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APPLICATION OF ARTIFICIAL NEURAL NETWORKS
IN THE DIMENSIONING OF RETENTION RESERVOIRS

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH
W WYMIAROWANIU ZBIORNIKOW RETENCYJNYCH

Abstract: One of the essential needs for retention resesi®ito reduce the volume of wastewater flows imese
systems. Their main advantage is the potentialntwease retention in the system, which in turn ovaes
hydraulic safety by reducing the risk of node flsgdand the emergence of the phenomenon of "urbading".

The increasingly common use of retention reseryties observed changes in the climate and the ojgwvent of
dedicated software tools necessitate the updafitftgeanethods used to dimension retention resesv8io far, the
best known procedures in this regard involve th@ieation of analytical formulas and tools in thedhodynamic
modelling of current sewage systems. In each dasdasis for the retention facility design is thaleation of
rainfall in terms of the probability of occurrenemd duration that would result in a critical raineraflow

condition in the sewer system in order to defirergquired reservoir retention capacity. The pwpdghis paper
is to analyse of the feasibility of applying aifil neural networks in the preliminary estimatafrthe duration of
critical rainfalls. Such an application of theséwwrks is essential to the process of hydrodynamadelling of
the system and to determining the required retertapacity of the reservoir. The study used afi@ati neural

network model typically used as part of planninggasses, as well as the Statistica software suite.
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Introduction

The development of urbanised areas [1] and theectl&sealing” of green areas that
had previously been biologically active [2] resuftsan increase of wastewater volumetric
flow rate through the water drainage systems [3itefyuently negative effect of this is the
hydraulic overload of the sewer system, leadingvéstewater spillage and hence "urban
flooding".

The most effective method of adapting sewer systsoféering from hydraulic
overloads to the new hydraulic conditions is to lgppinwater retention at the various
stages of rainwater handling and disposal [4-7F Tétention scheme is facilitated by the
use of retention reservoirs, a technology thatvadla reduction of the wastewater volume
flow upstream of hydraulically overloaded sewertsgs components [8, 9]. However, the
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implementation of such solutions requires religmecedures to determine the necessary
retention capacity. The retention facility dimemsig methods developed so far are based
on the analysis of the hydrograph evolution of méte reservoir waste water inflow and
outflow [10-15]. A criterion for the production dfydrographs in hydrodynamic simulation
programs [12, 16] is to adopt a reliable and adeurainfall that has a defined probability
of occurrence within a critical duration.

The procedures for retention facility dimensioningst popular in Poland are based on
methods that involve the time-invariable charasta$ of rainfall, e.g. the Blaszczyk
model for rainfall [12, 17]. The model largely silifigs the rainfall and leads to
disturbance in the hydrological processes withia thinfall (sewer system) retention
reservoir system [18, 19]. A frequent consequerfcthig is the underestimation of the
required retention facility volume, which increagshs risk of wastewater overflow from
the sewer system, resulting in local flooding.

Investigations so far into the retention of rainevafl0, 20] have facilitated the
development of analytical methods that permit teeednining of the design parameters for
reliable rainfalls.

These studies helped to define the relation (it)dbgermines reliable rainfall duration,
TDM, for the dimensioning of high-capacity retentieservoirs [10]:

3

DM =| + : 0.6670K, - 1)
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where: Ky - characteristic parameter of the geographicahtion, catchment size and
sewage system reliability, determined from theti@ha(2) [nTs™™]; Ty - rainfall duration
for the sewage system [mir), - outflow from retention reservoir [ifs].

K4 = 663H %7 O3 [F,, (2)

where: H - height of normal annual rainfall [mm{ - frequency of precipitation [-];
F, - reduced catchment arjea].

The presented relations facilitate determinatiorthaf critical rainfall duration with
a time-invariable characteristic [21, 22]. As shobw preliminary simulation runs with
various distributions of rainfall in time, the nesary retention reservoir capacity [23]
varies with the rainfall distribution in time. Timariable rainfall distribution requires
higher necessary retention capacities at the saweds| of rainfall probability. This justifies
the use of time-variable rainfall distribution tesare the hydraulic safety of catchments.

Objective of the study

The objective of the study is to analyse the fahisibof applying artificial neural
networks as a tool to determine the time-variabiical rainfall duration for the process of
dimensioning the required retention capacity.

The study is based on a synthetic rainfall, theetofistribution of which is expressed
by the equation:

Ryy = af? 3

The characteristics of the rainfall is expressedhgyquadratic function (3) with one
decimal place in the coordinates (0.0). Accordingtltie assumptions, the precipitation
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begins with the rainfall height, = 0, which increases in timein the quadratic function
across the entire the rainfall duratign(Fig. 1).

|

o (top)

Rainfall height [mm]

l L 8 t,,,, Time [min]

Fig. 1. Characteristics of precipitation for thestdbution of C4 4, - time of rainfall, hotos,2) - the
amount of rainfall in timetg ; )

This rainfall distribution satisfies the conditioaspressed by the relations (4) and (5):
ty <t; <ty <ty 4)

Mooy < Mor) < hoe2) < Nogtop) )

The rainfall heighh, at the defined probability of occurrengat any point in time is
expressed by the relation:

3

e 12 (6)
0p
The relation is the result of the equation (7), fSwution of which facilitated the

determination of the parameter of the function (3). The solution of the equatitn
expressed by the formula (8):

oy =

ja[ﬂzdt =2
2 (7)

j alf’dt=h,,
0
SI]jmax

(8)
ty,

a=

Methodology and case study

The investigations were based on a model of atietereservoir connected to a sewer
system, where the model features defined the teahparameters, such as: the required
retention reservoir capacity,, the maximum design accumulator fill levél of
wastewater, and the retention reservoir plan saréaea);.
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The retention reservoir arda and its maximum design fill levél need to be chosen
according to the actual local conditions. The regfliretention reservoir capacity,
includes the hydraulic parameters of the catchraadtof the sewer system, as well as the
critical rainfall parameters.

Based on the developed qualitative characteristiche model parameters [24], the
parameters can be investigated as independenbiemiaAll input variables (independent
parameters) of the analysis, the output value (u#pe variable) and the constants are
shown in Figure 2, and fully represent the contexteal problem.

Input parameters for the model
- independent variables
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- dependent variable

The necessary retention capacity of the tank V,,

Fig. 2. Test object qualitative model

Table 1 presents the input parameter values ofntbdel as applied in the study.
The parameten, was implemented due to the variety of possiblelraent shapes and the
required unification thereof.he parameter value is the ratio of the short catnit side to
the long catchment side.

Table 1
Test object characteristic values
Designation Minimum | Maximum
@) Rainfall Tested parameter
Fax Catchment reduced area [ha] 0 50
ps Runoff belt width [m] 200 4000
I Sewer length [m] 100 2000
B Flow reduction coefficient of sewage 0.1 0.9
Ny Catchment shape 1 8
Yor Sewer downgrade [%o] 1 10
%, Catchment downgrade [%o] 1 10

The qualitative model also identified constant ealu.e h/D (sewer wastewater fill to
sewer diameter ratio) and the maximum design difel of the retention reservoir, all of
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which affect the retention facility volume. The sawfill level was determined at the
preliminary assumption stage to have a ratio ofvthstewater volumetric flow@ to total
volumetric flowQ. approximating to 1.

The tests at this stage were to ensure a sufficiamber of sewer system models,
characterised by various hydraulic parameters ef gistem and/or of the catchment,
followed by loading the models with the assumedfedii characteristics.

The first phase of the study was to establish tipaiti data for the model, which were
modified as the analysis progressed to representatious catchment configurations.

The following parameters were modified as desighaihg the study:

e The wastewater flow reduction factgr determined from the maximum wastewater
inflow of the reservoir and the wastewater outflow.

e The catchment shap®g, which represents the ratio of sides of the teswdhment,
when approximated to a rectangular form.

» The sewer downgrad¥,, which represents the differential height betwten sewer
bottom start and end levels.

* The catchment reduced arEg, which is the plan surface area of the catchmetit w
the surface run-off coefficient effect, depends faators like the basin downgrade

%, and the catchment usage.

» The sewer length, representative of the sewer system length froenstart node to
the cross-section at which the retention reseiigdocated.

e The run-off belt widthsps, which is the length over which the wastewatetelsased
into the sewer system.

The parameters may have very different values, miipg on the actual local
conditions. Hence the preparation of a finite numbd sewer system models
(i.e. the complete design) to represent every ptesstase is overly complicated and
irrational. This is due to the extremely high numbg&input parameters that characterise
the sewer system, and the high number of possiienpeter values. As a consequence, the
number of sewer system models, and their hydrapdi@meter values required for the
analysis, was determined on the basis of desigxpériment theory.

One of the conditions that prevent applicationhaf tlesign of experiment theory is the
interdependencies present between the input pagesndihe developed sewage system and
catchment model features certain parameters thatirein a close relationship. This
applies to the following independent variables:

e catchment reduced arég,
» sewer length,
e runoff belt widthsps.

The run-off belt widthsps is closely related to the sewer lendth The SWMM
guidelines [25, 26] indicate that it is possibledetermine the run-off belt widtips as
double the design length of the sewer system. The catchment reduced FByeand the
sewer lengtHy also exhibit a similar relation. This is due t@ tbewers having high in
catchments with large areBg.

Hence it was decided to replace the parameters avitiovel synthetic substitute,
designated as 'catchment lodd,, The dimension of this parameter is a physicalmitage
that defines the surface area per each kilometsewhge system length.

The new parameter, catchment ldaglresulted in a change to the test object model, as
shown in Figure 3.
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Input parameters for the model
- independent variables
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Fig. 3. Updated test object model

The values of catchment lo&}, catchment shape, and sewer downgradé, were
determined directly based on design of experimeaobrty. The sewer length values and
the run-off belt width valuesps were determined indirectly by applying the equagi¢9)
and (10):

o,=Fz ©)

sps= 2, (20)

Based on the plan construction guidelines from m&ka[24] and the essential
understanding of sewer systems, limit values we@ied to the analysed parameters as
shown in Table 2.

Table 2
Minimum and maximum values of the model input pagters
Parameter Parameter minimum | Parameter maximum
Catchment shapg [-] 1 7
Sewer downgrad#, [%o] 2 8
Catchment loa®, [ha/km] 5 30

The adopted values allowed compliance with theuation feasibility criterion and
the effectiveness criterion, which permit a majeduction of the number of necessary
simulations.

The systems and number of investigated catchmewtsewer networks were defined
using theSatistica software suite. The test assumed a three-factaratecomposition
design with double iteration at the central poi8][

The applied method allowed the determination of tdsted parameter values in the
form of coded values from the formula (11) [2, 26].
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%= 2[(1[()(i Xi) (11)
(Xi,min X% max)

where: X; - coded value [-],a - design star arm; ther in the design is 1.7 [],
X - subsequent variable actual value ki, - minimum value of the determined actual
variable [-],% max - Maximum value of the determined actual varig4lex, - mean value of
the determined actual variable [-].

The calculation results both produced by and fogrtime design of the experiment
represented by the coded values are shown in Bable

Table 3
Design of the experiment with coded values foragatcthment and sewer system hydraulic parameters
System Catchment Sewer downgrade Catchment
number shapeny Yor load O,
x1 X2 x3
1 -1.0 -1.0 1.0
2 -1.7 0.0 0.0
3 0.0 0.0 -1.7
4 -1.0 -1.0 -1.0
5 1.7 0.0 0.0
6 0.0 0.0 1.7
7c 0.0 0.0 0.0
8 0.0 -1.7 0.0
9 1.0 1.0 1.0
10 1.0 1.0 -1.0
11c 0.0 0.0 0.0
12 1.0 -1.0 -1.0
13 1.0 -1.0 1.0
14 -1.0 1.0 1.0
15 -1.0 1.0 -1.0
16 0.0 1.7 0.0

Table 3 shows the coded values of the hydrauliarpaters for the catchment and for
the sewage network, namely and respectively: 0+%17.

The coded values were converted into the actualegalvith the equation (12) and the
conversion results are shown in Table 4 as theabhdsign of the experiment.

X=X LK %) 1212, (12)

The developed design forms sixteen catchment sgstiafined as a set of hydraulic
parameters that determine the configuration okthdied sewer system.

The last stage of the study, focused on the edtimaf the critical rainfall duration for
a catchment characterised by the defined hydrpaliameter values, was completed using
the artificial neural network wizard in tfgatistica software suite.
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Table 4
The design of the experiment with the actual vabfdsydraulic parameters of the catchment and ¢ines
system
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1 2 3 25 201 401 802 1404 2005
2 1 5 18 286 571 1143 2000 2857
3 4 5 5 1000 2000 400( 7000 10000
4 2 3 10 497 993 1987 3477 4947
5 7 5 18 286 571 1143 2000 2857
6 4 5 30 167 333 667 1167 1667
7c 4 5 18 286 571 1143 2000 2857
8 4 2 18 286 571 1143 2000 2857
9 6 7 25 201 401 802 1404 2006
10 6 7 10 497 993 1987 347\ 497
lic| 4 5 18 286 571 1143 2000 2837
12 6 3 10 497 993 1987 347\ 497
13 6 3 25 201 401 802 1404 2005
14 2 7 25 201 401 802 1404 2005
15 2 7 10 497 993 1987 347\ 4947
16 4 8 18 286 571 1143 200p 28§57

Test results and discussion

The aim of the tests was to develop a method ftardening reliable rainfall duration
with time-variable distribution using sixteen catwnt systems at various values of
wastewater flow reduction factor. The results fodnaedataset of 1350 cases. The results
were derived from the simulations of reliable ralhfiuration applied in the dimensioning
of retention reservoirs within the rainwater sevegstems. The simulation runs were
completed using the SWMM 5.0 hydrodynamic modellsaftware package, and the
results are shown in Figure 4.

The aim of the tests was to develop a method ftardening reliable rainfall duration
with time-variable distribution using sixteen catdnt systems at various values of
wastewater flow reduction factor. The results falngedataset of 1350 cases. The results
were derived from the simulations of reliable ralhfiuration applied in the dimensioning
of retention reservoirs within the rainwater sevegstems. The simulation runs were
completed using the SWMM 5.0 hydrodynamic modellsaftware package, and the
results are shown in Figure 4.

The test results were divided into five groups delieg on the wastewater flow
reduction factop value.
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Fig. 4. Results of the rainfall duration test fetemtion reservoir dimensioning

Further investigations included the applicationadfificial neural networks [27-29].
A sufficiently large representative dataset wasessary to determine the expected
dependent variable value.

The artificial neural network was generatedatistica. The output data were input
into the software and then the software artificialral network wizard was used to define
the settings for the division of the collected data the following groups:

* Testdata-70 % of the total,
e Teaching data - 15 % of the total,
« Validation data - 15 % of the total.

The neural network wizard selected the 25 bestahengtwork matches, which were
subject to further selection to single out the rekwith the lowest error value and the
highest match rating.

The neural network model (ANN) proposed for thedption of results was an MLP
(Multi-Layered Perceptron) with 6-8-1 architectuféhe network chosen had the lowest
teaching, testing and validation error rates ofthé neural networks proposed by the
software.

The proposed MLP network, the architecture of whikhown in Figure 5, features
six neurons in the input layer, eight neurons ie tidden layer and one neuron in the
output layer.

The operating concept of the developed neural métweas to have each neuron
calculate the weighted mean of the input valueenTthe result of the operation was
multiplied by a function of transition and passedte output. The activation functions for
the hidden and output layers are the hyperboligaats (tanh), while the function of error
was determined with the SOS (sum of square) method.

The generated simulation results and the neuralarktoutputs allow the conclusion
that the presented model achieves a high accufdgy.is shown in Figure 6, which lists
the expected values as rainfall duratiddM from the computer simulation runs and the
values from the developed artificial neural networtdel.
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Fig. 6. Analysis of the linear regression betwdenexperimental data and the ANN model output data

The Pearson correlation factorcalculated for the results is 0.955. The detertiona
factor R is 0.913, which gives a very good linear dependeretween the expected and
modelled values, according to the Stanisz's scale.

The developed neural network model was applietiéncheck calculations for selected
catchments in the city of Przemysl, Poland. Thragig catchments with sewers were
chosen with the design parameters listed in Table 5
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Table 5
Design parameters of control sewer systems

«
c A T ®
€5 € o g0 e <
584 | 58 §8 | 32¢
<2 %G e "3
0P @) @) 3
[ha] - [ha/km] [%o]
Catchment One 6.42 5 3.4 2.83
Catchment Two 22.82 14 5.88 3
Catchment Threg 37.85 12.5 9.4 4.2

The design parameters of the selected catchmedtseaver systems are characterised
by values that differ from the parameters appliedbtiild the artificial neural network
model.

Each of the presented catchments were simulatéteiSWMM software package to
facilitate the determination of the required reitmmtreservoir capacity/,. The analyses
were carried out for the wastewater flow reductiactor 5 values of 0.2, 0.35, 0.55, and
0.8, as well as the sewer system to volumetricciira ratios of rainfall frequency of
0.2 and 0.4. The results are shown in Figure 7.

The accuracy check analysis of the test resultsodstrated that the expected values
of the reliable rainfall duration for the necessegtention reservoir capacity largely reflect
the values produced from the neural networks. Maggoa linear regression equation,
expressed by the relation (13), was establishethéotest results. The Pearson correlation
for the equation is 0.84 witR? = 0.7057.

y=06[x+47 (13)
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Fig. 7. Analytical results for the expected andiakttainfall duration for the control data

Figure 8 shows the values of the necessary reteméiservoir capacity, produced
from the simulations in the SWMM hydrodynamic mdithgj suite.
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Fig. 8. Analytical results for the expected anduakvalues of the required retention reservoir capa/,
for the control data

The expected values of the required retention vegercapacity largely reflect the
values produced by loading the catchment with #iefall duration determined using the
artificial neural networks. Moreover, a linear reggion equation, expressed by the relation
(14), was established for the results.

y = 098[x+15 (24)

The Pearson correlationwas 0.99904 an& = 0.998081 for the required retention
reservoir capacity data. The values are indicaifv@ very good linear dependence between
the expected and modelled values. The investigatism included a test for the difference
between the actual required retention reservoiaciapV, results and the results defined
for reliable rainfall duration, established withetlartificial neural networks. A retention
capacity underestimation of 12 % was calculatedtferworst case scenario.

To conclude, the application of neural networkghie determination of reliable rainfall
durationTDM facilitates the production of extremely satisfagtesults.

Summary and final conclusions

The availability of mathematical apparatus that ity the development and
distribution of hydrodynamic modelling software ifdates the use of more reliable rainfall
data in the process of required retention resediaiensioning.

The investigations have confirmed that artificiglural networks are the best tool to
define the critical rainfall duration. The resuttstained with ANN can be applied in the
simplified method for direct estimation of the adlie rainfall duration or, when precision
methods are applied, to reduce the necessaryidesatquired to obtain the exact result.
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The completed investigation, coupled with an inttegnalysis of the results for this

research, allows the conclusion that the relialdmfall duration TDM for retention
reservoirs is best obtained by iteration of an i@gm based on an MLP 6-8-1 artificial
neural network.
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