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CHARACTERISTICS OF POLYMERIC ULTRAFILTRATION 
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WYTWARZANIE I CHARAKTERYSTYKA POLIMEROWYCH MEMBRAN 
ULTRAFILTRACYJNYCH Z DODATKIEM TLENKU GRAFENU 

Abstract: This article describes a method for producing polymeric membranes by adding carbon nanostructures in 
the form of graphene oxide (GO). The reference membrane (having typical composition) was formed via phase 
inversion, using polyvinylidene fluoride (PVDF) dissolved in dimethylacetamide (DMAC). The polymeric matrix 
was additionally enriched with a plasticizer, i.e. polyethylene glycol (PEG). Afterwards, graphene oxide 
ultrasonically dispersed in dimethylacetamide was added to basic matrix. The membranes were further compared 
with one another by measuring their contact angle and hydrodynamics. The results were compared with the 
literature reports. The transport properties of the membranes were assessed with experimental ultrafiltration 
equipment (KOCH Membrane System). Also, their permeate flux and mass transfer resistance were determined. 
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Introduction 

Nowadays wastewater coming from various industries is a growing problem for the 
environment [1]. Many methods are used to purify them, but membrane techniques, often 
enriched with natural and synthetic nanoparticles, are becoming more and more popular  
[2, 3]. Membrane techniques are especially useful for removing contaminants from dilute 
aqueous solutions [4]. Quality of drinking water and wastewater released into the 
environment is one of the world's biggest concerns; therefore, scientific research aims at 
enhancing membrane efficiency and selectivity without increasing energy consumption. 

This paper suggests applying graphene oxide (GO) nanoparticles to the production of 
polymeric membranes in order to improve their selectivity with regard to aqueous solutions. 
Investigating the membrane structure and controlling the membrane preparation process 
can help produce new materials and assess the influence of carbon nanoparticles on the 
separation performance, for example, in macromolecular or ionic solutions. Reports on this 
subject have recently appeared in leading journals dealing with membrane science. 
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Membranes functionalized with different nanoparticles [5-7] and carbon-based 
nanomaterials have lately become very popular because of their growing availability, 
mechanical durability and chemical resistance [8-13]. Graphene has been tested as  
a component of membranes designated for seawater desalination, drinking water production 
and gas separation [14-17]. The use of nanoparticles causes certain technical difficulties, 
for instance, pore size distribution in the membranes containing graphene is hard to be 
controlled. Usually, however, the main problem lies in achieving an appropriate structure of 
the material containing carbon nanoparticles and defining possible mechanisms of water 
transport across the membrane [10, 12]. 

Initially, membranes were produced by adding graphene; however, the commercial 
manufacture of graphene has been very expensive thus far. For this reason, graphene has 
been replaced with its derivatives such as carbon nanotubes and graphene oxide [17, 18]. 
The latter is much cheaper and easier to produce even under laboratory conditions, which is 
usually done using the Hummer's method [19]. Unlike graphene, graphene oxide quite 
readily yields to surface modifications. The membranes containing chemically transformed 
graphene oxide nanosurfaces have become the most theoretically and experimentally 
investigated nanomaterials, due to their atomic dimensions. Their properties come from the 
presence of oxygen-containing functional groups, i.e. hydroxyl, carboxyl and epoxy groups, 
as well as negative electric charges [20, 21]. Graphene oxide has amorphous structure and 
its properties depend on the type and distribution of functional groups containing oxygen.  
It can be potentially used in many areas such as the production of composite materials, 
medicine, optics and nanobiotechnology [22]. In most cases, graphene oxide membranes 
are employed as selective barriers in the separation of liquids and gases [23-27].  
Nano-flakes of graphene oxide are used as nanofillers increasing hydrophilicity and 
limiting the fouling phenomenon in polymeric membranes. Besides, the presence of 
graphene oxide substantially increases membrane permeability [28]. Graphene oxide is also 
used in filtration and adsorption processes for purification aqueous solutions containing 
dyes [12, 29-34] and heavy metal ions [35, 36]. 

In light of the above, this article is concurrent with new research trends and may 
complement the studies on the production of new membrane-forming materials. The study 
described in the article consisted in evaluating the performance of laboratory produced 
ultrafiltration membranes, including membranes containing graphene oxide distributed 
throughout the whole volume of the polymer. The specific properties of graphene oxide 
(such as the ability to change wettability and high electrical conductivity) turned out to 
affect the interactions between water or a separated solution and the membrane, thereby 
influencing its transport and separation characteristics, for example, by increasing water 
permeability. The literature sources cited above combine this phenomenon with 
simultaneous retention of other water particles or molecules by the membrane. It can 
therefore be assumed that such membranes could potentially be used for water desalination 
(including sea water), wastewater and sewage treatment as well as water softening, for 
example, during pretreatment in cogeneration power plants. 

In the last decade a very popular membrane material has become poly(vinylidene 
fluoride) - PVDF. It has received great attention as a membrane material with regard to its 
outstanding properties such as high mechanical strength, thermal stability, chemical 
resistance, and high hydrophobicity. Other polymers used for the membranes preparation 
such as polysulfone (PS), polyethersulfone (PES) and polyimide (PI) exhibit poorer 
properties comparing with PVDF. It should be noted that polypropylene (PP) and 
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polytetrafluoroethylene (PTFE) exhibit higher hydrophobicity. The preparation of PP and 
PTFE membranes due to the complexity in solvent selection is limited. PVDF easily 
dissolves in ordinary organic solvents. The porous PVDF membranes can be produced via 
phase inversion method by simple immersion and precipitation processes. The progress has 
been made in the fabrications PVDF membranes with higher performance for membrane 
distillation, membrane contactor as well wastewater treatment and sewage purification [37]. 

Table 1 [38] presents surface tension for several polymers. The hydrophobicity of the 
materials is associated also with contact angle, measured in the present work. 

 
Table 1 

Critical surface tensions of major polymeric membrane materials [38] 

Polymer  Critical surface tension [N/m] 
Polyacrylonitrile (PAN)  0.044  

Polysulfone (PS)  0.041 
Polyphenylene oxide (PPO)  0.041 

Polyethylene (PE)  0.031 
Polypropylene (PP)  0.029 

Polyvinylidene fluoride (PVDF) 0.025-0.0285 
Polyfluoroethylene (PFE)  0.022 

Polytetrafluoroethylene (PTFE) 0.0185 
Fluorinated ethylene propylene (FEP)  0.016 

Preparation of the membranes 

The first part of the study helped establish the composition of the reference membrane 
produced by phase inversion. The necessary chemical reagents were purchased from Sigma 
Aldrich. The reference membrane (Mem1) was prepared by dissolving 15 g of 
polyvinylidene fluoride (PVDF) having a molar mass of 534,000 g/mol in 85 g of 
dimethylacetamide (DMAC) (87.12 g/mol) using magnetic stirring for 24 h at room 
temperature. Afterwards, the polymeric matrix was enriched with 5 g of polyethylene 
glycol (PEG) having a molar mass of either 200 g/mol (Mem2) or 400 g/mol (Mem3), in 
order to enhance its mechanical properties and plasticity. Polyethylene glycol (PEG) is one 
of the main hydrophilic polymer additive which is mostly used for the blending with 
PVDF. The major role of PEG in the preparation and the surface modification of the PVDF 
membrane is more like pore forming agent (blowing agent) rather than hydrophilic agent. 
This additive is water solvable and can be removed by washing with a solvent during 
membrane preparation [39]. 

In the next part of the study, graphene oxide was added to selected matrices. After 1 h 
of ultrasonic dispersion in 10 g of DMAC, it was combined with the polymer and the whole 
mixture was being stirred for 24 h. As a result, the following membranes were produced: 
- membranes without the plasticizer: containing 0.5 mg of GO (Mem4) and 1 mg of GO 

(Mem5), 
- membranes with the plasticizer of 200 g/mol molar mass: containing 0.5 mg of GO 

(Mem6) and 1 mg of GO (Mem7), 
- membranes with the plasticizer of 400 g/mol molar mass: containing 0.5 mg of GO 

(Mem8) and 1 mg of GO (Mem9). 
After 24 h of stirring, membranes 250 µm thickness were formed with an Elcometer 

3530 adjustable film applicator. Then, they were conditioned in distilled water for about  
24 h and tested in the ultrafiltration process. 
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The addition of graphene oxide significantly changes membrane morphology [39], 
which is illustrated with the example in Figure 1. 

 

 
Fig. 1. SEM images of the cross-section and surface of the PVDF membrane made without GO (a, c) and 

with 5 % GO (b, d) 

Results and interpretation 

The nine produced membranes were examined by measuring their permeability, with 
the transmembrane pressure ranging from 1.0 to 6.0 MPa, and contact angle. 

The volumetric permeate flux was calculated from equation: 

 
v

V
J

A t
=

⋅
 (1) 

where: Jv - volumetric permeate flux [m3/(m2
·h)], V - permeate volume [m3], A - membrane 

surface [m2], t - time [h]. 
The membrane resistance Rm was determined from equation: 
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where: Rm - hydraulic resistance of the membrane [1/m], ΔP - transmembrane pressure [Pa], 
η - viscosity of water at 25 °C [Pa·s]. 
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Figure 2 compares the volumetric permeate flux of all the membranes produced 
without graphene oxide. After thorough analysis, selected membranes were enriched with 
graphene oxide at a later stage. 

 

 
Fig. 2. Volumetric permeate flux of the membranes made without GO 

Figure 3 shows the volumetric permeate flux of the membranes produced by adding  
a) 0.5 mg and b) 1.0 mg of graphene oxide. 

It was observed that the membrane made without graphene oxide but with PEG of 
200 g/mol molar mass (Mem2) provided a relatively high permeate flux, which tended to 
stabilize just after reaching a transmembrane pressure of ΔP = 3·105 Pa. The addition  
of 0.5 and 1.0 mg of graphene oxide distinctly increased the flux of water, which is 
illustrated in Figure 4. 

Meng et al. [40] presented the influence of temperature (during mixing the polymer 
matrix) on the microstructure of PVDF membranes. In the study nearly identical polymer 
matrix as in our work was used, but the researchers added a much bigger amount of 
graphene oxide. However, it can be noted that smaller content of GO used in our study 
results in higher permeate flux, e.g. for ΔP = 0.1 MPa, Jv = ~ 600 dm3/(m2

·h) (Fig. 5). 
The Rm values calculated for Mem1, Mem4 and Mem5 (produced with and without the 

use of graphene oxide) are shown in Figure 6. As can be seen, the membrane resistance 
decreased with growing concentration of the carbon nanostructures. 

The contact angle was determined for all prepared membranes using goniometer 
Surftens-universal (Optik Elektronik Geratechnik). Figure 7 shows the contact angle 
measured for membranes Mem2 and Mem7 as an example. It can be noted that the presence 
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of graphene oxide caused the contact angle to decrease from 54° to 20°. Such behavior is 
typically accompanied by an increase in hydrophilicity [41].  

 

 
Fig. 3. Volumetric permeate flux of the membranes made with: a) 0.5 mg of GO and b) 1 mg of GO 
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Fig. 4. Comparison of the volumetric permeate flux calculated for the membranes made with and without 

GO 

 
Fig. 5. Comparison of permeate fluxes with different amount of GO as additive [37]; own research 
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Fig. 6. Resistance of the membranes made without the plasticizer (and with or without GO) 

 
Fig. 7. Contact angle of the membranes made without and with GO 

The results are shown in work [41] were different than in our studies.  
The hydrophilicity of the PVDF/GO membranes was also characterized by measuring the 
contact angle. There was no effect of the addition GO on the value of the contact angle.  
For different load GO from 0 to 2 % in relation to membrane mass contact angle of about 
75° was observed. This is inconsistent with previous research studies [42-45] which have 
found that embedding GO into the polymer matrix can lead to a more hydrophilic 
membrane. The authors explain this too small loading of GO in PVDF membrane could not 
cause ‘dramatically change the overall hydrophilicity of the membrane, considering the 
high hydrophobicity of PVDF’. Comparison of own studies with cited works is shown in 
Figure 8. It is worth noting that our membrane containing only 0.0005-0.001 % of graphene 
oxide. 
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Fig. 8. Effect of GO loading on water contact angles of membranes PVDF/GO-50, PVDF/GO-100 [37] 

and our (Mem7) 

Summary and conclusions  

In the study, elastic and mechanically durable membranes were laboratory produced 
using the phase inversion method. Some of the membranes were enriched with either/both  
a plasticizer or/and graphene oxide. The separation performance of the membranes was 
evaluated by determining their volumetric permeate flux and contact angle.  

As a result, it was established that the addition of graphene oxide had caused  
a substantial (up to a 60-fold) increase in the membrane permeability. The permeate flux of 
the membrane containing polyethylene glycol having a molar mass of 200 g/mol was equal 
to 0.035 m3/(m2

·h) at ΔP = 6·105 Pa. The same membrane produced by adding graphene 
oxide provided a flux of 2.30 m3/(m2

·h). The presence of graphene oxide made the 
membrane more hydrophilic, which was quantified by measuring the contact angle. 

The presented study was intended as an initial step required to optimize the membrane 
composition; therefore, further separation experiments are planned. They will employ 
model substances of known molecular mass, including aqueous solutions of 
macromolecular and ionic compounds. 
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