Adsorption of Malachite Green and Congo Red Dyes from Water: Recent Progress and Future Outlook

Open access

Abstract

Global concern on dyes-laden effluent has intensified over the years. Dyes are toxic, stable to light, and hardly oxidized and bio-degraded, hence causing severe physiological effects to living organisms. In water, dye hinders the light penetration for photosynthetic activity, consequently oxygen is deficient for respiration by aquatic creatures. Adsorption has been widely recognized as the effective removal strategy to abate dye wastewater. However, the quests to improve the adsorption efficiency are continuously sought through new adsorbents with special characters, while performing the removal process at optimum operating conditions. This short review aims to summarize the recent progress in adsorption studies of two commonly used industrial dyes, namely malachite green and congo red by various adsorbents. From the quoted studies, the oxidized mesoporous carbon yields a higher adsorption capacity of malachite green at 1265 mg/g, while Fe3O4@nSiO2@mSiO2 displays a greater capacity for congo red removal at 1429 mg/g. A superior adsorption relies not only on specific surface area but also the synergistic interactions of pore width and mesoporosity, surface chemistry, and operating conditions. The dyes properties and factors affecting the adsorption are also highlighted and discussed, with recommendations and future outlook.

[1] Gautam D, Kumari S, Ram B, Chauhan GS, Chauhan K. A new hemicellulose-based adsorbent for malachite green. J Chem Eng. 2018;6(4):3889-3897. DOI:10.1016/j.jece.2018.05.029.

[2] Sartape AS, Mandhare AM, Jadhav VV, Raut PD, Anuse MA, Kolekar SS. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab J Chem. 2017;10(2):S3229-S3238. DOI: 10.1016/j.arabjc.2013.12.019.

[3] Wang D, Liu L, Jiang X, Yu J, Chen X. Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids Surf A Physicochem Eng Asp. 2015;466:166-173. DOI: 10.1016/j.colsurfa.2014.11.021.

[4] Naseem K, Farooqi ZH, Begum R, Irfan A. Removal of congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review. J Clean Prod. 2018:187:296-307. DOI: 10.1016/j.jclepro.2018.03.209.

[5] Alver E, Bulut M, Metin AU, Çiftçi H. One step effective removal of congo red in chitosan nanoparticles by encapsulation. Spectrochim Acta A Mol Biomol Spectrosc. 2017;171:132-138. DOI: 10.1016/j.saa.2016.07.046.

[6] Tu NT, Thien TV, Du PD, Chau VT, Mau TX, Khieu DQ. Adsorptive removal of congo red from aqueous solution using zeolitic imidazolate framework-67. J Environ Chem Eng. 2018;6(2):2269-2280. DOI: 10.1016/j.jece.2018.03.031.

[7] Ausavasukhi A, Kampoosaen C, Kengnok O. Adsorption characteristics of congo red on carbonized leonardite. J Clean Prod. 2016;134:506-514. DOI: 10.1016/j.jclepro.2015.10.034.

[8] Zhang X, Lin Q, Luo S, Ruan K, Peng K. Preparation of novel oxidized mesoporous carbon with excellent adsorption performance for removal of malachite green and lead ion. Appl Surf Sci. 2018;442:322-331. DOI: 10.1016/j.apsusc.2018.02.148.

[9] Gupta K, Khatri OP. Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: Plausible adsorption pathways. J Colloid Interface Sci. 2017;501:11-21. DOI: 10.1016/j.jcis.2017.04.035.

[10] Tang S, Zaini MAA. Congo red Removal by HNO3-modified resorcinol-formaldehyde carbon gels. Chem Eng Trans. 2017;56:159-172. DOI: 10.3303/CET1756140.

[11] Leyva-Ramos R. Effect of temperature and pH on the adsorption of an anionic detergent on activated carbon. J Chem Technol Biotechnol. 1989;45(3):231-240. DOI: 10.1002/jctb.280450308.

[12] Nouri S. Effect of treatment on the adsorption capacity of activated carbon. Adsorpt Sci Technol. 2002;20(9):917-925. DOI: 10.1260/026361703771953578.

[13] Rajabi M, Mirza B, Mahanpoor K, Mirjalili M, Najafi F, Moradi O, et al. Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters. J Ind Eng Chem. 2016;34:130-138. DOI: 10.1016/j.jiec.2015.11.001.

[14] Shah KA, Tali BA. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater Sci Semicon Process. 2016;41:67-82. DOI: 10.1016/j.mssp.2015.08.013.

[15] Tang S, Zaini MAA. Malachite green adsorption by potassium salts-activated carbons derived from textile sludge: Equilibrium, kinetics and thermodynamics studies. Asia-Pac J Chem Eng. 2016;12(1):159-172. DOI: 10.1002/apj.2063.

[16] Vergis BR, Krishna RH, Kottam N, Nagabhushana BM, Sharath R, Darukaprasad B. Removal of malachite green from aqueous solution by magnetic CuFe2O4 nano-adsorbent synthesized by one pot solution combustion method. J Nanostructure Chem. 2017;8(1):1-12. DOI: 10.1007/s40097-017-0249-y.

[17] Hosseinzadeh H, Ramin S. Fabrication of starch-graft-poly(acrylamide)/graphene oxide/hydroxyapatite nanocomposite hydrogel adsorbent for removal of malachite green dye from aqueous solution. Int J Biol Macromol. 2018;106:101-115. DOI: 10.1016/j.ijbiomac.2017.07.182.

[18] Dash S, Chaudhuri H, Gupta R, Nair UG. Adsorption study of modified coal fly ash with sulfonic acid as a potential adsorbent for the removal of toxic reactive dyes from aqueous solution: Kinetics and thermodynamics. J Environ Chem Eng. 2018;6(5):5897-5905. DOI: 10.1016/j.jece.2018.05.017.

[19] Abdelrahman EA. Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media. J Mol Liq. 2018;253:72-82. DOI: 10.1016/j.molliq.2018.01.038.

[20] Altıntıg E, Onaran M, Sarı A, Altundag H, Tüzen M. Preparation, characterization and evaluation of bio-based magnetic activated carbon for effective adsorption of malachite green from aqueous solution. Mater Chem Phys. 2018;220:313-321. DOI: 10.1016/j.matchemphys.2018.05.077.

[21] Baghdadi M, Soltani BA, Nourani M. Malachite green removal from aqueous solutions using fibrous cellulose sulfate prepared from medical cotton waste: Comprehensive batch and column studies. J Ind Eng Chem. 2017;55:128-139. DOI: 10.1016/j.jiec.2017.06.037.

[22] Ghasemi M, Mashhadi S, Asif M, Tyagi I, Agarwal S, Gupta VK. Microwave-assisted synthesis of tetraethylenepentamine functionalized activated carbon with high adsorption capacity for malachite green dye. J Mol Liq. 2016;213:317-325. DOI: 10.1016/j.molliq.2015.09.048.

[23] Tang Y, Zeng Y, Hu T, Zhou Q, Peng Y. Preparation of lignin sulfonate-based mesoporous materials for adsorbing malachite green from aqueous solution. J Environ Chem Eng. 2016;4(3):2900-2910. DOI: 10.1016/j.jece.2016.05.040.

[24] Nekouei F, Kargarzadeh H, Nekouei S, Tyagi I, Agarwal S, Gupta VK. Preparation of nickel hydroxide nanoplates modified activated carbon for malachite green removal from solutions: Kinetic, thermodynamic, isotherm and antibacterial studies. Process Saf Environ. 2016;102:85-97. DOI: 10.1016/j.psep.2016.02.011.

[25] Ghaedi M, Azad FN, Dashtian K, Hajati S, Goudarzi A, Soylak M. Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO nanorod-loaded activated carbon. Spectrochim Acta A Mol Biomol Spectrosc. 2016;167:157-164. DOI: 10.1016/j.saa.2016.05.025.

[26] Ghaedi M, Shojaeipour E, Ghaedi A, Sahraei R. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: Artificial neural network modeling and genetic algorithm optimization. Spectrochim Acta A Mol Biomol Spectrosc. 2015;142:135-149. DOI: 10.1016/j.saa.2015.01.086.

[27] Kan Y, Yue Q, Kong J, Gao B, Li Q. The application of activated carbon produced from waste printed circuit boards (PCBs) by H3PO4 and steam activation for the removal of malachite green. Chem Eng J. 2015;260:541-549. DOI: 10.1016/j.cej.2014.09.047.

[28] Shi Z, Xu C, Guan H, Li L, Fan L, Wang Y, et al. Magnetic metal organic frameworks (MOFs) composite for removal of lead and malachite green in wastewater. Colloids Surf A Physicochem Eng Asp. 2018;539:382-390. DOI: 10.1016/j.colsurfa.2017.12.043.

[29] Zhou Y, Ge L, Fan N, Xia M. Adsorption of Congo red from aqueous solution onto shrimp shell powder. Adsorpt Sci Technol. 2018;36(5-6):1310-1330 DOI: 10.1177/0263617418768945.

[30] Yang G, Wu L, Xian Q, Shen F, Wu J, Zhang Y. Removal of congo red and methylene blue from aqueous solutions by vermicompost-derived biochars. Plos One. 2016;11(5):e0154562. DOI: 10.1371/journal.pone.0154562.

[31] Chawla S, Uppal H, Yadav M, Bahadur N, Singh N. Zinc peroxide nanomaterial as an adsorbent for removal of congo red dye from waste water. Ecotoxicol Environ Saf. 2017;135:68-74. DOI: 10.1016/j.ecoenv.2016.09.017.

[32] Saksornchai E, Kavinchan J, Thongtem S, Thongtem T. Simple wet-chemical synthesis of superparamagnetic CTAB-modified magnetite nanoparticles using as adsorbents for anionic dye Congo red removal. Mater Lett. 2018;213:138-142. DOI: 10.1016/j.matlet.2017.11.015.

[33] Sun P, Chen L, Xu L, Zhu W. Hierarchical porous MgBO 2 (OH) microspheres: Hydrothermal synthesis, thermal decomposition, and application as adsorbents for congo red removal. Chin J Chem Eng. 2018;26(7):1561-1569. DOI: 10.1016/j.cjche.2018.01.013.

[34] Shojaeipoor F, Elhamifar D, Masoumi B, Elhamifar D, Barazesh B. Ionic liquid based nanoporous organosilica supported propylamine as highly efficient adsorbent for removal of congo red from aqueous solution. Arab J Chem. 2016. DOI: 10.1016/j.arabjc.2016.05.001.

[35] Xu J, Xu D, Zhu B, Cheng B, Jiang C. Adsorptive removal of an anionic dye congo red by flower-like hierarchical magnesium oxide (MgO)-graphene oxide composite microspheres. Appl Surf Sci. 2018;435:1136-1142. DOI: 10.1016/j.apsusc.2017.11.232.

[36] Chaukura N, Mamba BB, Mishra SB. Conversion of post-consumer waste polystyrene into a high value adsorbent and its sorptive properties for congo red removal from aqueous solution. J Environ Manage. 2017;193:280-289. DOI: 10.1016/j.jenvman.2017.02.023.

[37] Shaban M, Abukhadra MR, Khan AAP, Jibali BM. Removal of congo red, methylene blue and Cr(VI) ions from water using natural serpentine. J Taiwan Inst Chem Eng. 2018;82:102-116. DOI: /10.1016/j.jtice.2017.10.023.

[38] Tian C, Feng C, Wei M, Wu Y. Enhanced adsorption of anionic toxic contaminant congo red by activated carbon with electropositive amine modification. Chemosphere. 2018;208:476-483. DOI: 10.1016/j.chemosphere.2018.06.005.

[39] Srilakshmi C, Saraf R. Ag-doped hydroxyapatite as efficient adsorbent for removal of congo red dye from aqueous solution: Synthesis, kinetic and equilibrium adsorption isotherm analysis. Micropor Mesopor Mat. 219 (2016), 134-144. DOI: 10.1016/j.micromeso.2015.08.003.

[40] Bharali D, Deka RC. Adsorptive removal of congo red from aqueous solution by sonochemically synthesized NiAl layered double hydroxide. J Environ Chem Eng. 2017;5(2):2056-2067. DOI: 10.1016/j.jece.2017.04.012.

[41] Yang M, Wu Y, Rao R, Wang H. Methanol promoted synthesis of porous hierarchical α-Ni(OH)2 for the removal of congo red. Powder Technol. 2017;320:377-385. DOI: 10.1016/j.powtec.2017.07.074.

[42] Long Y, Yu J, Jiao F, Yang W. Preparation and characterization of MWCNTs/LDHs nanohybrids for removal of congo red from aqueous solution. Trans Nonferrous Met Soc China. 2016;26(10):2701-2710. DOI: 10.1016/s1003-6326(16)64398-4.

[43] Zheng Y, Zhu B, Chen H, You W, Jiang C, Yu J. Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of congo red in water. J Colloid Interface Sci. 2017;504:688-696. DOI: 10.1016/j.jcis.2017.06.014.

[44] Zhang Y, Bai L, Zhou W, Lu R, Gao H, Zhang S. Superior adsorption capacity of Fe3O4@nSiO2@mSiO2 core-shell microspheres for removal of congo red from aqueous solution. J Mol Liq. 2016;219:88-94. DOI: 10.1016/j.molliq.2016.02.096.

[45] Lei C, Pi M, Zhou W, Guo Y, Zhang F, Qin J. Synthesis of hierarchical porous flower-like ZnO-AlOOH structures and their applications in adsorption of congo red. Chem Phys Lett. 2017;687:143-151. DOI: 10.1016/j.cplett.2017.09.018.

[46] Satheesh R, Vignesh K, Rajarajan M, Suganthi A, Sreekantan S, Kang M, et al. Removal of congo red from water using quercetin modified α-Fe2O3 nanoparticles as effective nanoadsorbent. Mater Chem Phys. 2016;180:53-65. DOI: 10.1016/j.matchemphys.2016.05.029.

[47] Tran HN, You SJ, Nguyen TV, Chao HP. Insight into adsorption mechanism of cationic dye onto biosorbents derived from agricultural wastes. Chem Eng Commun. 2017;204(9):1020-1036. DOI: 10.1080/00986445.2017.1336090.

[48] Raval NP, Shah PU, Shah NK. Adsorptive amputation of hazardous azo dye congo red from wastewater: A critical review. Environ Sci Pollut Res. 2016;23:14810-14853. DOI: 10.1007/s11356-016-6970-0.

[49] Raval NP, Shah PU, Shah NK. Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. Appl Water Sci. 2017;7:3407-3445. DOI: 10.1007/s13201-016-0512-2.

[50] Yildiz S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.

[51] Zaini MAA, Alias N, Yunus MAC. Bio-polishing sludge adsorbents for dye removal. Polish J Chem Technol. 2016;18 4):15-21. DOI: 10.1515/pjct-2016-0065.

[52] Zaini MAA, Zakaria M, Setapar SHM, Yunus MAC. Sludge-adsorbents from palm oil mill effluent for methylene blue removal. J Environ Chem Eng. 2013;1:1091-1098. DOI: 10.1016/j.jece.2013.08.026.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information


IMPACT FACTOR 2018: 1,467
5-year IMPACT FACTOR: 1,226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 210 210 28
PDF Downloads 209 209 22