Application of Artificial Neural Networks in the Dimensioning of Retention Reservoirs

Open access

Abstract

One of the essential needs for retention reservoirs is to reduce the volume of wastewater flows in sewer systems. Their main advantage is the potential to increase retention in the system, which in turn improves hydraulic safety by reducing the risk of node flooding and the emergence of the phenomenon of “urban flooding”. The increasingly common use of retention reservoirs, the observed changes in the climate and the development of dedicated software tools necessitate the updating of the methods used to dimension retention reservoirs. So far, the best known procedures in this regard involve the application of analytical formulas and tools in the hydrodynamic modelling of current sewage systems. In each case the basis for the retention facility design is the evaluation of rainfall in terms of the probability of occurrence and duration that would result in a critical rainwater flow condition in the sewer system in order to define the required reservoir retention capacity. The purpose of this paper is to analyse of the feasibility of applying artificial neural networks in the preliminary estimation of the duration of critical rainfalls. Such an application of these networks is essential to the process of hydrodynamic modelling of the system and to determining the required retention capacity of the reservoir. The study used an artificial neural network model typically used as part of planning processes, as well as the Statistica software suite.

[1] Cutter S, Emrich C, Gall M, Reeves R. Natural Hazards Rev. 2018;19(1):5017005. DOI: 10.1061/(ASCE)NH.1527-6996.0000268.

[2] Ellis JB. J Environ Planning Manage. 2013;56(1):24-41. DOI: 10.1080/09640568.2011.648752.

[3] Kordana S. E3S Web Conf. 2018;45:00033. DOI: 10.1051/e3sconf/20184500033.

[4] Calabrὸ PS, Viviani G. Water Res. 2006;40:83-90. DOI: 10.1016/j.watres.2005.10.025.

[5] Pochwat K, Iličić K. E3S Web Conf. 2018;45:00065, DOI: 10.1051/e3sconf/20184500065.

[6] Mazurkiewicz K, Skotnicki M, Cimochowicz-Rybicka M. E3S Web Conf. 2018:30;01018. DOI: 10.1051/e3sconf/20183001018.

[7] Davydova Y, Volkova Y, Nikonorov A, Aleksandrovskiy M. MATEC Web Conf. 2018;170:02025. DOI: 10.1051/matecconf/201817002025.

[8] Douglas NI. Water Sci Technol. 1995;32(1):85-91. DOI: 10.1016/0273-1223(95)00542-U.

[9] Starzec M. E3S Web Conf. 2018;45:00087, DOI: 10.1051/e3sconf/20184500087.

[10] Fonseca CR, Hidalgo V, Díaz-Delgado C, Vilchis-Francés AY, Gallego I. J Cleaner Prod. 2017;145:323-335. DOI: 10.1016/j.jclepro.2017.01.057.

[11] Ziembowicz S, Kida M, Koszelnik P. Sep Purif Technol. 2018;204:149-153. DOI: 10.1016/j.seppur.2018.04.073.

[12] Wołoszyn E. Atmos Res. 1991;27(1-3):219-229. DOI: 10.1016/0169-8095(91)90021-N.

[13] Yao-Ming Hong. J Hydro-Envir Res. 2008;2:109-117. DOI: 0.1016/j.jher.2008.06.003.

[14] Ziembowicz S, Kida M, Koszelnik P. Desalin Water Treat. 2018;117:9-14. DOI: 10.5004/dwt.2018.21961.

[15] Wałęga A, Kaczor G, Stęplewski B. Pol J Environ Stud. 2016;5:2139-2149. DOI: 10.15244/pjoes/62961.

[16] Andrieu H, Fletcher TD, Hamel P. Adv Water Resour. 2013;5:261-279. DOI: 10.1016/j.advwatres.2012.09.001.

[17] Mei C, Liu J, Wang H, Shao W, Xia L, Xiang C, et al. Proc IAHS. 2018;379:223-229. DOI: 10.5194/piahs-379-223-2018.

[18] Zeleňáková M, Markovič G, Kaposztásová D, Vranayová Z. Procedia Eng. 2014;89:1515-1521. DOI: 10.1016/j.proeng.2014.11.442.

[19] Drake J, Young D, McIntosh N. Water. 2016;8(5):211. DOI: 10.3390/w8050211.

[20] Wang M, Sun Y, Sweetapple C. J Environ Manage. 2017;204:31-38. DOI: 10.1016/j.jenvman.2017.08.024.

[21] Elsebaie IH. Journal of King Saud University: Engineering Sciences. 2012;24(2):131-140. DOI:10.1016/j.jksues.2011.06.001.

[22] Sivapalan M, Blöschl G. J Hydrol. 1998;204(1):150-167. DOI: 10.1016/S0022-1694(97)00117-0.

[23] Berne A, Delrieu G, Creutin JD, Obled C. J Hydrol. 2004;299:166-179. DOI:10.1016/j.jhydrol.2 004.08.002.

[24] Weissman S, Anderson N. Org Process Res Dev. 2014;19(11):1605-1633. DOI: 10.1021/op500169m.

[25] Gironás J, Roesner LA, Rossman LA, Davis J. Environ Modelling Software. 2010;25(6):813-814. DOI: 10.1016/j.envsoft.2009.11.009.

[26] Costa N, Pires A, Ribeiro C. TQM Magazine. 2006;18(4):386-399 DOI: 10.1108/09544780610671057.

[27] Elmeligy A, Mehrani P, Thibault J. Appl Sci. 2018;8(6):961. DOI: 10.3390/app8060961.

[28] Pochwat K. E3S Web Conf. 2018;45:00066. DOI: 10.1051/e3sconf/20184500066.

[29] Elsafi SH. Alexandria Eng J. 2014;53(3):655-662. DOI: 10.1016/j.aej.2014.06.010.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information


IMPACT FACTOR 2017: 0.7
5-year IMPACT FACTOR: 0.815

CiteScore 2017: 0.79

SCImago Journal Rank (SJR) 2017: 0.227
Source Normalized Impact per Paper (SNIP) 2017: 0.535

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 84 84 20
PDF Downloads 82 82 17