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Abstract:  Wastewater treatment processes are subject to numerous disturbances during biological treatment of 
wastewater. In order to achieve and sustain suitable conditions of the process, basic wastewater parameters should 
be frequently monitored. While great improvements have been made in the automatization of treatment process, 
little is known about automatic measuring systems that can detect unusual process conditions in a bioreactor. 
Tracking these parameters can be difficult and the time required for the determination might vary from several 
minutes to few days. The objective of this study is to evaluate the use of an electronic nose in-house device (based 
on a non-selective gas sensor array) for the detection of process disturbances in a lab-scale sequencing batch 
reactor (SBR) during biological treatment of wastewater with activated sludge. Measurements were performed 
during a 12-hours working cycle. Continuous analyses of the headspace were performed using a sensor array 
based on the resistive Metal Oxide Semiconductor type (MOS) gas sensor. Based on the data obtained and the 
PCA analysis, this study showed that the e-nose technology can be used to predict or retrieve information about 
potential disruptions during wastewater processes using the e-nose technology. 
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Introduction 

The evaluation of wastewater treatment process in bioreactors with activated sludge 
mainly relies on specific physicochemical parameters such as: Biological Oxygen Demand 
(BOD), Chemical Oxygen Demand (COD), pH, Oxygen Uptake Rate (OUR), Total 
Suspended Solids (TSS), Total Organic Carbon (TOC), as well as the phosphorus and 
nitrogen content [1]. These methods are well-known and widely employed, allowing  
a relatively precise control over the treatment process and with the final goal of meeting the 
standard requirements including processes efficiency [2-4]. However, due to their 
complexity and time-consuming nature, these techniques might be expensive and 
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operationally difficult for a constant monitoring of treatment. Some of the experimental 
procedures may take several days to complete and obtaining consistent results might be 
hard to achieve due to potential inconveniences (e.g. BOD5). Generally, on-line 
measurement methods are still scarcely used due to their short lifespan and high failure rate 
of measurement devices or their high cost, which translates into extensive investments 

Monitoring wastewater quality based on the analysis of air collected from the headspace 
may be conducted with multi-sensory systems [5]. These devices, coupled with a signal 
processing and interpreting computer system, are called electronic noses. An electronic nose 
is designed to mimic the olfactory sense of a human. While it does not constitute an objective 
substance detector, the device is constituted of a gas sensors array [6] that sends signals 
defining each analyzed gas sample. Combinations of signals are largely unique for individual 
gas samples, and they are commonly known as gas fingerprints [7]. Due to their way of 
operating, it is virtually impossible for electronic noses to determine individual components of 
a gas sample. Rather, the device is used to determine general characteristics of gases. The 
signals, obtained via the array, correspond with some degree of certainty to multiple 
physicochemical properties of the gas samples. For example, these signals allow the 
determination of total volatile organic compounds [8], some chemical substances [9, 10], 
odour concentrations, as well as the other gas sample parameters [11]. Signals can also be 
used for measurements of a liquid concentration in equilibrium with the gas phase. Due to 
their different applications and low cost, electronic noses are widely employed in numerous 
fields of science and branches of industry. The e-nose was also successfully implemented in 
the medical field [12, 13]. In addition, the e-nose has been practically used  
in the pharmaceutical [14], cosmetology [15], and food industry [16] together with other 
fields [17-19]. 

The sensor array of an electronic nose includes a set of low-selective gas sensors which 
produces a complex, multi-dimensional set of signals. Each of the sensors forming an array 
is sensitive to different groups of chemical compounds. Hence, every gas mixture yields  
a distinct signal profile [20]. Gas sensors utilized in electronic noses can be divided into 
four different groups: thermal, optical, gravimetric, and electrochemical. The sensors that 
are most commonly employed in electronic noses include metal oxide semiconductor 
(MOS) resistance sensors, conducting polymers (CP), quartz crystal microbalance (QCM) 
or surface acoustic wave (SAW) sensors [21]. Recently biosensors and bioelectronic noses 
have been increasingly applied for environmental measurements [22]. 

Prior to being used in a sensor array, a gas sensor must meet a number of requirements 
[23]. Monitored parameters include: selectivity, reaction time, sensitivity to a given gas, 
signal recovery, lifespan, as well as power consumption. Taking into account the arrangement 
of sensors in relation to the direction of gas stream flow, one can distinguish between parallel 
and serial arrays. In the former, the influent gas reaches all sensors (that are usually arranged 
in a circular fashion) simultaneously, whereas in the latter, the stream of gas flowing through 
the chamber reaches the sensors in a consecutive manner, possibly causing signal  
distortions [24]. 

From a sensor array operation standpoint dividing a gas sample into individual 
chemical compounds can be irrelevant. Given the partial selectivity of sensor arrays,  
a broad spectrum of polluted air profiles emitted during wastewater treatment can be 
revealed, recorded and distinguished [25]. The analysis of results obtained during the 
laboratory research conducted with a sequencing batch reactor (SBR) indicates that, by 
employing the multi-dimensional signals analysis methods, each profile, understood  
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as a combination of sensor signals, may be assigned to a given class, representing 
individual phases of reactor operation. SBRs are often used for scientific research and 
implementation of new solutions or exploitation strategies [2, 26-28]. 

Based on literature, multi-sensory arrays allow the identification of wastewater in 
respect to the level of pollution. Usually, it involves assessing the possibility of using  
the e-nose to identify and classify odors, depending on where they originate in a wastewater 
treatment plant [29, 30] and evaluate the concentration of odor in the relevant air samples 
[31-33]. This is as important issue since WWTPs are one of the main nuisance source of 
odorous air emissions, in particular stages of the wastewater treatment [34] as well  
as bioaerosol source [35, 36]. Moreover, attempts were made to correlate the data obtained 
from sensors arrays with basic physicochemical parameters determining the wastewater 
quality, including BOD5 [29, 37], hydrogen sulfide [38], COD and TSS [39] or volatile 
organic compounds [30]. Satisfactory results were also obtained in relation to the odour 
concentration value [25]. It was assumed that highly polluted wastewater should differ 
noticeably from the wastewater polluted to a lesser degree. Some studies indicate that 
electronic noses may serve as an early detection system, revealing compounds that could 
potentially be hazardous to microorganisms involved in biological treatment of wastewater 
[40]. Sensor array systems were also utilized to detect non-specific waste accidentally 
discharged into the sewage network [41, 42]. These include, among others,  
hardly-biodegradable crude oil derivatives which may hinder the operation of the activated 
sludge, as well as any correlated process in a plant. This research shows that the electronic 
nose technology can be employed as an early warning system, notifying about the presence 
of compounds that could negatively affect the biological treatment process. The following 
step includes a potential implementation of the electronic nose system for monitoring 
wastewater treatment processes in an actual plant setup. Specifically, this study evaluated 
disruptions in wastewater treatment processes in an SBR with activated sludge by means of 
an array of resistive MOS-type gas sensors. The carried out measurements and the data 
obtained were validated by means of Principal Component Analysis (PCA). 

Materials and methods 

A schematic of the test stand including the SBR used for the treatment of wastewater is 
shown in Figure 1. The bioreactor allowed the reduction of organic compounds and 
nutrients (carbon, nitrogen, and phosphorus) during the reactive phase that consisted of 
mixing and aeration. The equipment included three independent 10 dm3 SBRs. The reactors 
comprised an aeration system with a membrane diffuser, luminescent/optical dissolved 
oxygen (LDO) probes, a mechanical stirrer, as well as a monitoring control station - which 
maintained an adequate dissolved oxygen level - and a temperature stabilization system 
consisting of a water bath coupled with a thermostat [43]. An average dissolved oxygen 
concentration of 2 mg O2 dm–3 was measured and kept constant throughout the 
experiments, while the temperature of the sewage was maintained stable at 20 °C. 

The wastewater used in this study was sampled from the primary settling tank of the 
municipal wastewater treatment plant in Lublin (South-eastern Poland), where the daily 
volume of wastewater Qd averages 60 000 m3 d–1. This mechanical-biological plant operates 
in a continuous flow arrangement, where the chambers of the bioreactor utilize a Bardenpho 
technology with no need for additional chemical reagents [26, 44]. The activated sludge, used 
for the inoculation during the bioreactor start-up, was also collected at described above plant. 
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The sludge parameters were as follows: mixed liquor volatile suspended solids  
(MLVSS) = 4.15 g dm–3, mixed liquor suspended solids (MLSS) = 5.45 g dm–3, sludge 
volume index (SVI) = 179 cm3 dm–3, and a sludge retention time (SRT) of 15 days. 

 

 
Fig. 1. Schematic of the laboratory SBR and headspace sampling method used in this study (1 - SBR 

chamber; 2 - electric motor; 3 - transmission; 4 - membrane blower; 5 - stirrer; 6 - diffuser;  
7 - level of sewage; 8 - temperature stabilization system; 9 - desiccant-membrane dryer; 10 - gas 
sensors array) 

During the experiment, the SBR (Fig. 1) operated at a 12-hours cycle (Fig. 2) and it was 
connected to a multi-sensory measurement system. Continuous mixing of wastewater lasted 
for 9 hours, starting from the second hour of the cycle. After 2 hours, the continuous aeration 
mode was switched on for 2.5 hours, followed by sequential aeration in several minutes’ 
intervals. This step was required to maintain a desired concentration of dissolved oxygen in 
the bioreactor. In the final phase of the cycle, a 2-hour long sedimentation and decantation 
occurred while the treated wastewater was discharged. The reactor chamber was then filled 
with untreated wastewater. 

 

 
Fig. 2. Timing major phases of the SBR operation cycle 

A sensor array was utilized to control the stability of the wastewater treatment process. 
The selection of gas sensors was based on the following criteria: (i) low number of sensors, 
(simpler system and lower construction costs with the possibility of repeated measurements), 
(ii) low selectivity of sensors, (iii) universal type (available in most of the countries and 
proven effective in similar applications), (iv) relatively low power consumption (allowing to 
use these sensors in mobile devices), (v) uniformity of sensor types within an array. 

Measurements of the gas phase collected from the reactor headspace was carried out by 
means of an array comprising eight MOS-type Figaro TGS 2600 series sensors, a temperature 
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sensor (Maxim-Dallas DS18B20), and a relative humidity sensor (Honeywell HIH-4000). All 
of sensors were characterized by a small size and power consumption up to 300 mW [45, 46]. 
Their low cost, universal availability and reliability allowed utilizing them in multiple 
experiments. This allows for a partial comparison of results, because any commercially 
available sensor has precisely identical characteristics. A complete comparison could be 
performed only for e-noses with identical gas sensors, calibrated in the exact same way. The 
placement of sensors is depicted in Figure 3, whereas their physicochemical parameters are 
presented in Table 1. 

 

 
Fig. 3. Front view of the sensors array: 1 - TGS2600-B00, 2 - TGS2610-C00, 3 - TGS2611-C00,  

4 - TGS2612-D00, 5 - TGS2611-E00, 6 - TGS2620-C00, 7 - TGS2602-B00, 8 - TGS2610-D00,  
T - DS18B20, Rh - HIH-4000 

Carrying out measurements with MOS-type sensors involves recording changes in the 
resistance of the sensing element. According to the manufacturer’s application schemes, the 
output voltage has to be measured in the resistive divider comprising sensing element RS and the 
load resistor RL connected to the ground circuit. Afterwards, the resistance of sensing element is 
determined according to the formula �� = �� ∙ (�	 − ���
) ∙ (���
)��, where: �� - resistance 
of the sensing element [kΩ], �� - resistance of the load resistor [kΩ], �	 - input voltage of the 
divider [V], ���
 - output voltage of the divider [V]. 

Measurements were carried out in a continuous mode over a period of 60 days, with  
a measurement frequency of 1 Hz, which adds up to 5.1×105 of 8-dimensional data. These 
measurements included filling, mixing and aeration, as well as sedimentation and decantation. 
The gas sensors were flushed with clean air during the decantation and filling phases.  
The flow of sample stream was constant and amounted to 200 cm3 min–1. Given the detected 
humidity, the samples were dried with a DM-110-24 Perma Pure membrane dryer composed 
of a Nafion tube and granular silica gel. During the measurements, the temperature of gases 
inside the sensor chamber of the electronic nose averaged 35 °C (±2 °C), while the relative 
humidity reached 20 % (±5 %). High temperature of the considered gases resulted from the 
operation of heaters built in MOS-type sensors, which could have also mitigated a potential 
danger of water vapor condensing from gases. The thick walls of the sensor chamber 
prevented temperature changes in gas samples. 

PCA was employed for the analysis of the data obtained from each individual SBR 
operation phase. PCA involves the selection of new, mutually independent variables  
(i.e. axes) which describe the variability of the analyzed dataset in a detailed way [47].  
The designated variables have no physical significance per se, and no unit. Their contribution 
in the total dataset covariance (expressed as percentage) is the sole marked value. However, 
this type of plotting reveals differences and relations between the data, normally within 
hidden multi-dimensional datasets. PCA also allows decreasing the number of dataset 
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dimensions, losing only a small portion of information. The measurement data can 
subsequently be grouped and the results can be depicted graphically. Since as few as two or 
three new PC variables are enough to describe up to 90 % of dataset variables, the data can be 
plotted in two- or three-dimensional graphs. 

 
Table 1 

Specification of gas sensors applied in array [46]  

Type Description 
Detection 

range 
[ppm] 

Heating  
element 
Voltage 

Resistance 
Current 
Power 

Sensing element: 
Voltage 

Load resistance 
Power 

Resistance in gas 

Sensitivity 
(change ratio) 

 

TGS2600-
B00 

Figaro 

general air 
contaminants 

1-30 
(H2) 

5.0 ±0.2 V 
83 Ω 

42 ±4 mA 
210 mW 

5.0 ±0.2 V 
> 0.45 kΩ 
< 15 mW 

10-90 kΩ clean air 

0.3-0.6 for 
��(10 ppm H�)

��(air)
 

TGS2602-
B00 

Figaro 

general air 
contaminants 

1-30 
(EtOH) 

5.0 ±0.2 V 
59 Ω 

56 ±5 mA 
280 mW 

5.0 ±0.2 V 
> 0.45 kΩ 
< 15 mW 

10-100 kΩ clean air 

0.15-0.5 for 
��(10 ppm EtOH)

��(air)
 

TGS2610-
C00 

Figaro 

butane, liquid 
petroleum gas 

500-
10000 

5.0 ±0.2 V 
59 Ω 

56 ±5 mA 
280 mW 

5.0 ±0.2 V 
> 0.45 kΩ 
< 15 mW 

0.68-6.8 kΩ iso-butane 1800 ppm 

0.56-0.06 for 
�� (3000 ppm)
�� (1000 ppm)

 

TGS2610-
D00 

Figaro 

butane, liquid 
petroleum gas 
(carbon filter) 

500- 
10000 

5.0 ±0.2 V 
59 Ω 

56 ±5 mA 
280 mW 

5.0 ±0.2 V 
> 0.45 kΩ 
< 15 mW 

0.68-6.8 kΩ iso-butane 1800 ppm 

0.56-0.06 for 
��(3000 ppm)
��(1000 ppm)

 

TGS2611-
C00 

Figaro 

methane, natural 
gas 

500- 
10000 

5.0 ±0.2 V 
59 Ω 

56 5 mA 
280 ±25 mW 

5.0 ±0.2 V 
> 0.45 kΩ 
< 15 mW 

0.68-6.8 kΩ methane 5000 ppm 

0.6-0.06 for 
��(9000 ppm)
��(3000 ppm)

 

TGS2611-
E00 

Figaro 

methane, natural 
gas (carbon 

filter) 

500- 
10000 

5.0 ±0.2 V 
59 Ω 

56 ±5 mA 
280 ±25 mW 

5.0 ±0.2 V 
> 0.45 kΩ 
< 15 mW 

0.68-6.8 kΩ methane 5000 ppm 

0.6-0.06 for 
��(9000 ppm)
��(3000 ppm)

 

TGS2612-
D00 

Figaro 

methane, 
propane,  

iso-butane 

1-25 % 
LEL 

5.0 ±0.2 V 
59 Ω 

56 ±5 mA 
280 mW 

5.0 ±0.2 V 
> 0.45 kΩ 
< 15 mW 

0.68-6.8 kΩ methane 5000 ppm 

0.5-0.65 for 
��(9000 ppm)
��(3000 ppm)

 

TGS2620-
C00 

Figaro 

alcohol, solvent 
vapors 

50-5000 

5.0 ±0.2 V 
83 Ω 

42 ±4 mA 
210 mW 

5.0 ±0.2 V 
> 0.45 kΩ 
< 15 mW 

1-5 kΩ ethanol 300 ppm 

0.3-0.5 for 
��(300 ppm)
��(50 ppm)

 

 
In our experiments, PCA was used to reduce the number of data set dimension and find 

the relations hidden due to the bulk of information. First, a covariance matrix between all the 
variables was designated. Second, eigenvalues and eigenvectors were designated for the 
covariance matrix. Eigenvectors were arranged according to the values corresponding to 
eigenvalues. Then, eigenvectors corresponding to the highest values were selected [5, 47].  
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The cluster analysis for the reduced data was carried out with the k-means method.  
A typical k-means algorithm minimizes the squared error function E (1): 

  = ∑ ∑ "#$ − %&"
�'

$(�
)
&(�  (1) 

where i is the ordinal number of cluster, k is the total amount of clusters, j is the ordinal 
number of data point in i cluster, n is the total amount of data points in i cluster, #$ is the 
value of data point belonging to the respective i cluster, whereas μi is the center of i cluster.  

The cluster centers were initially chosen in such way, so as to maximize the cluster 
distance. Other methods of data discrimination include Linear Calibration Methods (LCM), 
Linear Discriminant Analysis (LDA), Functional Discriminant Analysis (FDA), Partial 
Least Squares Discriminant Analysis (PLS-DA), Generalized Linear Models with 
Regularized Path (GLMNET), Support Vector Machine (SVM) or Artificial Neural 
Network (ANN) [48-52]. All the statistical calculations and analyses were carried out with 
the Statistica 10 StatSoft software. 

Results and discussion 

Sensor array unprocessed outputs obtained during the measurements are presented in 
Figure 4. Recurring 12-hour long SBR operation cycles can be observed. During the 
decantation phase and the raw wastewater supply, the sensors were flushed with clean air for 
30 minutes. Their resistance was then at peak point. After the addition of wastewater and 
sealing of bioreactor, a probe was placed again into the SBR chamber and air was collected 
from the headspace. A drop in sensor resistance occurred, resulting from the greater pollution 
of air sampled from the headspace when compared with the clean air used for flushing.  
A 2-hour long mixing constituted the first SBR operation phase. During the initial stage of 
mixing of the chamber contents (activated sludge, supernatant water and raw wastewater),  
a sudden increase in the amount of gaseous pollutants occurred in the air and because of this 
phenomenon the resistance of sensors decreased abruptly. The next phase involved the 
sequential aeration of the reactor over a period of 7 hours, followed by 2-hours sedimentation. 
Although the raw wastewater was characterized by a relatively high physicochemical 
parameters variability, constant monitoring showed numerous recurring cycles, closely 
resembling an optimal operation of the bioreactor. Any deviation from the typical 
characteristics denote a change in the bioreactor operation (a potential malfunction of an SBR 
element) or a drop in the wastewater treatment efficiency caused, for instance, by the influx of 
substances poisonous to the activated sludge. 

At the initial stage of the study (Fig. 4), an experimental SBR failure was simulated and 
carried out. This step involved turning off aeration and mixing systems; this created suitable 
conditions for the growth of anaerobic bacteria. A noticeable drop in the resistance of all gas 
sensors, around 33.4 % compared to the baseline resistance during normal operation, was 
observed. This step was named as “deepening of anaerobic conditions” (Fig. 4a). Afterwards, 
the aeration and mixing systems were turned on again. An increased release of malodorous 
gases (characterized by high olfactory nuisance), resulting from the operation of the activated 
sludge under anaerobic conditions, was observed. Due to a significant contamination of the air 
in the headspace of wastewater, the sensor resistance roughly decreased by 77.3 % compared 
to the baseline conditions. The conditions characterizing the normal operation mode were 
gradually restored in the following operation cycles. 
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The two unnatural occurrences are easily discernible from the typical operation of the 
bioreactor as shown in Figure 4a. This confirms the possibility of employing multi-sensory 
systems for a continuous monitoring of bioreactors conditions, instantly notifying about any 
anomalies in its operation. As the sensors are not submerged in an aggressive environment, 
i.e. wastewater, they are characterized by greater durability in comparison to the ones utilized 
in other immersive methods. 

 

 
Fig. 4. Unprocessed output from the gas sensor array recorded: a) during continuous monitoring,  

b) typical repetitive sensor output with process description  

 
Fig. 5. Statistics analysis of sensor outputs (relative resistance RR) obtained during the measurements. 

Bars: minimum RRmin and maximum RRmax, frame: average ��**** ± standard deviation σ 

a) b) 
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Figure 5 shows the basic statistics pertaining to the individual sensor outputs recorded 
throughout the entire experiment. For results uniformity, the relative resistance RR=RS/RO, 
was determined, where RS 

corresponds to the resistance [kΩ] of a sensor during the gas 
phase measurement, whereas RO stands for the resistance [kΩ] of a sensor in the clean air 
environment. The frame presents the range of a standard deviation from the mean value 
(��**** ± ,), whereas the whiskers correspond to the minimal RR (RRmin) and maximal RR 
(RRmax) values. Disturbances characterized by lower mean RR value (��****) can be clearly 
distinguished in all the phases of cyclic operation. The first phase of reactor operation is 
characterized by minimal and maximal readouts close to the range of ��**** ± ,. 
Sedimentation, mixing, and aeration phases seem to be similar to each other; therefore, 
further complex analysis of multi-dimensional data is required. 

PCA allowed to reduce an 8-dimensional set of data (corresponding to the number of 
sensors) to two new uncorrelated dimensions, which best reflected the variability in the data 
set. For this purpose, 8.1 · 103 8-dimensional measurement results, describing individual SBR 
operation cycles to a most accurate degree (stabilized sensor output), were selected.  
Multi-dimensional measurement results obtained by means of the afore-mentioned sensor 
array were projected onto 2-dimensional PCA plane (Fig. 6) with two eigenvectors, 
designated for the highest eigenvalues of covariance matrix. Eigenvectors are shown Table 2 
(5th and 6th column from the left). As a result of mathematical transformations, the new 
uncorrelated PC1 variable contains 95.67 % of information pertaining to the original data set 
and may be solely taken into consideration during the interpretation of results. However, in 
order to improve the chart interpretation, another variable, PC2 (2.67 %) was also accounted 
for. These two factors added up to 98.34 % of original information from the unprocessed 
output. 

 
Table 2 

Parameters of eigenvalues (in rows) and two maximal eigenvectors (in columns) of PCA transformation matrix 
covariance and basic characteristics of variables (sensors) 

No. Eigen-
value 

Covariance 
[%] 

Cumulative 
covariance 

[%] 

Feature 
vector of 

PC1 

Feature 
vector of 

PC2 
Variables Variable 

averaged 
SD* 

1 556.77 95.67 95.67 –0.26 0.43 2600-B00 7.46 6.34 
2 15.55 2.67 98.34 –0.63 –0.72 2602-B00 15.51 15.11 
3 5.54 0.95 99.29 –0.50 0.23 2610-C00 14.92 11.85 
4 2.24 0.38 99.67 –0.26 0.05 2610-D00 7.46 6.44 
5 1.16 0.20 99.87 –0.19 0.17 2611-C00 5.39 4.61 
6 0.45 0.08 99.95 –0.19 0.01 2610-E00 8.95 4.72 
7 0.23 0.04 99.99 –0.31 0.30 2612-D00 9.76 7.46 
8 0.06 0.01 100.00 –0.23 0.36 2620-C00 6.13 5.70 

*SD - standard deviation 
 
The results obtained from the analysis are shown in Figure 6. The SBR operation 

phases, as well, as abnormal states can be divided into 5 classes: (i) restoration of aerobic 
conditions, (ii) deepening of anaerobic conditions, (iii) untreated wastewater - after the 
addition of raw wastewater, (iv) treated wastewater - after treating process, and (v) clean 
air. A change in physicochemical properties of the air in the SBR chamber is proportional 
to the x-axis of PC1. On the left portion of the plot in Figure 6 points representing clean air 
can be noted. As the pollution level of wastewater increases (greater concentration of 
volatile substances in the air), there is a shift to the right side of the plot. This shows the 



Grzegorz Łagód, Łukasz Guz, Fabrizio Sabba and Henryk Sobczuk 

 

414 

change first from treated wastewater to untreated wastewater and finally to the deepening of 
anaerobic conditions. Restoration of aerobic conditions is reflected in the graph by a shift to 
the left. During the restoration of aerobic conditions initial pollutants emission was very 
intense but then it gradually decreased. 

Identifying the state corresponding to aeration is extremely difficult, as the relevant 
points overlap with the cluster of points reflecting the treated wastewater. On the other 
hand, the points corresponding to mixing partially overlap with the states following the 
addition of untreated and treated wastewater.  

 

 
Fig. 6. PCA analysis of different stages in an SBR 

Grouping of reduced data was carried out with k-means method. The algorithm found 
the following clusters in the plane of first two uncorrelated principal components PC1 and 
PC2: –81.25, –8.75 (clean air); –50.21, 0.14 (treated wastewater); –27.76, 6.25 (after the 
addition of raw wastewater); 10.12, 10.78 (deepening of anaerobic conditions);  
10.91, –1.15 (restoration of aerobic conditions). The centers of the clusters were marked 
with crosses in Figure 6. Clustering is characterized by high inter-group variance  
(,-	�

�  = 327896.2, ,-	�
�  = 7432.4) and low intra-group variance (,-	�

�  = 4494.9,  
,-	�

�  = 1848.2).  
In order to evaluate the usefulness of employing sensor array for on-line SBR 

measurements, the transformation used for Table 2 was extended on all the results obtained 
from measurements conducted over several days. Afterwards, the distances of each 
measurement in relation to the 5 defined cluster centers - representing individual SBR 
operation cycles - was assessed, with the shortest Euclidean distance between the point and 
center of a cluster determining the group. The detection accuracy of individual states 
amounted to 78.04 %. In this case a variable content of wastewater collected from the 
WWTP was probably the reason for a relatively low precision of detection. 
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Our research suggests that it is possible to discriminate signal fluctuations during  
a 12 hour operation cycle (Fig. 4). Any deviation from the normal functioning is clearly 
visible from the plot shown in Figure 4 (e.g. deepening of the anaerobic conditions or 
restoration of aerobic conditions). A similar behavior with regards to signal fluctuations has 
been shown previously in literature [41]. Moreover, a consistent response in profiles for the 
eight sensors was observed during a 5 day period confirming the reproducibility of the 
signals. These results demonstrate that a chemical sensor array can rapidly detect the 
presence of organic compounds, such as diesel, in a wastewater [41]. 

Although the on-line monitoring of the sewage system was performed, there is not 
available information about a quantization the treatment stages yet. The percentage of 
accuracy for the classification of these signals reached 78.04 %. Research has shown that 
the e-nose can be a suitable device for a classification of wastewater. Onkal-Engin et al. 
[37] performed odors classification respectively to their location in WWTP. Samples were 
collected at different locations: influent, settling tank, activated sludge and final effluent.  
A clear classification was obtained with a correlation of 0.99631, corresponding to an RMS 
error of 0.022407. A percentage of 93.06 % of the outputs were classified successfully with 
an error below 10 % [53]. Although, no significant odor problems were recorded within the 
mentioned plant, Onkal-Engin et al. [37] observed that in certain days the nose output was 
higher when compared to the daily average. This behavior could be linked to the seasonal 
variations or the nature of the sewage. These variations were also recorded in our research, 
and are shown in Figure 5. The operation stages as ‘mixing’ and ‘mixing + aeration’ are 
characterized by a wide band of standard deviation. 

This type of wastewater classification has been also shown in other studies. 
Dewwetinck et al. [39] showed that processing the fingerprints with PCA allowed for the 
interpretation and differentiation of the wastewater samples in terms of origin and quality, 
relative to their reference (i.e. deionized water). In other WWTPs, samples collected from 
the inlet works, settling tank, and final effluent, over a 8 month period showed that 
nonspecific sensor array can distinguish between different types of sewage samples and 
from different treatment works [54]. The research conducted by Nake et al. [30] showed 
that conducting-polymer (CP) sensors appear to be not suited for this application while 
MOS sensors were a better fit. MOS sensors were able to discriminate between the different 
odors from outdoor sludge/bark mixer, outdoor deodorization tower, outdoor sludge 
dewatering and clarifier [30]. All of these studies show that the indirect discrimination of 
wastewater quality using MOS sensors is possible. Based on the previous studies, we can 
precisely separate and differentiate between the clusters show in the PCA plot in Figure 6. 
When the results fell towards the right side of the plot (untreated wastewater), this could 
mean a potential disturbance during the treatment process. A similar analysis, using PCA, 
was presented by Bourgeois et al. [42]; every disturbance in the wastewater quality (caused 
by e.g. heavy rain or chemical pollution) was clearly identifiable in the PCA plot. 

Conclusions 

The conducted research indicates that a gas sensor array can be successfully employed 
to monitor wastewater treatment processes in a SBR. The described method allows the 
identification of individual bioreactor operation phases by accurately recognizing 
characteristic states and phases of the operation. The sensor array was able to distinguish 
the following phases: (i) restoration of aerobic conditions, (ii) deepening of anaerobic 
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conditions, (iii) period after addition of untreated wastewater, (iv) period during discharge 
of treated wastewater, and (v) introduction of clean air used for flushing the e-nose system.  

Multi-sensory systems can be utilized for continuous monitoring of SBRs, instantly 
notifying about any anomalies during its operation. The detection accuracy of individual 
states amounted to 78.04 %. These sensors, used in a less aggressive matrix are characterized 
by greater durability in comparison to the ones utilized in other immersive methods.  

In the future, these types of sensors can be applied for an initial assessment of different 
wastewater quality parameters (e.g. COD). Moreover, using numerical modelling, various 
simulations can be carried out and used to test different conditions and dynamic behaviour 
of input/output variables together with the local conditions in a selected part of the process 
in a WWTP. Finally, the relatively low cost, compared to other techniques, allow the 
implementation of this device for a broad range of application. However, further research 
will be required to investigate, for instance, parameters such as long term stability of 
readings and the influence of both temperature and humidity on the sensors. 
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