Heat Balance of Horizontal Ground Heat Exchangers

Open access


This work refers to the modelling of heat transfer in horizontal ground heat exchangers. For different conditions of collecting heat from the ground and different boundary condition profiles of temperature in the ground were found, and temporal variations of heat flux transferred between the ground surface and its interior were determined. It was taken into account that this flux results from several different mechanisms of heat transfer: convective, radiative, and that connected with moisture evaporation. It was calculated that ground temperature at great depths is greater than the average annual ambient temperature.

[1] Florides G, Kalogirou S. Renew Energy. 2007;32:2461-2478. DOI: 10.1016/j.renene.2006.12.014.

[2] Soni SK, Pandey M, Bartaria VN. Renew Sust Energy Rev. 2015;47:83-92. DOI: 10.1016/j.rser.2015.03.014.

[3] Adamovsky D, Neuberger P, Adamovsky R. Energy Buildings. 2015;92:107-115. DOI: 10.1016/j.enbuild.2015.01.052.

[4] Dasare RR, Saha SK. Appl Thermal Eng. 2015;85:252-263. DOI: 10.1016/j.applthermaleng.2015.04.014.

[5] Naylor S, Ellett KM, Gustin AR. Renew Energy. 2015;81:21-30. DOI: 10.1016/j.renene.2015.03.006.

[6] Gonzalez RG, Verhoef A, Vidale PL, Main B, Gan G, Wu Y. Renew Energy. 2012;44:141-153. DOI: 10.1016/j.renene.2012.01.080.

[7] Chong CSA, Gan G, Verhoef A, Garcia RG, Vidale PL. Appl Energy. 2013;104:603-610. DOI: 10.1016/j.apenergy.2012.11.069.

[8] Go G-H, Lee S-R, Yoon S, Kim M-J. Appl Energy. 2016;162: 330-345. DOI: 10.1016/j.apenergy.2015.10.113.

[9] Kim M-J, Lee S-R, Yoon S, Go G-H. Geothermics. 2016;60:134-143. DOI: 10.1016/j.geothermics.2015.12.009.

[10] Xiong Z, Fisher DE, Spitler JD. Appl Energy. 2015;141:57-69. DOI: 10.1016/j.apenergy.2014.11.058.

[11] Yoon S, Lee S-R, Go G-H. Energy Buildings. 2015;105:100-105. DOI: 10.1016/j.enbuild.2015.07.054.

[12] Herb WR, Janke B, Mohseni O, Stefan HG. J Hydrol. 2008;356:327-343. DOI: 10.1016/j.hydrol.2008.04.020.

[13] Nam, Y, Ooka R, Hwang S. Energy Buildings. 2008;40:2133-2140. DOI: 10.1016./j.enbuild.2008.06.004.

[14] Fujii H, Nishi K, Komaniwa Y, Chou N. Geothermics. 2012;41:55-62. DOI: 10.1016/j.geothermics.2011.09.002.

[15] Fujii H, Yamasaki S, Maehara T, Ishikami T, Chou N. Geothermics. 2013;47:61-68. DOI: 10.1016/j.geothermics.2013.02.006.

[16] de Jesus Freire A, Alexandre JLC, Silva VB, Couto ND, Rouboa A. Appl Thermal Eng. 2013;51:1124-1134. DOI: 10.1016/j.applthermaleng.2012.09.45.

[17] Bortoloni M, Bottarelli M, Su Y. Appl Thermal Eng. 111;2017:1371-1377. DOI: 10.1016/j.applthermaleng.2016.05.063.

[18] Badache M, Eslami-Nejad P, Ouzzane M, Aidoun Z. Renew Energy. 2016;85:436-444. DOI: 10.1016/j.renene.2015.06.20.

[19] Ouzzane M, Eslami-Nejad P, Badache M, Aidoun Z. Geothermics. 2015;53:379-384. DOI: 10.1016/j.geothermics.2014.08.001.

[20] Kupiec K, Larwa B, Gwadera M. Appl Thermal Eng. 2015;75:270-276. DOI: 10.1016/applthermaleng.2014.10.003.

[21] Kupiec K, Larwa B, Gwadera M, Komorowicz T. Przemysł Chem. 2016;95:1000-1006. DOI: 10.15199/62.2016.10.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information

5-year IMPACT FACTOR: 0.815

CiteScore 2017: 0.79

SCImago Journal Rank (SJR) 2017: 0.227
Source Normalized Impact per Paper (SNIP) 2017: 0.535


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 80 80 36
PDF Downloads 54 54 18