Integrated Production of Biofuels and Succinic Acid from Biomass after Thermochemical Pretreatments

Open access

Abstract

The aim of this study was to develop an effective thermochemical method for treatment of industrial hemp, in order to increase its bioconversion to biofuels and bio-products. Industrial hemp was subjected to various thermochemical pretreatments using: alkaline (3 % NaOH), oxidative (3 % H2O2 at pH 11.5) and glycerol-based methods (70-90 % of glycerol, 1-3 % NaOH), prior to enzymatic hydrolysis with Cellic® CTec2/Cellic® HTec2 (15 FPU∙g−1 glucan). Innovative pretreatment with glycerol fraction (80 % glycerol content, 2 % NaOH, 12.5 % biomass loading) showed to be superior over commonly used alkaline and oxidative methods with respect to by-products generation and sugar losses. Integrated process of ethanol production from enriched cellulose fraction (172 kg EtOH∙Mg−1 of dry hemp) and succinic production from xylose-rich residue after ethanol fermentation (59 kg∙Mg−1 of dry hemp) allowed to convert about 97 % of sugars released (glucose and xylose) during enzymatic hydrolysis of pre-treated biomass. The present study showed that it is possible to replace 50 % of the costly yeast extract, used during succinic fermentation as nitrogen source, by alternative nitrogen source (rapeseed cakes) without significant deterioration of succinic yield. Pretreatment liquor after lignin precipitation (52 kg∙Mg−1 of biomass treated) exhibited a high biodegradability (92 %) and allowed to produce 420 m3 CH4/Mg VS). Results obtained in this study clearly document the possibility of biofuels (bioethanol, biogas) and bio-chemicals production from industrial hemp, in a biorefinery approach.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Finnan J Styles D. Hemp: A more sustainable annual energy crop for climate and energy policy. Energy Policy. 2013;58:152-162. DOI: 10.1016/J.ENPOL.2013.02.046.

  • [2] Janas M Zawadzka A. Energy willow from experimental plantation as a potentially clean energy source. Ecol Chem Eng S. 2017;24:203-212. DOI: 10.1515/eces-2017-0013.

  • [3] Schluttenhofer C Yuan L. Challenges towards revitalizing hemp: A multifaceted crop. Trends Plant Sci. 2017;22:917-929. DOI: 10.1016/j.tplants.2017.08.004.

  • [4] Górski R Sobieralski K Siwulski M. The effect of hemp essential oil on mortality Aulacorthum solani Kalt. and Tetranychus urticae Koch. Ecol Chem Eng S. 2016;23:505-511. DOI: 10.1515/eces-2016-0037.

  • [5] Rehman MSU Rashid N Saif A Mahmood T Han JI. Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective. Renew Sustain Energy Rev. 2013;18:154-164. DOI: 10.1016/J.RSER.2012.10.019.

  • [6] Kuglarz M Gunnarsson IB Svensson SE Prade T Johansson E Angelidaki I. Ethanol production from industrial hemp: Effect of combined dilute acid/steam pretreatment and economic aspects. Bioresour Technol. 2014;163:236-243. DOI: 10.1016/j.biortech.2014.04.049.

  • [7] Gunnarsson IB Kuglarz M Karakashev D Angelidaki I. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.). Bioresour Technol. 2015;182:58-66. DOI: 10.1016/j.biortech.2015.01.126.

  • [8] Brazdausks P Paze A Rizhikovs J Puke M Meile K Vedernikovs N et al. Effect of aluminium sulphate-catalysed hydrolysis process on furfural yield and cellulose degradation of Cannabis sativa L. shives. Biomass Bioenergy. 2016;89:98-104. DOI: 10.1016/J.BIOMBIOE.2016.01.016.

  • [9] Shen N Qin Y Wang Q Liao S Zhu J Zhu Q et al. Production of succinic acid from sugarcane molasses supplemented with a mixture of corn steep liquor powder and peanut meal as nitrogen sources by Actinobacillus succinogenes. Lett Appl Microbiol. 2015;60:544-551. DOI: 10.1111/lam.12399.

  • [10] Kreuger E Sipos B Zacchi G Svensson SE Björnsson L. Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production. Bioresour Technol. 2011;102:3457-3465. DOI: 10.1016/J.BIORTECH.2010.10.126.

  • [11] Kuglarz M Alvarado-Morales M Dąbkowska K Angelidaki I. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. Bioresour Technol. 2018;265:191-199. DOI: 10.1016/J.BIORTECH.2018.05.099.

  • [12] Kuglarz M Alvarado-Morales M Karakashev D Angelidaki I. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. Bioresour Technol. 2016;200:639-647. DOI: 10.1016/j.biortech.2015.10.081.

  • [13] Dąbkowska K Mech M Kopeć K Pilarek M. Enzymatic activity of some industrially-applied cellulolytic enzyme preparations. Ecol Chem Eng S. 2017;24:9-18. DOI: 10.1515/eces-2017-0001.

  • [14] Agbor VB Cicek N Sparling R Berlin A Levin DB. Biomass pretreatment: Fundamentals toward application. Biotechnol Adv. 2011;29:675-685. DOI: 10.1016/J.BIOTECHADV.2011.05.005.

  • [15] Bhutto AW Qureshi K Harijan K Abro R Abbas T Bazmi AA et al. Insight into progress in pre-treatment of lignocellulosic biomass. Energy. 2017;122:724-745. DOI: 10.1016/J.ENERGY.2017.01.005.

  • [16] Ling TP Hassan O Badri K Maskat MY Mustapha WAW. Sugar recovery of enzymatic hydrolysed oil palm empty fruit bunch fiber by chemical pretreatment. Cellulose. 2013;20:3191-3203. DOI: 10.1007/s10570-013-0033-1.

  • [17] Chan GYS Chang CC Christensen TH Deng Y Ezyske CM Englehardt JD et al. Present and long-term composition of MSW landfill leachate: A review. Chemosphere. 2013;40:1000. DOI: 10.1016/j.apcatb.2008.07.010.

  • [18] Zhao X Li S Wu R Liu D. Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry kinetics and substrate structures. Biofuels Bioprod Biorefining. 2017;11:567-590. DOI: 10.1002/bbb.1768.

  • [19] Zabed H Sahu JN Suely A Boyce AN Faruq G. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew Sustain Energy Rev. 2017;71:475-501. DOI: 10.1016/J.RSER.2016.12.076.

  • [20] Świerczyńska A Bohdziewicz J Puszczało E. Treatment of industrial wastewater in the sequential membrane bioreactor. Ecol Chem Eng S. 2016;23:285-295. DOI: 10.1515/eces-2016-0020.

  • [21] Pińkowska H Wolak P Oliveros E. Hydrothermolysis of rapeseed cake in subcritical water. Effect of reaction temperature and holding time on product composition. Biomass Bioenergy. 2014;64:50-61. DOI: 10.1016/J.BIOMBIOE.2014.03.028.

  • [22] Lesteur M Bellon-Maurel V Gonzalez C Latrille E Roger JM Junqua G et al. Alternative methods for determining anaerobic biodegradability: A review. Process Biochem. 2010;45:431-440. DOI: 10.1016/J.PROCBIO.2009.11.018.

  • [23] Viana MB Freitas AV Leitão RC Pinto GAS Santaella ST. Anaerobic digestion of crude glycerol: a review. Environ Technol Rev. 2012;1:81-92. DOI: 10.1080/09593330.2012.692723.

  • [24] Rice EW Baird RB Eaton AD Clesceri LS editors. American Public Health Association American Water Works Association Water Environment Federation. Standard methods for the examination of water and wastewater. American Public Health Association; 2012. ISBN: 9780875530130.

  • [25] Lamoolphak W Goto M Sasaki M Suphantharika M Muangnapoh C Prommuag C et al. Hydrothermal decomposition of yeast cells for production of proteins and amino acids. J Hazard Mater. 2006;137:1643-1648. DOI: 10.1016/J.JHAZMAT.2006.05.029.

  • [26] Chang VS Holtzapple MT. Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol. 2000;84-86:5-37.

  • [27] Novo LP Gurgel LVA Marabezi K Curvelo AA da S. Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification. Bioresour Technol. 2011;102:10040-10046. DOI: 10.1016/J.BIORTECH.2011.08.050.

  • [28] Jönsson LJ Alriksson B Nilvebrant NO. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013;6:16. DOI: 10.1186/1754-6834-6-16.

  • [29] Zhang J Hou W Bao J. Reactors for high solid loading pretreatment of lignocellulosic biomass. Advances in Biochemical Engineering/Biotechnology. 2015;152. DOI: 10.1007/10_2015_307.

  • [30] Zhang Z Wong HH Albertson PL Harrison MD Doherty WOS O’Hara IM. Effects of glycerol on enzymatic hydrolysis and ethanol production using sugarcane bagasse pretreated by acidified glycerol solution. Bioresour Technol. 2015;192:367-373. DOI: 10.1016/J.BIORTECH.2015.05.093.

  • [31] Talebnia F. Ethanol Production from Cellulosic Biomass by Encapsulated Saccharomyces cerevisiae. Göteborg Sweden: Chalmers University of Technology; 2008. ISBN: 9789173850971. https://www.diva-portal.org/smash/get/diva2:876859/FULLTEXT01.pdf.

  • [32] Chen K Zhang H Miao Y Wei P Chen J. Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes. Enzyme Microb Technol. 2011;48:339-344. DOI: 10.1016/J.ENZMICTEC.2010.12.009.

  • [33] Pateraki C Patsalou M Vlysidis A Kopsahelis N Webb C Koutinas AA et al. Actinobacillus succinogenes: Advances on succinic acid production and prospects for development of integrated biorefineries. Biochem Eng J. 2016;112:285-303. DOI: 10.1016/J.BEJ.2016.04.005.

  • [34] Adl M Sheng K Gharibi A. Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments. Appl Energy. 2012;93:251-260. DOI: 10.1016/J.APENERGY.2011.11.065.

  • [35] Kalinichenko A Havrysh V Perebyynis V. Evaluation of biogas production and usage potential. Ecol Chem Eng S. 2016;23:387-400. DOI: 10.1515/eces-2016-0027.

  • [36] Pawłowski A Pawłowska M Pawłowski L. Mitigation of greenhouse gases emissions by management of terrestrial ecosystem. Ecol Chem Eng S. 2017;24:213-221. DOI: 10.1515/eces-2017-0014.

  • [37] Cichowicz R Wielgosiński G Targaszewska A. Analysis of CO2 concentration distribution inside and outside small boiler plants. Ecol Chem Eng S. 2016;23:49-60. DOI: 10.1515/eces-2016-0003.

  • [38] Vlysidis A Binns M Webb C Theodoropoulos C. Glycerol utilisation for the production of chemicals: Conversion to succinic acid a combined experimental and computational study. Biochem Eng J. 2011;58-59:1-11. DOI: 10.1016/J.BEJ.2011.07.004.

  • [39] Schindler BD. Understanding and improving respiratory succinate production from glycerol by Actinobacillus succinogenes. Michigan State Univeristy USA 2011. DOI: 10.25335/M5ZF1M.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 339 339 10
PDF Downloads 299 299 11