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THE EFFECT OF CADMIUM ON OXIDATIVE STRESS
IN Beta vulgaris

WPLYW KADMU NA STRES OKSYDACYJNY U Beta vulgaris

Abstract: As a heavy metal, cadmium has strongly toxic é¢ffemn plants and can induce oxidative stress.
It is absorbed by the roots and transported tstiims and leaves. The aim of the study was to ateathe effect

of various concentrations of cadmium on the metakagtivity of Beta vulgaris and assess the dependence of
these processes on the content of metal in théspl@a demonstrate the effect of cadmium on metstmolprotein
and photosynthetic pigment content, lipid perodafatand the activity of enzymes specific for oxida stress in
roots and shoots were measured. Seeswaflgaris were treated with different concentrations of @Qdgied via

a CdC} solution: 0 (control), 200, 300 and 400 mg?diResults of the present study revealed increas@)G
activity as cadmium concentration rose, while SO&ivdy was stimulated by a low Cd concentration
(200 mg/dm) and reduced by high levels of Cd. Based on tkeamt findings, it can be concluded that GPOX in
B. vulgaris played a more important role in ROS scavenging tB@D did and was able to reduce the level of
lipid peroxidation in plants. Cadmium, in the contzation range used, did not show any significdfece on
protein or photosynthetic pigment content.
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Introduction

Heavy metals are elements naturally occurring énBhrth's crust. Many have strongly
toxic effects [1, 2]. One of them is cadmium [3).the natural environment, cadmium is
often associated with lead and zinc ores [4]. Imcomtaminated soil, Cd concentration
varies from 0.01 to 5.0 mg/kg [5]. However, it istimated that about 30,000 Mg of
cadmium are released into the environment every. ygas pollution originates mainly
from cement production, the metallurgical indusfossil fuel combustion and the use of
artificial fertilizers [6, 7].

For higher plants, cadmium has no biological fumetilt is absorbed by the roots and
transported to the stems and leaves via the symafasapoplast pathways [8, 9]. Plants
activate various mechanisms in response to theepcesof cadmium, including chelation,
active transport into the vacuole, immobilizatiamd compartmentalization of metal ions.
Stress protein expression and increased ethylextkiption have also been observed [5].
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The most general symptoms of Cd stress are decimahlorophyll content and
inhibited photosynthesis, which manifest as lessmjn and reduced leaf area [10, 11].
Furthermore, Cd stress increases reactive oxygetiegp(ROS) levels, which can lead to
damage to vital molecules, such as proteins, ljpiB&NA and RNA [12]. Those
impairments can generate a metabolic malfunctiocelts and, as a result, may cause cell
death [13].

ROS are reactive atoms or molecules found in aildie organisms. Free radical ROS,
including hydroxyl radicals, alkoxy radicals, pedngxyl radicals and superoxide radicals,
as well as non-radical forms (singlet oxygen andirbgen peroxide), are naturally
produced in the mitochondria and chloroplasts ahfd and animals.

ROS overproduction causes oxidative stress andaaes various defense mechanisms.
Organisms use antioxidant enzymes, including asterperoxidase, superoxide dismutase
and catalase, to reduce the amount of ROS [13,Ndh-enzymatic defense mechanisms
include glutathione, non-protein amino acids, phienccompounds and ascorbic
acid [14, 15].

The aim of this study was an experimental studBebd vulgaris, measuring metabolic
stress under the influence of cadmium in varioumceatrations and assessing
the dependence of these processes on the contewetalfin the plants.

To demonstrate the effect of cadmium on metabolipmtein and photosynthetic
pigment content, lipid peroxidation, and the atyivif enzymes specific for oxidative stress
were determined.

Materials and methods

Plant materials and treatments

Seeds oB. wulgaris (7 g) were sterilized in a 5 % (w/v),8, solution for 10 min and
then treated with different concentrations of Cdied via a CdGl solution: 0 (control),
200, 300 and 400 mg/dmEach treatment was done in three replicates.r Aftehours of
Cd treatment, the seeds were washed with sterilervead sown in plastic pots filled with
perlite. The cultivation was carried out in a growthamber in a photoperiodic system
day/night 14/10 hours at a temperature of 20/16 r&Spectively, with 80 % relative
humidity. Irrigation via a Knap solution was progitl regularly in sufficient quantities for
plant growth.

Enzyme extractions and assay

The roots and shoots samples (1 g) were groundaepain liquid N, using a mortar
and pestle, after which the ground material wasdgemnized on ice in 2 chof a 50 mM
sodium phosphate buffer (pH = 7.0). The homogenate® centrifuged at 10,000 rpm
(revolutions per minute) for 20 min at 4 °C. Thepewatants were used in the
determination of guaiacol peroxidase (GPOX, EC 1T} and superoxide dismutase
(SOD, EC 1.15.1.1) activity and protein content.

GPOX activity was determined spectrophotometricaling guaiacol as the substrate
and HO, as the hydrogen donor. Colored tetraguaiacet £6.6 mM*cm™) is formed in
guaiacol oxidation process. The specific GPOX @gtiwas determined according to the
modified method by Zaharieva et al. [16]. The reacmixture (5.0 cr) consisted of
a 50 mM phosphate buffer (pH = 7.0), 38 mM g0:xland 4 mM of guaiacol. The reaction
was started by the addition of 0.2 %of the supernatant (enzyme extract). The increase
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absorbance was measured at 470 nm for 1-minutevaiiéeup to 5 minutes. The enzyme
activity was expressed in umol per minute and grdlims of protein.

SOD activity was determined by its ability to intibutooxidation of adrenaline and
thereby prevent the formation of active forms ofgen [17]. To prepare this, 0.055 tof
a 0.18 % (5.46 mmol) pharmacy solution of adremaligdrochloride was added to 2%m
of a 0.2 M sodium carbonate buffer (pH = 10.65nthmixed thoroughly and rapidly.
Absorption intensity was determined every 30 sesdiod 5 minutes at a wavelength of
340 nm (A), 0.01 cml of the enzyme extract and 0.055 cof 0.18 % adrenaline
hydrochloride were added to 2 Ewf buffer (pH = 10.65) and stirred, and the abtorp
intensity was measured as described aboye e blank was a buffered enzyme extract,
without adrenaline. Antioxidant activity (AA) of ¢h studied enzyme extracts were
expressed as the percent inhibition of autooxidatb adrenaline and calculated by the
formula:

(Al - Az) " 100 %
Ay
One unit of SOD activity was defined as the amoohtenzyme that caused the

inhibition of autooxidation of adrenaline by 50 #nzyme activity was expressed in units
per minute and milligrams of protein.

AA =

Determination of protein content

The amount of total protein of the roots and sh@at®ples was measured using the
Bradford method with bovine serum albumin (BSA) the standard [18]. Absorption
intensity of the extract was determined at a wagtle of 595 nm and the results were
reported in mg/g f.m. (fresh mass).

Determination of photosynthetic pigments content

The content of photosynthetic pigments was detezthlyy acetone extraction. Briefly,
0.1 g of roots and shoots samples were homogesizearately using a chilled mortar and
pestle with 5 crhof 80 % (v/v) acetone. The homogenates were d¢egéd at 10,000 rpm
for 10 min at 4 °C. The absorbance of the supenbatsas measured at 647, 663 and
470 nm. The contents of chlorophy| chlorophyll b and carotenoids were calculated
according to Lichtenthaler [19] and are given in/gnigm.

Determination of lipid peroxidation

Lipid peroxidation was expressed by the malondiayde (MDA) content, determined
by the thiobarbituric acid (TBA) reaction describbg Heath and Packer [20]. Briefly,
0.3 g of roots and shoots samples were homogesizearately in 4 cfrof 0.25 % (w/v)
thiobarbituric acid (TBA) in 10 % (w/v) trichloroatic acid (TCA) using a mortar and
pestle. The homogenates were heated at 95 °C fonir30quickly cooled in an ice bath and
then centrifuged at 10,000 rpm for 10 min. The abaoce of the supernatant was recorded
at 532 nm and 600 nm. The blank was 0.25 % TBAOIRATCA. The MDA concentration
was calculated by subtracting the absorbance atn@®@nonspecific turbidity) using the
extinction coefficient of 155 mM-cni* and expressed in terms of nmol/g f.m. [21].
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Determination of cadmium content

The roots and shoots samples (the dry mass of eash0.400 + 0.001 g) were
mineralized in a mixture of nitric (V) acid and lpdhloric acid (HNQ 65 % : HCI 37 % =
=1 : 3) using a Speedwave Four microwave ovendiB#r Germany). The mineralization
process temperature was 180 °C. Reagents (Merck) W8re used to prepare solutions
[22]. Cadmium was determined with the atomic abonpspectrometer iCE 3000 (Thermo
Electron Corporation, USA). The Instrument Detection LimiD[) and the Instrument
Quantification Limit (QL) for cadmium were 0.0028 and 0.013 mgidmespectively.
The highest concentration of the calibration stathdavailable from ANALYTIKA Ltd.
(Czech Republic), 2.5 mg/drwas adopted as the upper limit of the lineartieebetween
the concentration of the analyte and the instrunségmal [23]. The quality control of
measurements was conducted using test analysée QR 414plankton and BCR-482
lichen reference materials (Institute for Reference Makerand Measurements, Belgium).
The obtained results are summarized in Table 1.

Table 1
Measured and certified values of Cd concentraticthé BCR 414lankton
and the BCR 48Hchen reference material
BCR 414plankton BCR 482lichen
Certified . AAS . Certified . AAS .
value +Uncertainty Mean | %D D value +Uncertainty Mean | D D
[mg/kg d.m.] [%] [mg/kg d.m.] [%]
0.383 | 0014 | nd. ] nd] nd 056 ] 0.02 | 053] 003 5.

" Deviation - the difference between the measurdakevand the certified value, divided by the ceetifvalue
n.d. - not detected

Statistical analysis

All experiments were carried out three times, witsults expressed as mean values
+ standard deviation. One-way analysis of varian@d$OVA) and t-Student’s test were
used to determine statistical differences betwédentteatment samples and the control
using Excel (Microsoft, USA). Differences were ciigsed significant at the level
of p < 0.05. In order to assess the interdependencadrhium content iB. vulgaris roots
and shoots and the tested oxidative stress mar&ecejrelation analysis was performed
using Excel (Microsoft, USA).

Results

Protein content

The effect of different Cd concentrations on protedntent in the roots and shoots of
B. wvulgaris is shown in Figure 1. In the concentration rangedy cadmium did not show
any significant effect on protein content in eitpart of the plant.
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Fig. 1. The effect of different cadmium concentrasi on protein content iBeta vulgaris plants (bars

represent standard deviation); ANOMVA> 0.05 (shoot)p > 0.05 (root)

Superoxide dismutase activity

The effect of different Cd concentrations on SOEivity in the roots and shoots of
B. wlgaris is shown in Figure 2. The activities of this enzymere higher in roots than

shoots. For shoots, cadmium did not show any sigmif effect on SOD activity in the

concentration range used. For roots, superoxidautase activity increased with a lower
concentration of Cd, whereas a significant decreeas observed in response to higher

concentrations of the metal (300 and 400 mdjdm
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Fig. 2. The effect of different cadmium concentrasi on the activity of superoxide dismutase (SQD) i
Beta vulgaris plants (bars represent standard deviation); AN@WA0.05 (shoot)p < 0.05 (root)
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Guaiacol peroxidase activity

The effect of different Cd concentrations on GPQ@Xvity in the roots and shoots of
B. vulgaris is shown in Figure 3. The activity of the enzymealved in the removal of
H,O,was higher in roots than in shoots. Furthermorégih parts of the plant, the activity
of GPOX significantly increased as cadmium coneditn increased. In the case of roots,
a higher concentration of Cd (400 mgAislightly reduced GPOX activity.
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Fig. 3. The effect of different cadmium concentrasi on the specific activity of guaiacol peroxidase
(GPOX) inBeta vulgaris plants (bars represent standard deviation); ANOWA, 0.05 (shoot),
p < 0.05 (root)
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Fig. 4. The effect of different cadmium concentrat on malondialdehyde (MDA) content Beta
vulgaris plants (bars represent standard deviation); ANOYA,0.05 (shoot)p < 0.001 (root)
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Lipid peroxidation

Levels of lipid peroxidation in plant tissues Bf vulgaris were expressed as MDA
content and were significantly lower in samplesated with Cd compared to the control
(Fig. 4). However, no significant differences wdoaind in any of the samples treated
with Cd.

Photosynthetic pigments content

The effects of Cd on photosynthetic pigments cantee shown in Figure 5. No
significant differences were observed in pigmemtstent between Cd-treated samples and
the control.
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Fig. 5. The effect of different cadmium concentrai on photosynthetic pigments contentBeta
vulgaris shoots (bars represent standard deviation); ANO&#, a p > 0.05, chl.b p > 0.05,
carotenoidp > 0.05

Cadmium content

The cadmium content in plant tissues depended @edhcentration of Cdgbkolution
applied during the seed soaking process (Fig. b¢. Seedlings not treated with cadmium
had trace concentrations of Cd in both roots amabtsh The roots and shoots of control
seedlings contained up to 0.39 mg Cd/kg d.m. (dagsh Exposure of the seeds to excess
Cd caused a rapid increase in Cd content in thentplaMaximum uptake
(278.08 mg/kg d.m. in roots and 90.18 mg/kg d.nshnots) was noted in the 400 mgfdm
treated plants. No significant differences wereeobsd in root Cd content between the
samples of 300 and 400 mg/3@dCh treatment. Furthermore, cadmium accumulated more
in roots than in shoots (3.8 times more for the G@Gncentrations 200 mg/dnb times
more for 300 mg/dr 3 times more for 400 mg/dn
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Fig. 6. The effect of different cadmium concentra on cadmium content Beta vulgaris plants (bars
represent standard deviation); ANOVA< 0.001

Table 2
Correlation between cadmium contenBinvulgaris plants and MDA concentration, GPOX and SOD agtivit

Part of plant Correlation coeffic_ie_ntR _
Cd content/MDA Cd content/GPOX activity | Cd contentSOD activity
Root -0.79 0.68 -0.45
Shoot —-0.51 0.55 -0.32

The correlation between cadmium content in thesr@atd shoots oB. vulgaris and
the concentration of MDA and antioxidant enzymetvdg was investigated (Table 2).
The analysis revealed a strong negative correldietmween cadmium content and MDA
concentration. In addition, a strong positive clatien between the plant's cadmium
content and GPOX activity and a moderate negatimeelation between its cadmium
content and SOD activity were found.

Discussion

The main mechanism of cadmium phytotoxicity is théuction of oxidative stress.
During Cd stress, systems capable of preventingessikee oxidation are induced
or stimulated. These systems include some enzysoeb, as superoxide dismutase (SOD)
and peroxidases such as GPOX [24].

Superoxide dismutase constitutes the first lineedénlse against ROS by transforming
O, into G, and HO, [25]. In multiple studies, there have been varyagcomes on SOD
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activity in plants exposed to Cd [26]. In this stu&OD activity in roots was stimulated by
low Cd concentration (200 mg/dmHowever, high levels of Cd concentration dimieid
SOD activity compared to the control and 200 mg/dmncentration sample. These
changes were similar to those in previous studiggre SOD activity in plants increased
under low heavy metal concentrations and decreaseédr high concentrations, possibly as
a result of a more severe degree of metal toxj2ify31].

Peroxidases are important enzymes in plants tletable to lower oxidative stress
induced by heavy metals. The main function of pielases is scavenging@, in the cells.
Guaiacol peroxidase utilizes,8, by oxidizing co-substrates such as phenolic comgsu
and/or antioxidants [32]. In this study, the GPO#tidty in both roots and shoots
significantly increased with higher cadmium concatidon. This result was also obtained in
other research, although GPOX activity varied basedCd concentration and the plant
species used [30, 33-36]. The higher activity of0XPcan explain the remarkably low
concentration of MDA inB. wvulgaris treated with Cd and the reduction in the lipid
peroxidation level. These results indicated thatO&Pin B. wvulgaris played a more
important role in ROS scavenging than SOD did. lkemrnhore, SOD and GPOX activity
was approximately 50 % higher in roots comparedhoots. The roots also accumulated
more cadmium than shoots (up to 5 times more f@ B@/dni of CdCL). In most plant
species, cadmium and other heavy metals mainlynagiate in roots [28, 35, 37-41]. The
results suggest that increased accumulation ofnCthé roots ofB. wulgaris stimulates
GPOX activity, which protects cells from the negateffects of ROS.

In numerous other studies, chlorophyll and cardtinbave proven very sensitive to
oxidative stress induced by Cd [35, 36, 42]. In pnesent study, however, there was no
effect on photosynthetic pigments content in respot@ Cd, in the concentrations used.
Similar results were observed in Cd-expo¥edia faba [30].

In our study, there was no significant change tgin content under Cd stress (in the
concentration range used). Similar findings werseobed in garden cress, mustard and
rapeseed, which could be due to the induction oftesis of stress proteins [30, 42, 43].

Conclusion

Cadmium, in the concentration range used, did hotwsany significant effect on
protein and photosynthetic pigments content in ribets and shoots oBeta vulgaris.
Furthermore, the results of the present study teddacreased GPOX activity as cadmium
concentration rose, while SOD activity was stimedatby low Cd concentration
(200 mg/dm) and diminished by high levels of Cd concentratibrcan be concluded that
GPOX inB. vulgaris played a more key role in ROS scavenging than S@Dand was
able to reduce the level of lipid peroxidation ifamis. Our results indicate reliable
correlations between cadmium content and the vabiesxidative stress biomarkers in
plant tissues. The estimated correlation coeffisiemonfirmed that the studied parameters
depend on cadmium concentration.
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