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ARTIFICIAL NEURAL NETWORK APPROACH
FOR MODELING OF Ni(ll) ADSORPTION
FROM AQUEOUS SOLUTION BY PEANUT SHELL

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH
DO MODELOWANIA ADSORPCJI Ni(ll) Z ROZTWOROW WODNYCH
PRZEZ SKORUPKI ORZECHOW ARACHIDOWYCH

Abstract: In this study, ANN (artificial neural network) meldwas applied to estimate the Ni(ll) removal
efficiency of peanut shell based on batch adsamptists. The effects of initial pH, metal concetitres,
temperature, contact time and sorbent dosage weterntined. Also,COD (chemical oxygen demand) was
measured to evaluate the possible adverse efféctheosorbent during the tests performed with vagyi
temperature, pH and sorbent dosa@@D was found as 96.21 mg/drat pH 2 and 54.72 mg/dmat pH 7.
Also, a significant increase iIBOD value was observed with increasing dosage of #eel sorbentCOD was
found as 12.48 mg/dhafter use of 0.05 g sorbent and as 282.78 myédter use of 1 g sorbent. During isotherm
studies, the highest regression coefficid®) yalue was obtained with Freundlich isothefR £ 0.97) for initial
concentration and with Temkin isotherm for sorb@osage. High pseudo-second order kinetic modeéssgpn
constants were observeR?(= 0.95-0.99) during kinetic studies with varying p#lues. In addition, Ni(ll) ion
adsorption on peanut shell was further defined wikudo-second order kinetic model, singevalues in the
second order kinetic equation were very close @dkperimental values. The relation between thienated
results of the built ANN model and the experimeméssiults were used to evaluate the success of ARtelimng.
Consequently, experimental results of the studyevieand to be in good agreement with the estimegsdits of
the model.
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Introduction

Ever-increasing world population and consequenilyréasing demands have led to
increased industrial activities throughout the wotHeavy metals are the most common
contaminants which are found in high concentrationshe content of industrial waste
waters. Due to their detrimental physiological effeon living creatures [1], which arise
from their indissoluble molecular structures, prese of these metals in aquatic
environment and industrial waste sites poses aroiitapt environmental problem [2].
Removal of heavy metals is a worldwide environmemancern which has become
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prevalent particularly in developing and industzetl countries [3]. Discharge of
wastewater with nickel content has been appliegihaincreasing rate in various industrial
applications such as mine processing, electroratnelting and battery production [4, 5].

Nickel is among the most toxic materials found invieonmental matrices [6].
Its permissible concentration in drinking-watelinsited to 0.01 mg/drhin WHO and EPA
guidelines due to its detrimental effects on humealth [7]. Values higher than the critical
level are reported to be highly toxic and carcimageSuch nickel levels are likely to cause
lung and kidney related issues, gastrointestinablems, and other health issues such as
headache and dermatitis [8, 9].

As a non-biodegradable heavy metal, nickel exhilbitgh levels of toxicity in
wastewater, which renders its removal from aqueswsronment and the development of
environment-friendly methods for its recovery, Higimportant [10]. Various treatment
techniques including chemical precipitation, coatjoh-flocculation, flotation, membrane
filtering, electrochemical treatment technologies, exchange, evaporation and adsorption
have been used for removal of heavy metals fromtemager [11-13]. Most of these
techniques are not sufficiently applicable dueheirt drawbacks such as high operational
costs, high energy consumption and productionxi€tsiudge.

In this context, adsorption method and psychochengipproach are proposed against
this problem. Among these methods, adsorption &imdjuished as one of the most
efficient, cost-effective and adaptable methodsrémnoval of heavy metals from aqueous
solutions [14, 15]. Due to its ease of operatiawdr costs [16] and lower amounts of
resultant sludge [17], adsorption method is widedgd as a traditional method for removal
of heavy metals.

Particular importance has been attached to the afisalternative cost-effective
materials and definition of their heavy metal remdoeharacteristics [18]. Removal of
various heavy metals using different adsorbentse Hasen extensively studied in recent
years [19-21]. For removal of nickel from wastewaseveral researches have been carried
out on the potential of different adsorbents suekenlit, bentonit [22], kaolinite clay [23],
coal dust and magnetized sawdust [24], teak lepeegder [25], cashew nut shell [26],
Lagenaria vulgaris shell [27], calcareous soils],[38antain peels [29], chitosan [30],
cherry kernels [7], clay [31] and henna [16].

As one of the most popular alternative modelinghtégues among evolutionary
computing methods, artificial neural networks (ANBPproach, have been successfully
applied to model non-linear relations involved iomplex chemical processes such as
adsorption [32, 33]. ANN methodology does not reguian additional standard
experimental design for building the model.

In this research, an ANN model, developed with expental data, was used to
estimate the effect of temperature, sorbent dosag&l nickel concentration and initial
pH on the adsorbed quantities of nickeal)( Sorption isotherms, kinetics and
thermodynamics were also studied. Several orgamirganic substances were used for
heavy metal removal with adsorption-biosorptiond ahe resulting removal efficiencies
were evaluated. Differently from previous adsomptitudies, chemical oxygen demand
(COD) analyses were also performed depending on injild]l sorbent dosage and
temperature change, in addition to ANN modelingiétermine the possible adverse effects
of the sorbent.

Scanning electron microscopy (SEM), energy dispersK-ray analysis (EDX),
Fourier transform infrared (FTIR) spectroscopy, a-rdiffraction (XRD) spectrum and
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atomic force microscopy (AFM) analyses were usedvaluate the interactions of peanut
shell with metal ions. Each sorption experiment wagormed for three times and mean
values were calculated. Additionally, blank samplese used for comparison of the results
throughout batch procedures. The presented remdtthe mean values obtained from the
tests. Standard deviation (Nid¥%) values and error bars are also given.

Material and methods

Preparation of sorbent and solution

As the sorbent material, peanut shell was procén@u domestic market in Turkey.
Sorbent material was rinsed in deionized waterdaietl at 105 °C for a period of 24 hours.
Dried peanut shell was activated after being imegtiand kept in 1 % $$0, solution for
24 hours. Activated sorbent was rinsed again withilkd water to remove its acidic
content, and ground after being dried at 105 °Qfbhours; afterwards it was sieved with
0.30 mm mesh size. All used chemicals were chosgng high quality analytical grade
reagents.

Ni(ll) solution was prepared using 4.050 g nickblocide (NiCh - 6H,0) in 1 dnf
volume so as to obtain 1000 mg/&iooncentration. Solutions with varying concentrasio
were prepared through making required dilutionstatk solution.

Adsorption experiments

Adsorption of Ni(ll) onto peanut shell from aqueaaution was investigated using
batch equilibrium techniques. Initial pH of Ni(plutions was adjusted using diluted HCI
or NaOH prior to the tests. The tests were perfdrine250 cm capped bials by addition of
adsorbent into 100 chmickel solutions within specified time intervalsing a temperature
controlled rotating shaker. Following the shakinggess, samples were subjected to
centrifuge and resulting Ni(ll) concentrations wereasured.

Wise Shake (SHO-2D) and a shaking incubator capafobgerating with the shaking
speed and temperature were used throughout tharceseNi(ll) ions in the samples were
analyzed with Merck NOVA60 UV spectrophotometerl pH readings were performed
using Thermo Orion - STARA2145 brand pH-meter. Aiddially, COD analyses were
performed using standard methods.

2.0-7.0 pH interval, 5.0-100 mg/dnmitial Ni(ll) concentration, 0-120 min contact
time, and 0.05-1.0 g/dhsorbent dosage are the parameters used for rembMa(ll) ions.
0.3 g/dm adsorbent was added to solutions with concentraticanging between
5-100 mg/dm at pH 7 for determination of adsorption isothermiso, isotherm studies
were performed by adding 0.05-1 gftirsorbent into a solution with 25 mg/dm
concentration. Removal of Ni(ll) ions was investagh at varying pH (2-7) using
3 g/dn sorbent in 25 mg/dfrconcentration.

Adsorption capacityge and percentage of removal efficienEy[%] were calculated
using the equations:

Qo = V. (Co - Ce) (1)

C
E=-2_""°2.100% (2)
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whereq, is maximum adsorption capacity [mg/g]js the adsorbent dosage [§]; is the
solution’s volume [crj; C, is the initial concentration [mg/din and C. is the final
concentration of the solution [mg/dm

The adsorbent kinetics of Ni(ll) ions in peanutlEleas analyzed using pseudo-first

order, pseudo-second order, intraparticle diffusmmd Elovich models. Additionally,

Langmuir, Freundlich, Temkin and D-R isotherm madelere used to determine the
consistency of the models. The equations for isathenodels, kinetic models and

thermodynamic test are given in Table 1.

Table 1

List of mathematical models

Mathematical model |

Equations

Notations |

Equilibrium isotherm models

Oe - maximum adsorption capacity
Q. - denotes the maximum adsatb uptak

1/n - adsorption intensity

Qo -b- Ce S
o qe = 1i70.C. _gt nghbnu_m state _
Langmuir isotherm 1 e Ce. - equilibrium solution concentration| [34]
R,=—— b - Langmuir constant
1+b-C, C, - initial concentration
R_- the dimensionless equilibrium constant
1/n H
Freundlich isotherm 9 = Kp - G0 Ke - Freundlich constant [35]

Temkin isotherm

ge=BInA + Bln Ce

A - Toth constant. The values AfandB
can be calculated from the linear plotpf]
versus InC,

(36]

II'IQE = II'IQmaX - ,852

Oe- maximum adsorption capacity

0]

K¢- adsorption equilibrium constant
InK. versus 1T graph was plottedfH° and
AS were calculated using the slope an

Dubinin and e=RTIn(1+ l) Omax- theoretical saturation capacity
Radushkevich (DR) Ce Eags- average adsorption energy | [37]
isotherm _ 1 B - relevant activity coefficient [mailF]
ads 28 £ - a function of Polanyi potential
Kinetics models
O - maximum adsorption capacity
) L _ Kaas1 q - the amount of substance adsorbed af
Pseudo-first order modellog(q, — q) = logq, — 5303 givent time [38]
Kade1 - @adsorption rate constant
Pseudo-second orde t 1 1 i
T -ad t t tant 3
model 7 ke aZ T a t Kags2 - @adsorption rate constan [
Inter-particle diffusion q -the amount of substance adsorbed af
- — . 405 ; :
(Weber-Morris) model q=lp 7 +C __givent time [mg/g] [40]
ko - intra-particle diffusion constant
) 1 1 a - initial adsorption rate
Elovich model Eln(a[?) + Elnt £ - desorption rate constant [41]
AG’- Gibbs free energy [kJ/mol]
AHC- enthalpy exchange [kJ/mol]
AS’- entropy exchange [kJ/mol K]
. T - absolute temperature [K]
KIAG? = AHO — TAS® o_ ; )
Thermodynamic tests AG®  AHO AG”’=-RTIn K¢ R - the gas constantwnh[42]
InK, = = + A a value of 8.314 J/mol K

interception point
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Artificial neural network (ANN) modeling

A neural network can be regarded as an intelligpesit with the capability to estimate
an output pattern upon recognition of a given inpattern. Prior to application, neural
networks are initially trained through processirfgvast number of datasets. Afterwards,
similarities can be detected with neural networgsuse of new patterns, which in turn
yields an estimated output pattern [43].

Weight
3 ST Summation function  Transfer fimction
x2 \
— Wk
‘w,‘m/

Fig. 1. ANN cell pattern

xn

Adsorbent dozage [g]

Concentration [mg/dm’] Removal [%5]

pH ] W4 A\ 7/

Fig. 2. Structure of a back-propagation ANN

Empirical model applications coupled with numeriedtimation methods such as
artificial neural network (ANN) are regarded as joful alternatives in prediction of
adsorption systems [44]. Within this scope, ANN waed for modeling adsorption using
experimental data attained under varying operatorglitions. A basic ANN architecture is
shown in Figure 1 where inputs are symbolized with x2, ...xn and weight coefficients
of inputs are symbolized withvkl, WK2, ...Wkn Thus, input signals are represented with
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xn and their weight coefficients are represented Win. The weighted sum of overall
input signals are given by the colerepresents the thruputs from the network’s thrigsho
function [45].

As a training algorithm, back-propagation is widehpplied in several fields,
particularly in engineering applications. This nwthis commonly preferred due to its
simple algorithm and high training capacity. Backgagation network algorithm consists

of three layers, namely input, hidden and outpid.(E) [46, 47].

The number of hidden ANN layers can be increasqebniding on the essence of the

problem. MATLAB software package was used duringhNAdalculations.

Results and discussion

Characterization

a)

b)
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Fig 3. FTIR spectra: a) before and b) after adsampt
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FTIR was used to determine the characteristicsisbdoent functional group (Fig. 3).
FTIR analyses conducted following adsorption inticaome variations in adsorption
peaks. According to FTIR tests, peanut shell costaarious functional groups capable of
adsorbing metal ions such as Ni. In general broadds within 3100-3550 cthare
associated with O-H functional group in all systd#®j. O-H functional group (3296 cth
highest) is the most effective functional group.eTkpectra with 2892-2913 ch
wavelength relate to the functional group of CH728 cm' wavelength corresponds to the
functional group of C@ 1633 cm' wavelength peak relates to C = 0 functional group,
whereas 1229-1258 ciwavelength corresponds to C = N functional grolipe peak at
1018 cm* corresponds to the functional groups of -C-O and=-8. -O-P-O and -P{3
functional groups are within 500-750 ¢rf16].

a)

Fig. 4. SEM image of sorbent: a) before and b atisorption

b)

Fig. 5. AFM image of sorbent: a) before and b)radsorption

SEM and AFM provide quantitative analyses. Surfae@phologies of peanut shell
before and after Ni(ll) adsorption were investightith SEM (Figs. 4a and b). As seen in
Figure 4 the adsorbent surface is heterogeneowsorBent pores are filled with Ni ions and
bonds. This is also evident in AFM images giverrigure 5. Prior to adsorption (Fig. 5a)
sorbent surface had a rough morphology whereagdaine smoother after adsorption
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resulting in a smoother surface (Fig. 5b). Homogenstructure of the surface is visible in
AFM images. Removal right after Ni(ll) adsorptioancbe better defined with the decrease
in both local areas and overall volume of poreg.[49

XRD is widely applied to define the interlayer sttwre of materials [50]. The sharp
ridges on peanut shell, indicating its crystal amdorphous structure, are shown in the
XRD spectrum given in Figure 6. Almond shell extedi similar apices at 16° and 22°.
This indicates that no structural deteriorationuwoed during adsorption.

a) b)

Lin {Counts)[-]
g 8 8

s
(=]

=]

11:-253&4{‘-51'}"55-?995?.:- 2 20 30 4 50 &0 70 B0 90
2-Tnets Scale [—] 2-Thata:3cale [-]

Fig. 6. XRD: a) before and b) after adsorption

Effect of contact time

For determination of equilibrium time, following y@emeters were specified: initial
concentrationC, = 25 mg/dm, sorbent dosagex)( 0.3 g, shaking speed = 150 rpm and
pH 7. The change in Ni(ll) removal with increasic@ntact time is shown in Figure 7.

The results indicate an increase in sorption amauittt increasing contact time.
However, no change was observed after 60 minu@emibutes contact time was also used
in some of the previous studies for removal of lyemetal with nut shell [51]; whereas
longer contact times (240 min) were also reponteather studies [52].

2.5

0-0 1 I 1 I 1 1
0 20 40 60 80 100 120 140

Fig. 7. Contact time
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Effect of solution pH

Figure 8a shows the removal percentage varyingdsivpH 2 and pH 7. As seen in
the figure there is no significant change betwéwse pH values. The amount of adsorbed
metal ions increased particularly after pH 4. Awéo pH values, Hions compete with
metal cations for electrostatic surface chargahensystem, resulting in a reduced sorption
percentage [53]. In the present research, pH =sRlted inq. = 0.42 mg/g and 5 %
efficiency values, whereag, was calculated as 2.12 mg/g and efficiency as 25.4
for pH 7.
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% 30 -
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0 ‘ ‘ ‘
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Fig. 8. Dependence: g), b) COD on pH
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COD analyses were conducted to determine the cowaldtttween the change in pH
and the contamination induced by the sorbent @Y. Due to the acidic media at low pH
values, the sorbent degraded, resulting in higk€®D values. COD was found
as 96.21 mg/drmat pH 2, and as 54.72 mg/dat pH 7.

Effect of sorbent dosage

The effect of adsorbent dosage on Ni(ll) removakl®wn in Figure 9a. Sorbent
dosages varying between 0.05 and 1 g were invéstigincreased sorbent dosage resulted
in an increase in adsorption capacity and remaffi@iency. 0.05 g sorbent dosage yielded
0.53¢. and 6.4 % efficiency, whereas 1 g sorbent dosagelted in 2.38), and 28.6 %
efficiency. Increasing adsorbent dosage relatemntincrease in surface and sorption area
on which metal ions are removed.

a)

3.0 35

Sorption [%]

—— qe - 10

0.5 - == sorption

0.0 T T T ! 0
0.0 0.2 0.4 0.6 0.8 1.0

x [g]
b)

0 I 1 I
00 02 04 06 08 10

x [g]

Fig. 9. Dependence: ), b) COD on sorbent dose
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COD analyses were carried out to determine the passitiécts of increasing sorbent
dosage. As seen in Figure 9b a significant increas€OD value was observed with
increasing sorbent dosad2OD value was found as 12.48 mgfiwith 0.05 g sorbent and
as 282.78 mg/diwith 1 g sorbent.

Effect of concentration

Experimental results of adsorption of Ni(ll) ionsito peanut shell for varying
concentrations (5, 15, 25, 35, 45, 60, 75, 100shosvn in Figure 10.

10 40

9 1 L 35

8 .

; - 30

§ 6 . - 25 %
= 5 - 20 .2
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U 4 _ —.— e —_
- 15 ©

3 A == sorption n

- 10
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1 _ B 5

O 1 T 1 T T 0
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C, [mg/dn¥]

Fig. 10. Dependenag on concentration of Ni(ll)

Removal efficiency decreased and adsorption capagitincreased with the increase
in nickel ion concentration. This is attributed ttee increasing metal availability at the
interface which in turn results in increased adsonpcapacity as a result of increased
metal ion concentration in the solution. As thefate-active regions are completely
covered, adsorption level reaches the limit valusapurated adsorption [54]. In this study,
the lowesi, value was found as 0.55 mg/g for 5 mg?dan concentration, and the highest
0e value was found as 8.25 mg/g in 100 mgfdoncentration.

Effect of temperature

The tests for determination of the effects of terapge on adsorption were performed
between 20-60 °C (Fig. 11a). Within the interval 28f-60 °C, adsorption capacitye,
varied between 1.92-2.15 mg/g, and efficiency petages varied between 23-26 %.
Increased adsorption capacities with increasingotzature were reported in some of the
previous studies [30, 55], whereas decreased lptisarcapacities were also reported in
others [56, 57]. Some researches indicated did hwte any significant effect of
temperature in the biosorption process [58]. Lilsayino significant effect of temperature
on adsorption system was observed in the presseareh.
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The relationship between temperature changesC#id was also investigated in this
study. IncreasedOD values were observed as a result of increasedetatuyes (Fig.
11b).CODwas specified as 50.13 mg/dat 20 °C, and 80.6 mg/drat 60 °C.
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Fig. 11. Dependence: g), b) COD on ambient temperature

Adsorption isotherms

The data obtained from the tests performed witfediht Ni(ll) concentrationsQ)
and sorbent dosagess, were used in Langmuir, Freundlich, Temkin and D-R
(Dubinin-Radushkevich) models. The coefficientsaifgd from these models are given in
Table 2. The highed® value in isotherm studies was obtained with Freishdisotherm
(R? = 0.97) for the initial concentration and with Temksotherm & = 0.99) for sorbent
dosage. This indicates an excellent agreement w@f with the models. HigR? values
indicate that Freundlich isotherm is suitable fogfinition of the multilayer Ni(ll)
adsorption process that occurs on a heterogenesostent surface.
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Table 2
Isotherm parameters
. Parameters

Model Equation C, [mg/dm] XTq]

Rj 0.30 0.93
Langmuir | 1/ge= (1/Qub) - (1/C2) + (1Q5) bQ[f&g%@]’] 8:1233 é%ggg
R 0.1717 0.0023

R 0.97 0.97
Freundlich In ge= INKg + (1) - In Ce Ke[dm7g] 0.4638 1170.6
1/n 0.9083 5.3177

R 0.85 0.99
Temkin ge=BINA+BInC. A [dm¥g] 0.216 0.0393
B 2.460 6.8292

R22 0.65 0.95
_ 2 mol?/ —-5.1523 190.44
D-R I Ge = IN Gmax—fie gm[ax[mg{;]] 4.1720 12.200
Ead: [kJ/mol] 0.3115 0,0512

Freundlich’s constant (i) relates to the adsorbent’s density. 0.1 &<10.5 indicates
eased adsorption; 0.5 <n¢ 1 indicates limited adsorption and & # 1 is an indication of
very low adsorption capability [59]. In this stud¥/n was found as 0.9083 and 5.3177
respectively for concentration and sorbent dosage.

Also, the activation energyE.qs [kd/mol] resulting from Dubinin-Radushkevich
equation was found as 0.3115 and 0.0512 respectieel different concentration and
sorbent dosage.E,qs values within 8-16 kJ/mol interval generally relatto
an ion-exchange-induced sorptidfygs values less than 8 kJ/mol indicate that the sonpti
mechanism can be defined with physical interacti@dj, as in the case of the present
study.

Langmuir isotherms main aim is to detect the somptiapacity. However, it should be
emphasized that the isotherms can also be detectede system of different initial
concentration of the solution or different absotbesass [61]. In Langmuir isotherm, the
type of isotherm can be inferred from separatiaridiaR_ values ([irreversibleR_ = 0)],
[favorable (0 <R_ < 1)], [linear R_ = 1)] or [unfavorableR_> 1)]) [62]. In this research all
R_ values remain within 0-1 interval. These valugmiy the conformity of Langmuir
isotherm to the adsorption of Ni(ll) ions. Howevarlow R value was obtained during the
concentration study, and a high value was obtaimélge sorbent dosage study.

Kinetics of adsorption

Kinetic tests were performed at pH 2-3-4-5-6-7 fperiods ranging between
1-60 minutes (Fig. 12). The obtained data wereuatatl in terms of compliance with
pseudo-first order (Fig. 12a) and pseudo-seconcerondrig. 12b) kinetic models,
inter-particle diffusion model (Weber-Morris) (Fig2c) and Elovich model (Fig. 12d).
Coefficients for all kinetics are given in Table 3.

Correlation coefficients for pseudo-first order dfic model range between
R?= 0.84-0.97. This model only applies to the areavbith a very fast adsorption process
takes place. According to Ho, Lagergren model isapplicable for kinetic prediction of
adsorption for all adsorption periods [63].
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Fig. 12. Graphs of: a) pseudo-first order, b) pseudo-secoder, c) Weber-Morris and d) Elovich kinetic
models
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Pseudo-second order equation, which is based am@is equilibrium capacity, is
also based on the assumption that the occupanity ohtadsorption areas are in direct
proportion with the squared number of vacant ardedsorption ratio relates to the
concentration of active areas on adsorbent sufttje As seen in Table 3, high regression
coefficients were found for this modd¥(= 0.95-0.99). Also, adsorption of Ni(ll) ions on
peanut shell was redefined with pseudo-second ddhetic model, as the values in
pseudo-second order kinetic equation were very laimio the experimental results

(Gexp [Ma/g]).

Table 3
Kinetic constant for adsorption of Ni(ll)
Pseudo-first order Pseudo-second order| Weber-Morrig Elovich

pH Oexp K % R? ko 1 g R? Kid | R A | B R?

IS min-y | morgl| 1 1909 | mgral| 1 (19| 1|09 flgmg)| 1
2 0.42 0.033| 0.14] 0.87 0.844 0.4p0 0.p9 0.023 (0.93.46| 24.87] 0.94
3 0.52 | 0.073 0379 097 0362 05p1 0.9 0.p44 0Q.94173| 13.64] 0.89
4 0.92 0.090| 0.92 0.95 0.101 1.0p0 0.p5 0.101 (Q.9»603| 6.238/ 0.81
5 1.60 | 0.0490 0.008 0.89 0.112 163 0.8 0.106 .58 | 6.211] 0.76
6 1.75 0.074 0.98:]. 0.84 0.157 1.816 0.p9 0.p99 0Q.#8.97| 6.207| 0.87
7 2.12 0.091 0.68¢ 0.96¢ 0.140 2.2|11 0.p9 0146 Q.24.27| 4.068 0.93

Figure 12c shows the application of inter-partidiusion model (Weber-Morris) for
adsorption at varying pH conditions. The resufididate a linear correlation betwegn
and overallg. Normally, if the plot coincides with the origithis signifies that the
intra-particle diffusion is only the rate limitirgep. On the other hand, if the plot does not
coincide with the origin, this is an indication pfesence of multiple kinetic phases or
sorption rates within adsorption processes [65].

Adsoption rate involves two intra-particle diffusiomechanisms. These are pore
distribution or intraporous diffusion, which occusthin the volumetric boundaries of the
pore; and the second is the surface diffusion wbidurs on pore surfaces. Pore diffusion
occurs in parallel with surface diffusion amongatient particles [66].

Elovich equation is successfully applied in defanitof second-order kinetics based on
the assumption that real solid surface is energétiheterogeneoud®’ values obtained
from this model were found to be lower than thob¢aimed from pseudo-second order
model.

Adsorption thermodynamics

In K. - 1/T graph (Van t'Hoff graph) (Fig. 13), obtained underying temperatures,
and the thermodynamic parameters are given in TabRositiveAH® value signifies an
endothermic reaction, and positiveG® value indicates a non-spontaneous adsorption
process [67]. During the adsorption of Ni(ll) idhe increase inG°values with increasing
temperature indicates that adsorption occurs meadily at higher temperatures [68].
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Fig. 13. Van t'Hoff graph
Table 4
Thermodynamic parameters
AH® AS AG® [kJ/K -mol]
[kd/mol] [kd/mol] 293 K 298 K 303 K 318 K 323 K 333 K
3.46 —0.020 2.57 2.66 271 3.10 3.21 3.34

NegativeAS value is an indication of reduced randomness kd/solution interface
during adsorption. LowS also points to the insignificance of the changesritropy [69].

Adsorption mechanisms

Two fundamental mechanisms result from the intéacbetween adsorbent and
adsorbate, namely chemical and physical adsorpEonsorption process, solute material
transfer is generally characterized either by ewkrmass transfer (boundary layer
diffusion), or intra-particle diffusion, or bothh& mechanism for adsorption from solution
involves three steps. These are:

1) Diffusion of adsorbate from liquid phase towaodsger surface of adsorbent.
2) Diffusion of adsorbate towards the pores of duoksat.
3) Adsorption of adsorbate onto the pore surfacedsbrbent [70] (Fig. 14).

The resistance of boundary layer is affected byitloeease in adsorption rate and
contact time, which results in a reduced resistalucang adsorption and increased mobility
of nickel [71]. Adsorption of nickel on active regis of peanut shell can be controlled via
liquid phase mass transfer rate or intra-particéssriransfer rate. During the adsorption of
Ni(Il) onto peanut shell three consecutive stagasiowhich are given in Figure 14 [72].
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Fig. 14. Schematic diagram of the physical mectmari@ adsorption of Ni(ll) onto peanut shell

Avrtificial neural network

An ANN was used for modeling the adsorption studhased on the application of the
experimental data at different operating conditit@strain and test the neural network
model. The proposed ANN type is shown in Figure AISN consists of three layers: input
layer, hidden layer and output layer. Solute cotregion is accepted by the input layer.
Hidden layer involves a group of neurons that femttangent sigmoid transfer function.
Output layer comprises of a single neuron featuarimear transfer function by which the
adsorption capacity is calculated [73, 74]. Neura@esnmunicate layers over weight
adjusted signals. The input layer takes on siginaia external sources. Weighting for each
input is conducted separately in this layer andseéhdata are sent for processing to the
hidden layer. Hidden layers performed the preprsingsand the results are transferred into
other hidden layers and output layers using trarigfections [75].

Fig. 15. ANN structure

The multilayer perceptron learns the data modehgisan algorithm known as
“training”. These algorithms modify weights of theurons according to the error between
the values of real output and target output wheowige non-linear regression between
inputs and outputs variables. While number of hididgers is to be selected depending on
the complexity of the problem, but usually one leiddayer is adequate for modeling of
most of the problems [76].
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Experimental variables (sorbent dosage, initialcemtration and initial pH) were used
as input data within the built neural network tdiraate the adsorbed amounts of nickel.
Training, verification and test data of the ANN mebthat provided the best prediction are
given in Figure 16. Moreover, statistical performarmf the models was assessed by using
the statistical parameters of mean), (standard errorSB, standard deviations) and
regression coefficien®f). Statistical performance is provided in Table 5.
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Fig. 16. Comparison of the predicted and target valuesrimgef Ni(ll) removal percentage

Table 5
Statistical performance of the ANNs models
Model Structure R? c SE u
| 3-6-1-1 0.99 8.4 2.16 1.01
Il 3-5-1-1 0.97 8.4 2.24 0.99
1] 3-4-1-1 0.96 8.3 1.64 1.00
[\ 3-3-1-1 0.93 8.9 1.29 0.99
\Y 3-2-1-1 0.94 8.9 1.34 1.01

As seen in Table 5, these results indicate a sogmif relationship between the values
observed in models created. The relationship betlee prediction results of the designed
ANN model and experimental data were organized ssdoaevaluate the success of the
ANN modeling which is used as an effective tool.eTéomparison of the experimental
results with the predicted results is given in Fgga7 (initial pH, sorbent dosagg”“‘and
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initial concentration C,"). As indicated by the figure, experimental anedicted results
are in good agreement.
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Fig. 17. Comparison of experimental results with the requieslicted by the model
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ANN performance can be improved through normaliatf the experimental data set
at hand. For this particular purpose available gaimts were normalized to a specific
level. As new data points were obtained, the deedonetwork was retrained using these
new data sets.

ANN proved to be an effective method for modelingarption as indicated by higtt
values B = training (0.99), test (0.97), validation (0.998NN model’'s efficiency was
determined on the basis of maximizationR3fand reduction of MSE value of the testing
set (1-20 neurons correspond to the hidden layér). [According to the graph for
minimum mean squared error (MSE) versus the numbepochs for optimal ANN models
(Fig. 18), no significant change occurs on the @t performance after 27 epochs. Best
validation performance is 0.0011846 at epochs &7 séen in Figure 18, the network is
successfully trained using resilient back-propaypasilgorithm.

Conclusions

In this study, the relationship between varying gerature, sorbent dosage, metal
concentration and initial pH, and the adsorbed arhad nickel was predicted using an
ANN model developed using experimental data. Atke, effects of metal concentrations,
initial pH, temperature, contact time and sorbergadje were determined using batch tests.
To determine the possible adverse effect of thbesdr COD was measured at varying
temperature and pH conditions and using differembent dosage. The highe’t value
was obtained with Freundlich isotherm for varyimncentrations R = 0.97), and with
Temkin isotherm for varying sorbent dosagé% 0.99). High pseudo-second order kinetic
model regression coefficients were obtained dukingtic studies R = 0.95-0.99). Also,
for a better definition of Ni(ll) adsorption on ped shell, adsorption was redefined with
pseudo-second order kinetic model, since dhevalues in pseudo-second order kinetic
equation were very similar to the experimental ltesi.,y). Positive AH® value in
thermodynamic studies signified that the reacti@s wndothermic and positives° value
was an indication of a non-spontaneous adsorptiocess. NegativAS value, on the other
hand, is attributed to a reduced randomness adiiesolution interface during adsorption.
COD was measured under varying temperature and pHitaoms] and with varying
sorbent dosage to determine the possible advefsetsfof the sorbent. The sorbent
degraded due to the acidic media at lower pH valies leading to higheZOD values.
COD was found as 96.21 mg/drat pH 2 and 54.72 mg/dnat pH 7. Also, a significant
increase irCOD value was observed with increasing dosage of ke gsorbentCOD was
found as 12.48 mg/dhafter use of 0.05 g sorbent and as 282.78 myéftar use of 1 g
sorbent. Adsorption performance of peanut sheltinduremoval of Ni(ll) from aqueous
solutions was successfully predicted using a thagered neural network with 6 neurons in
the hidden layer. Predicted results of the desightl model and the experimental data
were compared and they were found to be in googleagent.
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