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ARTIFICIAL NEURAL NETWORK APPROACH  
FOR MODELING OF Ni(II) ADSORPTION  

FROM AQUEOUS SOLUTION BY PEANUT SHELL 

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH  
DO MODELOWANIA ADSORPCJI Ni(II) Z ROZTWORÓW WODNYCH 

PRZEZ SKORUPKI ORZECHÓW ARACHIDOWYCH 

Abstract:  In this study, ANN (artificial neural network) model was applied to estimate the Ni(II) removal 
efficiency of peanut shell based on batch adsorption tests. The effects of initial pH, metal concentrations, 
temperature, contact time and sorbent dosage were determined. Also, COD (chemical oxygen demand) was 
measured to evaluate the possible adverse effects of the sorbent during the tests performed with varying 
temperature, pH and sorbent dosage. COD was found as 96.21 mg/dm3 at pH 2 and 54.72 mg/dm3 at pH 7.  
Also, a significant increase in COD value was observed with increasing dosage of the used sorbent. COD was 
found as 12.48 mg/dm3 after use of 0.05 g sorbent and as 282.78 mg/dm3 after use of 1 g sorbent. During isotherm 
studies, the highest regression coefficient (R2) value was obtained with Freundlich isotherm (R2 = 0.97) for initial 
concentration and with Temkin isotherm for sorbent dosage. High pseudo-second order kinetic model regression 
constants were observed (R2 = 0.95-0.99) during kinetic studies with varying pH values. In addition, Ni(II) ion 
adsorption on peanut shell was further defined with pseudo-second order kinetic model, since qe values in the 
second order kinetic equation were very close to the experimental values.  The relation between the estimated 
results of the built ANN model and the experimental results were used to evaluate the success of ANN modeling. 
Consequently, experimental results of the study were found to be in good agreement with the estimated results of 
the model. 
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Introduction 

Ever-increasing world population and consequently increasing demands have led to 
increased industrial activities throughout the world. Heavy metals are the most common 
contaminants which are found in high concentrations in the content of industrial waste 
waters. Due to their detrimental physiological effects on living creatures [1], which arise 
from their indissoluble molecular structures, presence of these metals in aquatic 
environment and industrial waste sites poses an important environmental problem [2]. 
Removal of heavy metals is a worldwide environmental concern which has become 
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prevalent particularly in developing and industrialized countries [3]. Discharge of 
wastewater with nickel content has been applied at an increasing rate in various industrial 
applications such as mine processing, electro-plating, melting and battery production [4, 5].  

Nickel is among the most toxic materials found in environmental matrices [6].  
Its permissible concentration in drinking-water is limited to 0.01 mg/dm3 in WHO and EPA 
guidelines due to its detrimental effects on human health [7]. Values higher than the critical 
level are reported to be highly toxic and carcinogenic. Such nickel levels are likely to cause 
lung and kidney related issues, gastrointestinal problems, and other health issues such as 
headache and dermatitis [8, 9]. 

As a non-biodegradable heavy metal, nickel exhibits high levels of toxicity in 
wastewater, which renders its removal from aqueous environment and the development of 
environment-friendly methods for its recovery, highly important [10]. Various treatment 
techniques including chemical precipitation, coagulation-flocculation, flotation, membrane 
filtering, electrochemical treatment technologies, ion exchange, evaporation and adsorption 
have been used for removal of heavy metals from wastewater [11-13]. Most of these 
techniques are not sufficiently applicable due to their drawbacks such as high operational 
costs, high energy consumption and production of toxic sludge.  

In this context, adsorption method and psychochemical approach are proposed against 
this problem. Among these methods, adsorption is distinguished as one of the most 
efficient, cost-effective and adaptable methods for removal of heavy metals from aqueous 
solutions [14, 15]. Due to its ease of operation, lower costs [16] and lower amounts of 
resultant sludge [17], adsorption method is widely used as a traditional method for removal 
of heavy metals.  

Particular importance has been attached to the use of alternative cost-effective 
materials and definition of their heavy metal removal characteristics [18]. Removal of 
various heavy metals using different adsorbents have been extensively studied in recent 
years [19-21]. For removal of nickel from wastewater, several researches have been carried 
out on the potential of different adsorbents such as zeolit, bentonit [22], kaolinite clay [23], 
coal dust and magnetized sawdust [24], teak leaves powder [25], cashew nut shell [26], 
Lagenaria vulgaris shell [27], calcareous soils [28], plantain peels [29], chitosan [30], 
cherry kernels [7], clay [31] and henna [16].  

As one of the most popular alternative modeling techniques among evolutionary 
computing methods, artificial neural networks (ANN) approach, have been successfully 
applied to model non-linear relations involved in complex chemical processes such as 
adsorption [32, 33]. ANN methodology does not require an additional standard 
experimental design for building the model.  

In this research, an ANN model, developed with experimental data, was used to 
estimate the effect of temperature, sorbent dosage, initial nickel concentration and initial 
pH on the adsorbed quantities of nickel (qe). Sorption isotherms, kinetics and 
thermodynamics were also studied. Several organic-inorganic substances were used for 
heavy metal removal with adsorption-biosorption, and the resulting removal efficiencies 
were evaluated. Differently from previous adsorption studies, chemical oxygen demand 
(COD) analyses were also performed depending on initial pH, sorbent dosage and 
temperature change, in addition to ANN modeling to determine the possible adverse effects 
of the sorbent. 

Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), 
Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectrum and 
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atomic force microscopy (AFM) analyses were used to evaluate the interactions of peanut 
shell with metal ions. Each sorption experiment was performed for three times and mean 
values were calculated. Additionally, blank samples were used for comparison of the results 
throughout batch procedures. The presented results are the mean values obtained from the 
tests. Standard deviation (Ni(II)≤4%) values and error bars are also given. 

Material and methods 

Preparation of sorbent and solution  

As the sorbent material, peanut shell was procured from domestic market in Turkey. 
Sorbent material was rinsed in deionized water and dried at 105 °C for a period of 24 hours. 
Dried peanut shell was activated after being immersed and kept in 1 % H2SO4 solution for 
24 hours. Activated sorbent was rinsed again with distilled water to remove its acidic 
content, and ground after being dried at 105 °C for 24 hours; afterwards it was sieved with 
0.30 mm mesh size. All used chemicals were chosen among high quality analytical grade 
reagents.  

Ni(II) solution was prepared using 4.050 g nickel chloride (NiCl2 · 6H2O) in 1 dm3 
volume so as to obtain 1000 mg/dm3 concentration. Solutions with varying concentrations 
were prepared through making required dilutions in stock solution.  

Adsorption experiments 

Adsorption of Ni(II) onto peanut shell from aqueous solution was investigated using 
batch equilibrium techniques. Initial pH of Ni(II) solutions was adjusted using diluted HCl 
or NaOH prior to the tests. The tests were performed in 250 cm3 capped bials by addition of 
adsorbent into 100 cm3 nickel solutions within specified time intervals using a temperature 
controlled rotating shaker. Following the shaking process, samples were subjected to 
centrifuge and resulting Ni(II) concentrations were measured.  

Wise Shake (SHO-2D) and a shaking incubator capable of operating with the shaking 
speed and temperature were used throughout the research. Ni(II) ions in the samples were 
analyzed with Merck NOVA60 UV spectrophotometer. All pH readings were performed 
using Thermo Orion - STARA2145 brand pH-meter. Additionally, COD analyses were 
performed using standard methods.  

2.0-7.0 pH interval, 5.0-100 mg/dm3 initial Ni(II) concentration, 0-120 min contact 
time, and 0.05-1.0 g/dm3 sorbent dosage are the parameters used for removal of Ni(II) ions. 
0.3 g/dm3 adsorbent was added to solutions with concentrations ranging between  
5-100 mg/dm3 at pH 7 for determination of adsorption isotherms. Also, isotherm studies 
were performed by adding 0.05-1 g/dm3 sorbent into a solution with 25 mg/dm3 
concentration. Removal of Ni(II) ions was investigated at varying pH (2-7) using  
3 g/dm3 sorbent in 25 mg/dm3 concentration.  

Adsorption capacity qe and percentage of removal efficiency E [%] were calculated 
using the equations: 

�� =
� · (�� − ��)

�
 (1) 

� =
(�� − ��)

��
· 100 % (2) 
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where qe is maximum adsorption capacity [mg/g]; x is the adsorbent dosage [g]; V  is the 
solution’s volume [cm3]; Co is the initial concentration [mg/dm3]; and Ce is the final 
concentration of the solution [mg/dm3]. 

The adsorbent kinetics of Ni(II) ions in peanut shell was analyzed using pseudo-first 
order, pseudo-second order, intraparticle diffusion and Elovich models. Additionally, 
Langmuir, Freundlich, Temkin and D-R isotherm models were used to determine the 
consistency of the models. The equations for isotherm models, kinetic models and 
thermodynamic test are given in Table 1. 

 
Table 1 

List of mathematical models 

Mathematical model Equations Notations  
Equilibrium isotherm models 

Langmuir isotherm 
�� =

�� · � · ��

1 + � · ��
 

�� =
1

1 + � · ��
 

qe - maximum adsorption capacity 
Qo - denotes the maximum adsorbate uptake 

at equilibrium state 
Ce - equilibrium solution concentration 

b - Langmuir constant 
Co - initial concentration 

RL - the dimensionless equilibrium constant 

[34] 

Freundlich isotherm �� = ��  · ��
(�/�) 

 
KF - Freundlich constant 
1/n - adsorption intensity 

[35] 

Temkin isotherm qe = B ln A + B ln Ce 
A - Toth constant. The values of A and B 

can be calculated from the linear plot of qe 
versus ln Ce 

[36] 

Dubinin and 
Radushkevich (DR) 

isotherm 

lnqe = lnqmax – βε2 

) = R+ ln (1 +
1
��

) 

�,-. =
1

/20
 

qe - maximum adsorption capacity 
qmax - theoretical saturation capacity 

Eads - average adsorption energy 
β - relevant activity coefficient [mol2/J2] 

ε - a function of Polanyi potential 

[37] 

Kinetics models 

Pseudo-first order model log(�� − �) = log �� −
3,-..�

2.303
· 6 

qe - maximum adsorption capacity 
q - the amount of substance adsorbed at any 

given t time 
kads,1 - adsorption rate constant 

[38] 

Pseudo-second order 
model 

6
�

=
1

3,-..7 · ��
7 

+
1
��

· 6 kads,2 - adsorption rate constant [39] 

Inter-particle diffusion 
(Weber-Morris) model 

� = 38 · 69.: + � 
q - the amount of substance adsorbed at any 

given t time [mg/g] 
kp - intra-particle diffusion constant 

[40] 

Elovich model 
1
0

ln(;0) +
1
0

ln6 
α - initial adsorption rate 
β - desorption rate constant 

[41] 

Thermodynamic tests 
kj∆=9 = ∆>9 − +∆?9 

ln �@ =
∆=9

R
+

∆>9

R+
 

ΔG0 - Gibbs free energy [kJ/mol] 
ΔH0 - enthalpy exchange [kJ/mol] 
ΔS0 - entropy exchange [kJ/mol K] 

T - absolute temperature [K] 
ΔG0 = –RT ln Kc; R - the gas constant with  

a value of  8.314 J/mol K 
Kc - adsorption equilibrium constant 

lnKc versus 1/T graph was plotted, ΔH0 and 
ΔS0 were calculated using the slope and 

interception point 

[42] 
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Artificial neural network (ANN) modeling 

A neural network can be regarded as an intelligent hub with the capability to estimate 
an output pattern upon recognition of a given input pattern. Prior to application, neural 
networks are initially trained through processing of vast number of datasets. Afterwards, 
similarities can be detected with neural networks by use of new patterns, which in turn 
yields an estimated output pattern [43]. 

 

 
Fig. 1. ANN cell pattern 

 
Fig. 2. Structure of a back-propagation ANN 

Empirical model applications coupled with numerical estimation methods such as 
artificial neural network (ANN) are regarded as powerful alternatives in prediction of 
adsorption systems [44]. Within this scope, ANN was used for modeling adsorption using 
experimental data attained under varying operating conditions. A basic ANN architecture is 
shown in Figure 1 where inputs are symbolized with  x1, x2, …xn and weight coefficients 
of inputs are symbolized with Wk1, Wk2, …Wkn. Thus, input signals are represented with 
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xn and their weight coefficients are represented with Wkn. The weighted sum of overall 
input signals are given by the core. Y represents the thruputs from the network’s threshold 
function [45]. 

As a training algorithm, back-propagation is widely applied in several fields, 
particularly in engineering applications. This method is commonly preferred due to its 
simple algorithm and high training capacity. Back propagation network algorithm consists 
of three layers, namely input, hidden and output (Fig. 2) [46, 47].   

The number of hidden ANN layers can be increased depending on the essence of the 
problem. MATLAB software package was used during ANN calculations. 

Results and discussion 

Characterization 

a) 

 
b) 

 
Fig 3. FTIR spectra: a) before and b) after adsorption  
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FTIR was used to determine the characteristics of adsorbent functional group (Fig. 3). 
FTIR analyses conducted following adsorption indicate some variations in adsorption 
peaks. According to FTIR tests, peanut shell contains various functional groups capable of 
adsorbing metal ions such as Ni. In general broad bands within 3100-3550 cm–1 are 
associated with O-H functional group in all systems [48]. O-H functional group (3296 cm–1 

highest) is the most effective functional group. The spectra with 2892-2913 cm–1 
wavelength relate to the functional group of CH2. 1728 cm–1 wavelength corresponds to the 
functional group of CO3. 1633 cm–1 wavelength peak relates to C = 0 functional group, 
whereas 1229-1258 cm–1 wavelength corresponds to C = N functional group. The peak at 
1018 cm–1 corresponds to the functional groups of -C-O and -S = O. -O-P-O and -PO4's 
functional groups are within 500-750 cm–1 [16]. 

 
a) b) 

  
Fig. 4. SEM image of sorbent: a) before and b) after adsorption 

a) b) 

  
Fig. 5. AFM image of sorbent: a) before and b) after adsorption 

SEM and AFM provide quantitative analyses. Surface morphologies of peanut shell 
before and after Ni(II) adsorption were investigated with SEM (Figs. 4a and b). As seen in 
Figure 4 the adsorbent surface is heterogeneous. Adsorbent pores are filled with Ni ions and 
bonds. This is also evident in AFM images given in Figure 5. Prior to adsorption (Fig. 5a) 
sorbent surface had a rough morphology whereas it became smoother after adsorption 
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resulting in a smoother surface (Fig. 5b). Homogenous structure of the surface is visible in 
AFM images. Removal right after Ni(II) adsorption can be better defined with the decrease 
in both local areas and overall volume of pores [49]. 

XRD is widely applied to define the interlayer structure of materials [50]. The sharp 
ridges on peanut shell, indicating its crystal and amorphous structure, are shown in the 
XRD spectrum given in Figure 6. Almond shell exhibited similar apices at 16° and 22°. 
This indicates that no structural deterioration occurred during adsorption. 

 
a) b) 

  
Fig. 6. XRD: a) before and b) after adsorption 

Effect of contact time 

For determination of equilibrium time, following parameters were specified: initial 
concentration Co = 25 mg/dm3, sorbent dosage (x) 0.3 g, shaking speed = 150 rpm and  
pH 7. The change in Ni(II) removal with increasing contact time is shown in Figure 7. 

The results indicate an increase in sorption amount with increasing contact time. 
However, no change was observed after 60 minutes. 60 minutes contact time was also used 
in some of the previous studies for removal of heavy metal with nut shell [51]; whereas 
longer contact times (240 min) were also reported in other studies [52].  

 

 
Fig. 7. Contact time 
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Effect of solution pH 

Figure 8a shows the removal percentage varying between pH 2 and pH 7.  As seen in 
the figure there is no significant change between these pH values. The amount of adsorbed 
metal ions increased particularly after pH 4. At lower pH values, H+ ions compete with 
metal cations for electrostatic surface charges in the system, resulting in a reduced sorption 
percentage [53]. In the present research, pH = 2 resulted in qe = 0.42 mg/g and 5 % 
efficiency values, whereas qe was calculated as 2.12 mg/g and efficiency as 25.4 %  
for pH 7.  

 
a) 

b) 

 
Fig. 8. Dependence: a) qe, b) COD on pH 
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COD analyses were conducted to determine the correlation between the change in pH 
and the contamination induced by the sorbent (Fig. 8b). Due to the acidic media at low pH 
values, the sorbent degraded, resulting in higher COD values. COD was found  
as 96.21 mg/dm3 at pH 2, and as 54.72 mg/dm3 at pH 7.  

Effect of sorbent dosage 

The effect of adsorbent dosage on Ni(II) removal is shown in Figure 9a. Sorbent 
dosages varying between 0.05 and 1 g were investigated. Increased sorbent dosage resulted 
in an increase in adsorption capacity and removal efficiency. 0.05 g sorbent dosage yielded 
0.53 qe and 6.4 % efficiency, whereas 1 g sorbent dosage resulted in 2.38 qe and 28.6 % 
efficiency. Increasing adsorbent dosage relates to an increase in surface and sorption area 
on which metal ions are removed.  

 
a) 

 
b) 

 
Fig. 9. Dependence: a) qe, b) COD on sorbent dose 
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COD analyses were carried out to determine the possible effects of increasing sorbent 
dosage. As seen in Figure 9b a significant increase in COD value was observed with 
increasing sorbent dosage. COD value was found as 12.48 mg/dm3 with 0.05 g sorbent and 
as 282.78 mg/dm3 with 1 g sorbent.  

Effect of concentration  

Experimental results of adsorption of Ni(II) ions onto peanut shell for varying 
concentrations (5, 15, 25, 35, 45, 60, 75, 100) are shown in Figure 10. 

 

 
Fig. 10. Dependence qe on concentration of Ni(II) 

Removal efficiency decreased and adsorption capacity, qe increased with the increase 
in nickel ion concentration. This is attributed to the increasing metal availability at the 
interface which in turn results in increased adsorption capacity as a result of increased 
metal ion concentration in the solution. As the surface-active regions are completely 
covered, adsorption level reaches the limit value of saturated adsorption [54]. In this study, 
the lowest qe value was found as 0.55 mg/g for 5 mg/dm3 ion concentration, and the highest 
qe value was found as 8.25 mg/g in 100 mg/dm3 concentration. 

Effect of temperature 

The tests for determination of the effects of temperature on adsorption were performed 
between 20-60 °C (Fig. 11a). Within the interval of 20-60 °C, adsorption capacity, qe, 
varied between 1.92-2.15 mg/g, and efficiency percentages varied between 23-26 %. 
Increased adsorption capacities with increasing temperature were reported in some of the 
previous studies [30, 55], whereas decreased biosorption capacities were also reported in 
others [56, 57]. Some researches indicated did not have any significant effect of 
temperature in the biosorption process [58]. Likewise, no significant effect of temperature 
on adsorption system was observed in the present research. 
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The relationship between temperature changes and COD was also investigated in this 
study. Increased COD values were observed as a result of increased temperatures (Fig. 
11b). COD was specified as 50.13 mg/dm3 at 20 °C, and 80.6 mg/dm3 at 60 °C. 

 
a) 

 
b) 

 
Fig. 11. Dependence: a) qe, b) COD on ambient temperature 

Adsorption isotherms 

The data obtained from the tests performed with different Ni(II) concentrations (Co) 
and sorbent dosages, x, were used in Langmuir, Freundlich, Temkin and D-R  
(Dubinin-Radushkevich) models. The coefficients obtained from these models are given in 
Table 2. The highest R2 value in isotherm studies was obtained with Freundlich isotherm 
(R2 = 0.97) for the initial concentration and with Temkin isotherm (R2 = 0.99) for sorbent 
dosage. This indicates an excellent agreement of data with the models. High R2 values 
indicate that Freundlich isotherm is suitable for definition of the multilayer Ni(II) 
adsorption process that occurs on a heterogeneous adsorbent surface. 
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Table 2 
Isotherm parameters 

Model Equation 
Parameters 

 Co [mg/dm3] x [g] 

Langmuir 1/qe = (1/ Qo·b) · (1/ Ce) + (1/Qo) 

R2 
b [dm3/mg] 
Qo [mg/g] 

RL 

0.30 
0.1929 
0.1498 
0.1717 

0.93 
16.986 
0,0099 
0.0023 

Freundlich ln qe = ln KF + (1/n) · ln Ce 
R2 

KF [dm3/g] 
1/n 

0.97 
0.4638 
0.9083 

0.97 
1170.6 
5.3177 

Temkin qe = B ln A + B ln Ce 
R2 

A [dm3/g] 
B 

0.85 
0.216 
2.460 

0.99 
0.0393 
6.8292 

D-R ln qe = ln qmax – βє2 

R2 
β [mol2/J2] 
qmax [mg/g] 

Eads [kJ/mol] 

0.65 
–5.1523 
4.1720 
0.3115 

0.95 
190.44 
12.200 
0,0512 

 
Freundlich’s constant (1/n) relates to the adsorbent’s density. 0.1 < 1/n ≤ 0.5 indicates 

eased adsorption; 0.5 < 1/n ≤ 1 indicates limited adsorption and 1 / n > 1 is an indication of 
very low adsorption capability [59]. In this study, 1/n was found as 0.9083 and 5.3177 
respectively for concentration and sorbent dosage.  

Also, the activation energy Eads [kJ/mol] resulting from Dubinin-Radushkevich 
equation was found as 0.3115 and 0.0512 respectively for different concentration and 
sorbent dosage. Eads values within 8-16 kJ/mol interval generally relate to  
an ion-exchange-induced sorption. Eads values less than 8 kJ/mol indicate that the sorption 
mechanism can be defined with physical interactions [60], as in the case of the present 
study.  

Langmuir isotherms main aim is to detect the sorption capacity. However, it should be 
emphasized that the isotherms can also be detected in the system of different initial 
concentration of the solution or different absorbent mass [61]. In Langmuir isotherm, the 
type of isotherm can be inferred from separation factor RL values ([irreversible (RL = 0)], 
[favorable (0 < RL < 1)], [linear (RL = 1)] or [unfavorable (RL > 1)]) [62]. In this research all 
RL values remain within 0-1 interval.  These values signify the conformity of Langmuir 
isotherm to the adsorption of Ni(II) ions. However, a low R2 value was obtained during the 
concentration study, and a high value was obtained in the sorbent dosage study.  

Kinetics of adsorption 

Kinetic tests were performed at pH 2-3-4-5-6-7 for periods ranging between  
1-60 minutes (Fig. 12). The obtained data were evaluated in terms of compliance with 
pseudo-first order (Fig. 12a) and pseudo-second order (Fig. 12b) kinetic models,  
inter-particle diffusion model (Weber-Morris) (Fig. 12c) and Elovich model (Fig. 12d). 
Coefficients for all kinetics are given in Table 3. 

Correlation coefficients for pseudo-first order kinetic model range between  
R2 = 0.84-0.97. This model only applies to the area on which a very fast adsorption process 
takes place. According to Ho, Lagergren model is not applicable for kinetic prediction of 
adsorption for all adsorption periods [63]. 
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a) 

 
b) 

 
c) 

 
d) 

 
Fig. 12. Graphs of: a) pseudo-first order, b) pseudo-second order, c) Weber-Morris and d) Elovich kinetic 

models 
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Pseudo-second order equation, which is based on adsorption equilibrium capacity, is 
also based on the assumption that the occupancy ratio of adsorption areas are in direct 
proportion with the squared number of vacant areas. Adsorption ratio relates to the 
concentration of active areas on adsorbent surface [64]. As seen in Table 3, high regression 
coefficients were found for this model (R2 = 0.95-0.99). Also, adsorption of Ni(II) ions on 
peanut shell was redefined with pseudo-second order kinetic model, as the qe values in 
pseudo-second order kinetic equation were very similar to the experimental results  
(qexp [mg/g]).  

 
Table 3 

Kinetic constant for adsorption of Ni(II) 

pH 
qexp 

[mg/g] 

Pseudo-first order Pseudo-second order Weber-Morris Elovich 

k1 

[min –1] 
qe 

[mg/g] 
R2 

[-] 

k2 

[g/mg· 
min]  

qe 

[mg/g] 
R2 
[-] 

kid 

[mg/g· 
min0.5] 

R2 
[-]  

Α 
[mg/g· 
min]  

Β 
[g/mg] 

R2 
[-]  

2 0.42 0.033 0.141 0.87 0.844 0.420 0.99 0.023 0.93 14.46 24.87 0.94 
3 0.52 0.073 0.379 0.97 0.362 0.551 0.99 0.044 0.94 1.173 13.64 0.89 
4 0.92 0.090 0.920 0.95 0.101 1.050 0.95 0.101 0.92 0.603 6.238 0.81 
5 1.60 0.049 0.008 0.89 0.112 1.673 0.98 0.106 095 22.58 6.211 0.76 
6 1.75 0.074 0.981 0.84 0.157 1.816 0.99 0.099 0.95 88.97 6.207 0.87 
7 2.12 0.091 0.686 0.96 0.140 2.211 0.99 0.146 0.94 21.27 4.068 0.93 

 
Figure 12c shows the application of inter-particle diffusion model (Weber-Morris) for 

adsorption at varying pH conditions.  The results indicate a linear correlation between t0.5 

and overall q. Normally, if the plot coincides with the origin, this signifies that the  
intra-particle diffusion is only the rate limiting step. On the other hand, if the plot does not 
coincide with the origin, this is an indication of presence of multiple kinetic phases or 
sorption rates within adsorption processes [65]. 

Adsoption rate involves two intra-particle diffusion mechanisms. These are pore 
distribution or intraporous diffusion, which occurs within the volumetric boundaries of the 
pore; and the second is the surface diffusion which occurs on pore surfaces. Pore diffusion 
occurs in parallel with surface diffusion among adsorbent particles [66]. 

Elovich equation is successfully applied in definition of second-order kinetics based on 
the assumption that real solid surface is energetically heterogeneous. R2 values obtained 
from this model were found to be lower than those obtained from pseudo-second order 
model.  

Adsorption thermodynamics 

ln Kc - 1/T graph (Van t’Hoff graph) (Fig. 13), obtained under varying temperatures, 
and the thermodynamic parameters are given in Table 4. Positive ΔH0 value signifies an 
endothermic reaction, and positive ΔG0 value indicates a non-spontaneous adsorption 
process [67]. During the adsorption of Ni(II) ion, the increase in ΔG0 values with increasing 
temperature indicates that adsorption occurs more readily at higher temperatures [68]. 
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Fig. 13. Van t’Hoff graph 

Table 4 
Thermodynamic parameters 

ΔH0 
[kJ/mol] 

ΔS0 
[kJ/mol] 

ΔG0 [kJ/K ·mol] 
293 K 298 K 303 K 318 K 323 K 333 K 

3.46 –0.020 2.57 2.66 2.71 3.10 3.21 3.34 

 
Negative ΔS value is an indication of reduced randomness at solid/solution interface 

during adsorption. Low ΔS also points to the insignificance of the changes in entropy [69]. 

Adsorption mechanisms 

Two fundamental mechanisms result from the interaction between adsorbent and 
adsorbate, namely chemical and physical adsorption. For sorption process, solute material 
transfer is generally characterized either by external mass transfer (boundary layer 
diffusion), or intra-particle diffusion, or both. The mechanism for adsorption from solution 
involves three steps. These are:  
1) Diffusion of adsorbate from liquid phase towards outer surface of adsorbent.  
2) Diffusion of adsorbate towards the pores of adsorbent.  
3) Adsorption of adsorbate onto the pore surface of adsorbent [70] (Fig. 14).  

The resistance of boundary layer is affected by the increase in adsorption rate and 
contact time, which results in a reduced resistance during adsorption and increased mobility 
of nickel [71]. Adsorption of nickel on active regions of peanut shell can be controlled via 
liquid phase mass transfer rate or intra-particle mass transfer rate. During the adsorption of 
Ni(II) onto peanut shell three consecutive stages occur which are given in Figure 14 [72]. 
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Fig. 14. Schematic diagram of the physical mechanism for adsorption of Ni(II) onto peanut shell 

Artificial neural network 

An ANN was used for modeling the adsorption studies based on the application of the 
experimental data at different operating conditions to train and test the neural network 
model. The proposed ANN type is shown in Figure 15. ANN consists of three layers: input 
layer, hidden layer and output layer. Solute concentration is accepted by the input layer. 
Hidden layer involves a group of neurons that feature a tangent sigmoid transfer function. 
Output layer comprises of a single neuron featuring a linear transfer function by which the 
adsorption capacity is calculated [73, 74]. Neurons communicate layers over weight 
adjusted signals. The input layer takes on signals from external sources. Weighting for each 
input is conducted separately in this layer and these data are sent for processing to the 
hidden layer. Hidden layers performed the preprocessing and the results are transferred into 
other hidden layers and output layers using transfer functions [75]. 

 

 
Fig. 15. ANN structure  

The multilayer perceptron learns the data model using an algorithm known as 
“training”. These algorithms modify weights of the neurons according to the error between 
the values of real output and target output where provide non-linear regression between 
inputs and outputs variables. While number of hidden layers is to be selected depending on 
the complexity of the problem, but usually one hidden layer is adequate for modeling of 
most of the problems [76]. 
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Experimental variables (sorbent dosage, initial concentration and initial pH) were used 
as input data within the built neural network to estimate the adsorbed amounts of nickel. 
Training, verification and test data of the ANN model that provided the best prediction are 
given in Figure 16. Moreover, statistical performance of the models was assessed by using 
the statistical parameters of mean (µ), standard error (SE), standard deviation (σ) and 
regression coefficient (R2). Statistical performance is provided in Table 5. 

 

 
Fig. 16. Comparison of the predicted and target values in terms of Ni(II) removal percentage 

Table 5 
Statistical performance of the ANNs models 

Model Structure R2 σ SE µ 
I 3-6-1-1 0.99 8.4 2.16 1.01 
II 3-5-1-1 0.97 8.4 2.24 0.99 
III 3-4-1-1 0.96 8.3 1.64 1.00 
IV 3-3-1-1 0.93 8.9 1.29 0.99 
V 3-2-1-1 0.94 8.9 1.34 1.01 

 
As seen in Table 5, these results indicate a significant relationship between the values 

observed in models created. The relationship between the prediction results of the designed 
ANN model and experimental data were organized so as to evaluate the success of the 
ANN modeling which is used as an effective tool. The comparison of the experimental 
results with the predicted results is given in Figure 17 (initial pH, sorbent dosage “x” and 
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initial concentration “Co”). As indicated by the figure, experimental and predicted results 
are in good agreement. 

 

 
Fig. 17. Comparison of experimental results with the results predicted by the model 

 
Fig. 18. MSE against the number of epochs for Ni(II) 
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ANN performance can be improved through normalization of the experimental data set 
at hand. For this particular purpose available data points were normalized to a specific 
level. As new data points were obtained, the developed network was retrained using these 
new data sets. 

ANN proved to be an effective method for modeling adsorption as indicated by high R2 
values (R2 = training (0.99), test (0.97), validation (0.99)). ANN model’s efficiency was 
determined on the basis of maximization of R2 and reduction of MSE value of the testing 
set (1-20 neurons correspond to the hidden layer) [77]. According to the graph for 
minimum mean squared error (MSE) versus the number of epochs for optimal ANN models 
(Fig. 18), no significant change occurs on the method’s performance after 27 epochs. Best 
validation performance is 0.0011846 at epochs 27. As seen in Figure 18, the network is 
successfully trained using resilient back-propagation algorithm.  

Conclusions 

In this study, the relationship between varying temperature, sorbent dosage, metal 
concentration and initial pH, and the adsorbed amount of nickel was predicted using an 
ANN model developed using experimental data. Also, the effects of metal concentrations, 
initial pH, temperature, contact time and sorbent dosage were determined using batch tests. 
To determine the possible adverse effect of the sorbent, COD was measured at varying 
temperature and pH conditions and using different sorbent dosage. The highest R2 value 
was obtained with Freundlich isotherm for varying concentrations (R2 = 0.97), and with 
Temkin isotherm for varying sorbent dosage (R2 = 0.99). High pseudo-second order kinetic 
model regression coefficients were obtained during kinetic studies (R2 = 0.95-0.99). Also, 
for a better definition of Ni(II) adsorption on peanut shell, adsorption was redefined with 
pseudo-second order kinetic model, since the qe values in pseudo-second order kinetic 
equation were very similar to the experimental results (qexp). Positive ΔH0 value in 
thermodynamic studies signified that the reaction was endothermic and positive ΔG0 value 
was an indication of a non-spontaneous adsorption process. Negative ΔS value, on the other 
hand, is attributed to a reduced randomness at the solid/solution interface during adsorption. 
COD was measured under varying temperature and pH conditions, and with varying 
sorbent dosage to determine the possible adverse effects of the sorbent. The sorbent 
degraded due to the acidic media at lower pH values, thus leading to higher COD values.  
COD was found as 96.21 mg/dm3 at pH 2 and 54.72 mg/dm3 at pH 7. Also, a significant 
increase in COD value was observed with increasing dosage of the used sorbent. COD was 
found as 12.48 mg/dm3 after use of 0.05 g sorbent and as 282.78 mg/dm3 after use of 1 g 
sorbent. Adsorption performance of peanut shell, during removal of Ni(II) from aqueous 
solutions was successfully predicted using a three layered neural network with 6 neurons in 
the hidden layer. Predicted results of the designed ANN model and the experimental data 
were compared and they were found to be in good agreement.  
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