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APPLICATION OF ARTIFICIAL NEURAL NETWORKS  
IN THE DIMENSIONING OF RETENTION RESERVOIRS  

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH 
W WYMIAROWANIU ZBIORNIKÓW RETENCYJNYCH  

Abstract:  One of the essential needs for retention reservoirs is to reduce the volume of wastewater flows in sewer 
systems. Their main advantage is the potential to increase retention in the system, which in turn improves 
hydraulic safety by reducing the risk of node flooding and the emergence of the phenomenon of "urban flooding". 
The increasingly common use of retention reservoirs, the observed changes in the climate and the development of 
dedicated software tools necessitate the updating of the methods used to dimension retention reservoirs. So far, the 
best known procedures in this regard involve the application of analytical formulas and tools in the hydrodynamic 
modelling of current sewage systems. In each case the basis for the retention facility design is the evaluation of 
rainfall in terms of the probability of occurrence and duration that would result in a critical rainwater flow 
condition in the sewer system in order to define the required reservoir retention capacity. The purpose of this paper 
is to analyse of the feasibility of applying artificial neural networks in the preliminary estimation of the duration of 
critical rainfalls. Such an application of these networks is essential to the process of hydrodynamic modelling of 
the system and to determining the required retention capacity of the reservoir. The study used an artificial neural 
network model typically used as part of planning processes, as well as the Statistica software suite. 
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Introduction 

The development of urbanised areas [1] and the related "sealing" of green areas that 
had previously been biologically active [2] results in an increase of wastewater volumetric 
flow rate through the water drainage systems [3]. A frequently negative effect of this is the 
hydraulic overload of the sewer system, leading to wastewater spillage and hence "urban 
flooding". 

The most effective method of adapting sewer systems suffering from hydraulic 
overloads to the new hydraulic conditions is to apply rainwater retention at the various 
stages of rainwater handling and disposal [4-7]. The retention scheme is facilitated by the 
use of retention reservoirs, a technology that allows a reduction of the wastewater volume 
flow upstream of hydraulically overloaded sewer system components [8, 9]. However, the 
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implementation of such solutions requires reliable procedures to determine the necessary 
retention capacity. The retention facility dimensioning methods developed so far are based 
on the analysis of the hydrograph evolution of retention reservoir waste water inflow and 
outflow [10-15]. A criterion for the production of hydrographs in hydrodynamic simulation 
programs [12, 16] is to adopt a reliable and accurate rainfall that has a defined probability 
of occurrence within a critical duration.  

The procedures for retention facility dimensioning most popular in Poland are based on 
methods that involve the time-invariable characteristics of rainfall, e.g. the Blaszczyk 
model for rainfall [12, 17]. The model largely simplifies the rainfall and leads to 
disturbance in the hydrological processes within the rainfall (sewer system) retention 
reservoir system [18, 19]. A frequent consequence of this is the underestimation of the 
required retention facility volume, which increases the risk of wastewater overflow from 
the sewer system, resulting in local flooding.  

Investigations so far into the retention of rainwater [10, 20] have facilitated the 
development of analytical methods that permit the determining of the design parameters for 
reliable rainfalls. 

These studies helped to define the relation (1) that determines reliable rainfall duration, 
TDM, for the dimensioning of high-capacity retention reservoirs [10]: 
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where: Kd - characteristic parameter of the geographical location, catchment size and 
sewage system reliability, determined from the relation (2) [m3s1–n]; Td - rainfall duration 
for the sewage system [min]; Qo - outflow from retention reservoir [m3/s]. 

 zrd FcHK ⋅⋅⋅= 33.067.063.6  (2) 

where: H - height of normal annual rainfall [mm]; c - frequency of precipitation [-];  
Fzr - reduced catchment area [ha]. 

The presented relations facilitate determination of the critical rainfall duration with  
a time-invariable characteristic [21, 22]. As shown by preliminary simulation runs with 
various distributions of rainfall in time, the necessary retention reservoir capacity Vu [23] 
varies with the rainfall distribution in time. Time-variable rainfall distribution requires 
higher necessary retention capacities at the same levels of rainfall probability. This justifies 
the use of time-variable rainfall distribution to assure the hydraulic safety of catchments. 

Objective of the study 

The objective of the study is to analyse the feasibility of applying artificial neural 
networks as a tool to determine the time-variable critical rainfall duration for the process of 
dimensioning the required retention capacity. 

The study is based on a synthetic rainfall, the time distribution of which is expressed 
by the equation: 

 2
)( tah to ⋅=  (3) 

The characteristics of the rainfall is expressed by the quadratic function (3) with one 
decimal place in the coordinates (0.0). According to the assumptions, the precipitation 
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begins with the rainfall height ho = 0, which increases in time t in the quadratic function 
across the entire the rainfall duration top (Fig. 1).  

 

 

Fig. 1. Characteristics of precipitation for the distribution of C4 (t0,1,2 - time of rainfall, ho(t0,1,2) - the 
amount of rainfall in time, t0,1,2) 

This rainfall distribution satisfies the conditions expressed by the relations (4) and (5): 

 optttt <<< 210  (4) 

 )()2()1()0( topotototo hhhh <<<  (5) 

The rainfall height ho at the defined probability of occurrence p at any point in time t is 
expressed by the relation: 
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The relation is the result of the equation (7), the solution of which facilitated the 
determination of the parameter a of the function (3). The solution of the equation is 
expressed by the formula (8): 
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Methodology and case study 

The investigations were based on a model of a retention reservoir connected to a sewer 
system, where the model features defined the technical parameters, such as: the required 
retention reservoir capacity Vu, the maximum design accumulator fill level hs of 
wastewater, and the retention reservoir plan surface area A1. 
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The retention reservoir area A1 and its maximum design fill level hs need to be chosen 
according to the actual local conditions. The required retention reservoir capacity Vu 
includes the hydraulic parameters of the catchment and of the sewer system, as well as the 
critical rainfall parameters. 

Based on the developed qualitative characteristics of the model parameters [24], the 
parameters can be investigated as independent variables. All input variables (independent 
parameters) of the analysis, the output value (dependent variable) and the constants are 
shown in Figure 2, and fully represent the contemplated problem. 

 

 
Fig. 2. Test object qualitative model 

Table 1 presents the input parameter values of the model as applied in the study.  
The parameter nx was implemented due to the variety of possible catchment shapes and the 
required unification thereof. The parameter value is the ratio of the short catchment side to 
the long catchment side. 

 
Table 1 

Test object characteristic values 

Designation  Minimum Maximum 
O Rainfall Tested parameter 
Fzr Catchment reduced area [ha] 0 50 
sps Runoff belt width [m] 200 4000 
lk Sewer length [m] 100 2000 
β Flow reduction coefficient of sewage 0.1 0.9 
nx Catchment shape 1 8 
%k Sewer downgrade [‰] 1 10 
%z Catchment downgrade [‰] 1 10 

 
The qualitative model also identified constant values, i.e. hk/D (sewer wastewater fill to 

sewer diameter ratio) and the maximum design fill level of the retention reservoir, all of 
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which affect the retention facility volume. The sewer fill level was determined at the 
preliminary assumption stage to have a ratio of the wastewater volumetric flow Q to total 
volumetric flow Qc approximating to 1. 

The tests at this stage were to ensure a sufficient number of sewer system models, 
characterised by various hydraulic parameters of the system and/or of the catchment, 
followed by loading the models with the assumed rainfall characteristics. 

The first phase of the study was to establish the input data for the model, which were 
modified as the analysis progressed to represent the various catchment configurations. 

The following parameters were modified as designed during the study: 
• The wastewater flow reduction factor β, determined from the maximum wastewater 

inflow of the reservoir and the wastewater outflow. 
• The catchment shape nx, which represents the ratio of sides of the tested catchment, 

when approximated to a rectangular form. 
• The sewer downgrade %k, which represents the differential height between the sewer 

bottom start and end levels. 
• The catchment reduced area Fzr, which is the plan surface area of the catchment with 

the surface run-off coefficient effect, depends on factors like the basin downgrade  
%z and the catchment usage. 

• The sewer length lk, representative of the sewer system length from the start node to 
the cross-section at which the retention reservoir is located. 

• The run-off belt width sps, which is the length over which the wastewater is released 
into the sewer system. 
The parameters may have very different values, depending on the actual local 

conditions. Hence the preparation of a finite number of sewer system models  
(i.e. the complete design) to represent every possible case is overly complicated and 
irrational. This is due to the extremely high number of input parameters that characterise 
the sewer system, and the high number of possible parameter values. As a consequence, the 
number of sewer system models, and their hydraulic parameter values required for the 
analysis, was determined on the basis of design of experiment theory.  

One of the conditions that prevent application of the design of experiment theory is the 
interdependencies present between the input parameters. The developed sewage system and 
catchment model features certain parameters that remain in a close relationship. This 
applies to the following independent variables: 
• catchment reduced area Fzr, 
• sewer length lk, 
• runoff belt width sps. 

The run-off belt width sps is closely related to the sewer length lk. The SWMM 
guidelines [25, 26] indicate that it is possible to determine the run-off belt width sps as 
double the design length lk of the sewer system. The catchment reduced area Fzr and the 
sewer length lk also exhibit a similar relation. This is due to the sewers having high lk in 
catchments with large areas Fzr.  

Hence it was decided to replace the parameters with a novel synthetic substitute, 
designated as 'catchment load', Oz. The dimension of this parameter is a physical magnitude 
that defines the surface area per each kilometre of sewage system length. 

The new parameter, catchment load Oz, resulted in a change to the test object model, as 
shown in Figure 3. 
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Fig. 3. Updated test object model 

The values of catchment load Oz, catchment shape nx and sewer downgrade %k were 
determined directly based on design of experiment theory. The sewer length lk values and 
the run-off belt width values sps were determined indirectly by applying the equations (9) 
and (10): 

 
k

zr
z l

F
O =  (9) 

 klsps ⋅= 2  (10) 

Based on the plan construction guidelines from Polanski [24] and the essential 
understanding of sewer systems, limit values were applied to the analysed parameters as 
shown in Table 2. 

 
Table 2 

Minimum and maximum values of the model input parameters 

Parameter Parameter minimum Parameter maximum 
Catchment shape nx [-] 1 7 

Sewer downgrade %k [‰] 2 8 
Catchment load Oz [ha/km] 5 30 

 
The adopted values allowed compliance with the calculation feasibility criterion and 

the effectiveness criterion, which permit a major reduction of the number of necessary 
simulations.  

The systems and number of investigated catchments and sewer networks were defined 
using the Statistica software suite. The test assumed a three-factor central composition 
design with double iteration at the central point [26]. 

The applied method allowed the determination of the tested parameter values in the 
form of coded values from the formula (11) [2, 26].  
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where: ��� - coded value [-], α - design star arm; the α  in the design is 1.7 [-],  
xi - subsequent variable actual value [-], xi,min - minimum value of the determined actual 
variable [-], xi,max - maximum value of the determined actual variable [-], ���  - mean value of 
the determined actual variable [-]. 

The calculation results both produced by and forming the design of the experiment 
represented by the coded values are shown in Table 3. 

 
Table 3 

Design of the experiment with coded values for the catchment and sewer system hydraulic parameters 

System 
number 

Catchment 
shape nx 

Sewer downgrade 
%k 

Catchment 
load Oz 

 x1 x2 x3 
1 –1.0 –1.0 1.0 
2 –1.7 0.0 0.0 
3 0.0 0.0 –1.7 
4 –1.0 –1.0 –1.0 
5 1.7 0.0 0.0 
6 0.0 0.0 1.7 
7c 0.0 0.0 0.0 
8 0.0 –1.7 0.0 
9 1.0 1.0 1.0 
10 1.0 1.0 –1.0 
11c 0.0 0.0 0.0 
12 1.0 –1.0 –1.0 
13 1.0 –1.0 1.0 
14 –1.0 1.0 1.0 
15 –1.0 1.0 –1.0 
16 0.0 1.7 0.0 

 
Table 3 shows the coded values of the hydraulic parameters for the catchment and for 

the sewage network, namely and respectively: 0, ±1, ±1.7. 
The coded values were converted into the actual values with the equation (12) and the 

conversion results are shown in Table 4 as the actual design of the experiment. 

 ( ),max

ˆ
, 1,2,...i

i i i i

x
x x x x i

α
= + ⋅ − =   (12) 

The developed design forms sixteen catchment systems defined as a set of hydraulic 
parameters that determine the configuration of the studied sewer system. 

The last stage of the study, focused on the estimation of the critical rainfall duration for 
a catchment characterised by the defined hydraulic parameter values, was completed using 
the artificial neural network wizard in the Statistica software suite. 
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Table 4 
The design of the experiment with the actual values of hydraulic parameters of the catchment and the sewer 

system 
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 [-] [‰] [ha/km] [m] [m] [m] [m] [m] 
1 2 3 25 201 401 802 1404 2005 
2 1 5 18 286 571 1143 2000 2857 
3 4 5 5 1000 2000 4000 7000 10000 
4 2 3 10 497 993 1987 3477 4967 
5 7 5 18 286 571 1143 2000 2857 
6 4 5 30 167 333 667 1167 1667 
7c 4 5 18 286 571 1143 2000 2857 
8 4 2 18 286 571 1143 2000 2857 
9 6 7 25 201 401 802 1404 2005 
10 6 7 10 497 993 1987 3477 4967 
11c 4 5 18 286 571 1143 2000 2857 
12 6 3 10 497 993 1987 3477 4967 
13 6 3 25 201 401 802 1404 2005 
14 2 7 25 201 401 802 1404 2005 
15 2 7 10 497 993 1987 3477 4967 
16 4 8 18 286 571 1143 2000 2857 

Test results and discussion 

The aim of the tests was to develop a method for determining reliable rainfall duration 
with time-variable distribution using sixteen catchment systems at various values of 
wastewater flow reduction factor. The results formed a dataset of 1350 cases. The results 
were derived from the simulations of reliable rainfall duration applied in the dimensioning 
of retention reservoirs within the rainwater sewer systems. The simulation runs were 
completed using the SWMM 5.0 hydrodynamic modelling software package, and the 
results are shown in Figure 4. 

The aim of the tests was to develop a method for determining reliable rainfall duration 
with time-variable distribution using sixteen catchment systems at various values of 
wastewater flow reduction factor. The results formed a dataset of 1350 cases. The results 
were derived from the simulations of reliable rainfall duration applied in the dimensioning 
of retention reservoirs within the rainwater sewer systems. The simulation runs were 
completed using the SWMM 5.0 hydrodynamic modelling software package, and the 
results are shown in Figure 4. 

The test results were divided into five groups depending on the wastewater flow 
reduction factor β value.  
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Fig. 4. Results of the rainfall duration test for retention reservoir dimensioning 

Further investigations included the application of artificial neural networks [27-29].  
A sufficiently large representative dataset was necessary to determine the expected 
dependent variable value.  

The artificial neural network was generated in Statistica. The output data were input 
into the software and then the software artificial neural network wizard was used to define 
the settings for the division of the collected data into the following groups: 
• Test data - 70  % of the total, 
• Teaching data - 15 % of the total, 
• Validation data - 15 % of the total. 

The neural network wizard selected the 25 best neural network matches, which were 
subject to further selection to single out the network with the lowest error value and the 
highest match rating.  

The neural network model (ANN) proposed for the prediction of results was an MLP 
(Multi-Layered Perceptron) with 6-8-1 architecture. The network chosen had the lowest 
teaching, testing and validation error rates of all the neural networks proposed by the 
software.  

The proposed MLP network, the architecture of which is shown in Figure 5, features 
six neurons in the input layer, eight neurons in the hidden layer and one neuron in the 
output layer. 

The operating concept of the developed neural network was to have each neuron 
calculate the weighted mean of the input values. Then the result of the operation was 
multiplied by a function of transition and passed to the output. The activation functions for 
the hidden and output layers are the hyperbolic tangents (tanh), while the function of error 
was determined with the SOS (sum of square) method.  

The generated simulation results and the neural network outputs allow the conclusion 
that the presented model achieves a high accuracy. This is shown in Figure 6, which lists 
the expected values as rainfall duration TDM from the computer simulation runs and the 
values from the developed artificial neural network model. 
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Fig. 5. Diagram of the artificial neural network used in the determination of reliable rainfall duration, 

TDM 

 
Fig. 6. Analysis of the linear regression between the experimental data and the ANN model output data 

The Pearson correlation factor r calculated for the results is 0.955. The determination 
factor R2 is 0.913, which gives a very good linear dependence between the expected and 
modelled values, according to the Stanisz’s scale. 

The developed neural network model was applied in the check calculations for selected 
catchments in the city of Przemysl, Poland. Three partial catchments with sewers were 
chosen with the design parameters listed in Table 5. 
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Table 5 
Design parameters of control sewer systems 
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[ha] - [ha/km] [‰] 
Catchment One 6.42 5 3.4 2.83 
Catchment Two 22.82 14 5.88 3 
Catchment Three 37.85 12.5 9.4 4.2 

The design parameters of the selected catchments and sewer systems are characterised 
by values that differ from the parameters applied to build the artificial neural network 
model.  

Each of the presented catchments were simulated in the SWMM software package to 
facilitate the determination of the required retention reservoir capacity Vu. The analyses 
were carried out for the wastewater flow reduction factor β values of 0.2, 0.35, 0.55, and 
0.8, as well as the sewer system to volumetric structure ratios of rainfall frequency of  
0.2 and 0.4. The results are shown in Figure 7. 

The accuracy check analysis of the test results demonstrated that the expected values 
of the reliable rainfall duration for the necessary retention reservoir capacity largely reflect 
the values produced from the neural networks. Moreover, a linear regression equation, 
expressed by the relation (13), was established for the test results. The Pearson correlation r 
for the equation is 0.84 with R2 = 0.7057. 

 476.0 +⋅= xy  (13) 

 
Fig. 7. Analytical results for the expected and actual rainfall duration for the control data 

Figure 8 shows the values of the necessary retention reservoir capacity Vu produced 
from the simulations in the SWMM hydrodynamic modelling suite.  
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Fig. 8. Analytical results for the expected and actual values of the required retention reservoir capacity Vu 

for the control data 

The expected values of the required retention reservoir capacity largely reflect the 
values produced by loading the catchment with the rainfall duration determined using the 
artificial neural networks. Moreover, a linear regression equation, expressed by the relation 
(14), was established for the results. 

 1598.0 +⋅= xy  (14) 

The Pearson correlation r was 0.99904 and R2 = 0.998081 for the required retention 
reservoir capacity data. The values are indicative of a very good linear dependence between 
the expected and modelled values. The investigation also included a test for the difference 
between the actual required retention reservoir capacity Vu results and the results defined 
for reliable rainfall duration, established with the artificial neural networks. A retention 
capacity underestimation of 12 % was calculated for the worst case scenario. 

To conclude, the application of neural networks in the determination of reliable rainfall 
duration TDM facilitates the production of extremely satisfactory results.  

Summary and final conclusions 

The availability of mathematical apparatus that permits the development and 
distribution of hydrodynamic modelling software facilitates the use of more reliable rainfall 
data in the process of required retention reservoir dimensioning. 

The investigations have confirmed that artificial neural networks are the best tool to 
define the critical rainfall duration. The results obtained with ANN can be applied in the 
simplified method for direct estimation of the reliable rainfall duration or, when precision 
methods are applied, to reduce the necessary iterations required to obtain the exact result. 
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The completed investigation, coupled with an in-depth analysis of the results for this 
research, allows the conclusion that the reliable rainfall duration TDM for retention 
reservoirs is best obtained by iteration of an algorithm based on an MLP 6-8-1 artificial 
neural network. 
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