Kinetic Analysis for Biodesulfurization of Dibenzothiophene using R. rhodochrous Adsorbed on Silica

Open access

Abstract

Experimental biodesulfurization (BDS) data for dibenzothiophene (DBT) (1.0-7.0 mM) with Rhodococcus rhodochorus immobilized by adsorption on silica, were adjusted with liquid-film kinetic model (Fisher coefficient, F = 592.74 and probability value p << 0.05 and r2 = 0.97). Simulations predict the presence of considerable amounts of DBT surrounding the particles, which would be available for the cells adsorbed on the surface of silica. The greatest percentage removal (50 %) was obtained for adsorbed cell system over the suspended bacterial cells (30 %), showing that sulfur substrates are more bioavailable when the bacterial cells are adsorbed on silica. The liquid-film modelling with diffusional effects provides proper theoretical basis to explain the BDS performance obtained using adsorbed cells.

[1] Monticello D. Curr Opin Biotechnol. 2000;11:540-546. DOI: 10.1016/S0958-1669(00)00154-3.

[2] Martínez I, El-Said Mohamed M, Santos VE, García JL, García-Ochoa F, Díaz E. J Biotechnol. 2017;262:47-55. DOI: 10.1016/j.jbiotec.2017.09.004.

[3] Mishra S, Pradhan N, Panda S, Akcil A. Fuel Process Technol. 2016;152:325-342. DOI: 10.1016/j.fuproc.2016.06.025.

[4] Setti L, Lanzarini G, Pifferi P. Fuel Process Technol. 1997;52:145-153. DOI: 10.1016/S0378-3820(97)00023-4.

[5] Kodama K, Umehara K, Shimizu K, Nakatanni S, Minoda Y, Yamada K. Agric Biol Chem Tokyo. 1973;37:45-50. DOI: 10.1271/bbb1961.37.45.

[6] Elham K, Fatemeh Y, Behnam R, Clayton J, Hamid R, Abbas A, et al. Fuel. 2018;216:787-95. DOI: 10.1016/j.fuel.2017.10.030.

[7] Bhatia S, Sharma DK. Biochem Eng J. 2010;50:104-9. DOI:10.1016/j.bej.2010.04.001.

[8] Caro A, Letón P, García-Calvo E, Setti L. Fuel. 2007;86:2632-2636. DOI:10.1016/j.fuel.2007.02.033.

[9] Tao F, Yu B, Xu P. Appl. Environ Microbiol. 2006;72:4604-4609. DOI: 10.1128/AEM.00081-06.

[10] Gill I, Ballesteros A. Trends Biotechnol. 2000;18:282-96. DOI: 10.1016/S0167-7799(00)01457-8.

[11] Pakula R, Freeman A. Biotechnol Bioeng. 1996;49:20-5. DOI: 10.1002/(SICI)1097-0290(19960105) 49:1<20::AID-BIT3>3.0.CO;2-V.

[12] Hou Y, Kong Y, Yang J, Zhang J, Shi D, Xin W. Fuel. 2005;84:1975-9. DOI: 10.1016/j.fuel.2005.04.004.

[13] Zhang H, Shan G, Liu H, Xing J. Surf Coat Technol. 2007;201:6917-21. DOI: 10.1016/j.surfcoat.2006.11.043.

[14] Hwan J, Keun Y, Wook H, Nam H. FEMS Microbiol Lett. 2000;182:309-12. DOI: 10.1016/S0378-1097(99)00604-7.

[15] Feng J, Zeng Y, Ma C, Cai X, Zhang Q, Tong M. Appl Environ Microbiol. 2006;72:7390-3. DOI: 10.1128/AEM.01474-06.

[16] Han JW, Park HS, Kim BH, Shin PG, Park SK, Lim JC. Energy Fuels. 2001;15:189-96. DOI: 10.1021/ef000181q.

[17] Dinamarca MA, Orellana L, Aguirre J, Baeza P, Espinoza G, Canales C, et al. Biotechnol Lett. 2014;36:1649-1652. DOI: 10.1007/s10529-014-1529-y.

[18] Naito M, Kawamoto T, Fujino K, Kobayashi M, Maruhashi K, Tanaka A. Appl Microbiol Biotechnol. 2001;55:374-378. DOI: 10.1007/s002530000527.

[19] Castorena G, Suárez C, Valdez I, Armador G, Fernández L, Le Borgne S. FEMS Microbiol Lett. 2002;215:157-161. DOI: 10.1016/S0378-1097(02)00922-9.

[20] Li W, Zhang Y, Dong M, Shi Y. FEMS Microbiol Lett. 2005;247:45-50. DOI: 10.1016/j.femsle.2005.04.025.

[21] Kilbane JJ. Curr Opin Biotechnol. 2006;17:305-314. DOI: 10.1016/j.copbio.2006.04.005.

[22] Soleimani M, Bassi A, Margaritis A. Biotechnol Adv. 2007;25:570-96. DOI: 10.1016/j.biotechadv.2007.07.003.

[23] Chen H, Zhang W, Chen J, Cai Y, Li W. Bioresour Technol. 2008;99:3630-3634. DOI: 10.1016/j.biortech.2007.07.034.

[24] Li Y, Gao H, Li W, Xing J, Liu H. Bioresour Technol. 2009;100:5092-5096. DOI: 10.1016/j.biortech.2009.05.064.

[25] Shavandi M, Sadeghizadeh M, Zomorodipour A, Khajeh K. Bioresour Technol. 2009;100:475-479. DOI: 10.1016/j.biortech.2008.06.011.

[26] Dinamarca MA, Ibacache-Quiroga C, Baeza P, Galvez S, Villarroel M, Olivero P, et al. Bioresour Technol. 2010;101:2375-2378. DOI: 10.1016/j.biortech.2009.11.086.

[27] Dinamarca MA, Rojas A, Baeza P, Espinoza G, Ibacache-Quiroga C, Ojeda J. Fuel. 2014;116:237-24. DOI: 10.1016/j.fuel.2013.07.108.

[28] Abin-Fuentes A, Mohamed ME, Wang DIC, Prather KLJ. Appl Environ Microbiol. 2013;79:7807-7817. DOI: 10.1128/AEM.02696-13.

[29] Martínez I, Santos VE, García-Ochoa F. Biochem Eng J. 2017;117; 89-96. DOI: 10.1016/j.bej.2016.11.004.

[30] Peng Y, Wen J. Chem Biochem Eng. 2010;24:85-94. DOI: hrcak.srce.hr/49485.

[31] Karimi AM, Sadeghi S, Salimi F. Ecol Chem Eng S. 2017;24:371-379. DOI: 10.1515/eces-2017-0024.

[32] Kobayashi M, Horiuchi K, Yoshikawa O, Hirasawa K, Hishii Y, Fujino K, et al. Biosci Biotech Bioch. 2001;65:298-304. DOI: 10.1271/bbb.65.298

[33] Zhang S, Chen H, Li W. Appl Microbiol Biot. 2013;1:2193-2200. DOI: 10.1007/s00253-012-4048-6.

[34] Davis ME, Davis RJ. Fundamentals of Chemical Reaction Engineering. New York: McGraw Hill Chemical Engineering Series; 2003. ISBN: 007245007X.

[35] Mukhopadhyaya M, Chowdhury R, Bhattacharya P. AIChE J. 2007; 53:2188-2197. DOI: 10.1002/aic.11240.

[36] Carvajal P, Dinamaca MA, Baeza P, Camu E, Ojeda J. Biotechnol Lett. 2017;39:241-245. DOI: 10.1007/s10529-016-2240-y.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information


IMPACT FACTOR 2017: 0.7
5-year IMPACT FACTOR: 0.815

CiteScore 2017: 0.79

SCImago Journal Rank (SJR) 2017: 0.227
Source Normalized Impact per Paper (SNIP) 2017: 0.535

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 105 105 33
PDF Downloads 82 82 30