256 0.268 -0.127 -0.084
Erosivity factor   -0.226 -0.419  0.418 -0.271
Solar factor -0.06 0.649  0.632 0.034

T a b l e  4. Canonical roots’ eigenvalues.

T a b l e   5. Canonical correlations.

T a b l e   6. Canonical factor loadings.

Discussion

The results of this study prove the existence of quite strong relationships between the land 
surface morphometry and its spectral characteristics. These relationships imply the more fun-
damental relationships between the ecosystem distribution and properties and the character of 
the abiotic conditions.

The two major moprhometric factors of land cover differentiation correspond to the dis-
tinction between high and low altitudes (canonical root 1), and also between  steep shady slopes 
and sunlit flat areas (canonical root 2). The analysis of the spatial distribution of the canonical 
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factors scores and residuals can indicate the state of vegetation, the degree of its correspondence 
with abiotic factors and conditions and the character and degree of anthropogenic disturban-
ces.

Multi-spectral images can be used to derive characteristics and indices relevant to the as-
sessment of the state of vegetation cover and its properties that determine the ecological value 
and significance of habitats. The widely used NDVI index has been shown to correlate with 
plant (Bawa et al., 2002) and animal (Oindo et al., 2000) species diversity, as well as carbon 
fluxes and storages (Frank, Karn, 2003; Glenn et al., 2008). In our case, the analysis has shown 
that areas with high NDVI values (that mostly correspond to highly productive deciduous fo-
rests) are generally found on steep slopes at low elevations (Fig. 3). This is at variance with the 
prevailing conservation strategy in the Ukrainian Carpathians, where most protected areas are 
located at high altitudes.

Fig. 3.  The distribution of the average NDVI values in relation to elevation and slope.

Conclusion

The availability of spatially detailed satellite data makes this a useful tool for analyzing the 
relationships between ecosystem properties and distribution and the abiotic factors which 
shape them. The results obtained in this study reveal the presence and character of such rela-
tionships in the Ukrainian Carpathians study area. While this study mostly analyzes local de-
pendencies, the inclusion of non-local measures (e.g., the averages and variances of variables 



94

calculated inside moving windows of variable sizes) and also texture measures can provide 
increased insight into spatial relationships and structures in mountainous landscapes.

Translated by the author
English corrected by R. Marshall
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