Quantity and Quality of Biogas Produced from the Poultry Sludge Optimized by Filamentous Fungi

Open access

Abstract

One of the methods for recovery and utilization of waste products from the poultry industry is to subject them to the methane fermentation process in the biogas plant. These are waste with a high content of fatty compounds and proteins, including keratin. Their specificity is characterized by rapid possibility of spoilage, rancidity and problems of further management. These wastes are characterized by varying degrees of complexity, thus their use as a raw material for the biogas fermenter should be preceded by a pre-treatment. An example of waste generated in poultry processing is biological sludge. Optimizing this material with highly enzymatic fungi could accelerate the degradation of the organic matter contained and, as a result, increase the energy efficiency of this type of waste. Quantitative and qualitative parameters of biogas produced from biological sludge processed by isolated filamentous fungi with high metabolic potential were determined. Laboratory tests were based on the modified methodology included in the standards DIN 38414-S8 and VDI 4630. Based on the results obtained, it was found that the pre-optimization of biological sludge by fungal strains with different metabolic potential, influences on the yield of biogas production, including methane. There was an increase in the biogas yield from the biological sludge processed by the mixed fungal consortium (by 20 %) and the strain marked as F1 (by 14 %) as compared to the non-inoculated material, which was also reflected in the amount of methane produced in the case of the mixed fungal consortium (by 28 %) and the strain marked as F1 (by 12 %).

[1] Einarsson R, Persson UM. Analyzing key constraints to biogas production from crop residues and manure in the EU - A spatially explicit model. PLOS ONE. 2017;12(1):e0171001. DOI: 10.1371/journal.pone.0171001.

[2] Kalinichenko A, Havrysh V, Perebyynis V. Evaluation of biogas production and usage potential. Ecol Chem Eng S. 2016;23(3):387-400. DOI: 10.1515/eces-2016-0027.

[3] Pilarska AA, Pilarski K, Witaszek K, Waliszewska H, Zborowska M, Waliszewska B, et al. Treatment of dairy waste by anaerobic co-digestion with sewage sludge. Ecol Chem Eng S. 2016;23(1):99-115. DOI: 10.1515/eces-2016-0007.

[4] Geršl M, Kandu T, Matýsek D, Šotnar M, Mareček J. The role of mineral phases in the biogas production technology. Ecol Chem Eng S. 2018;25(1):51-59. DOI: 10.1515/eces-2018-0003.

[5] Salminen E, Rintala J. Anaerobic digestion of organic solid poultry slaughterhouse waste - a review. Bioresour Technol. 2002;83(1):13-26. DOI: 10.1016/S0960-8524(01)00199-7.

[6] Arshad M, Bano I, Khan N, Shahzad MI, Younus M, Abbas M, et al. Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan. Renew Sust Energ Rev. 2018;81:1241-1246. DOI: 10.1016/j.rser.2017.09.007.

[7] Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, et sl. Biogas Handbook. Esbjerg, Denmark: 2008. ISBN 9788799296200.

[8] Climent M, Ferrer I, del Mar Baeza M, Artola A, Vázquez F, Font X. Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chem Eng J. 2007;133:335-342. DOI: 10.1016/j.cej.2007.02.020.

[9] Yadvika, Santosh S, Sreekrishnan TR, Kohli S, Rana V. Enhancement of biogas production from solid substrates using different techniques - a review. Bioresour Technol. 2004;95(1):1-10. DOI: 10.1016/j.biortech.2004.02.010.

[10] Zhang Q, Hu J, Lee DJ. Biogas from anaerobic digestion processes: Research updates. Renew Energy. 2016;98:108-119. DOI: 10.1016/j.renene.2016.02.029.

[11] Fdez-Güelfo LA, Álvarez-Gallego C, Sales Márquez D, Romero García LI. Biological pretreatment applied to industrial organic fraction of municipal solid wastes (OFMSW): Effect on anaerobic digestion. Chem Eng J. 2011;172:321-325. DOI: 10.1016/j.cej.2011.06.010.

[12] Parawira W. Enzyme research and applications in biotechnological intensification of biogas production. Crit Rev Biotechnol. 2011;172-186. DOI: 10.3109/07388551.2011.595384.

[13] Wei S. The application of biotechnology on the enhancing of biogas production from lignocellulosic waste. Appl Microbiol Biotechnol. 2016;100:9821-9836. DOI: 10.1007/s00253-016-7926-5.

[14] Zhang Q, He J, Tian M, Mao Z, Tang L, Zhang J et al. Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour Technol. 2011;102:8899-8906. DOI: 10.1016/j.biortech.2011.06.061.

[15] Fassatiová O. Grzyby mikroskopowe w mikrobiologii technicznej. (Microscopic Fungi in Technical Microbiology). Warszawa: WNT; 1983. ISBN: 8320405114.

[16] Gilman JC. A Manual of Soil Fungi. Ames, USA: Iowa State College Press; 1957. ISBN 9780813823201.

[17] Pitt JI, Hocking AD. Fungi and Food Spoilage. Verlag, USA: Springer; 2009. ISBN 9780387922065.

[18] Samson RA, Hoekstra ES, Frisvad JC. Introduction to food- and airborne fungi. 7th Edition. Utrecht: Centraalbureau voor Schimmelcultures; 2004. ISBN: 9070351528.

[19] DIN 38414-8. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Schlamm und Sedimente (Gruppe S); Bestimmung des Faulverhaltens (S8). Berlin, Germany: Beuth Verlag; 1985 (German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S); determination of the amenability to anaerobic digestion (S 8)). https://www.beuth.de/de/norm/din-38414-8/1209064.

[20] VDI 4630. Vergärung organischer Stoffe-Substratcharakterisierung, Probenahme, Stoffdatenerhebung, Gärversuche Verein Deutscher Ingenieure, Düsseldorf; 2006 (Fermentation of organic materials - characterisation of the substrate, sampling, collection of material data, fermentation tests). https://www.beuth.de/de/technische-regel/vdi-4630/86939477.

[21] PN-EN 12880:2004. Characterization of sludges - Determination of dry residue and water content. http://www.standardgoogle.com/en/detail/11744829-characterization-of-sludges-determination-of-dry-residue-and-water-content.html.

[22] PN-EN 12879:2004. Characterization of sludges - Determination of the loss on ignition of dry mass. http://www.standardgoogle.com/en/detail/21929144-characterization-of-sludges-determination-of-the-losson-ignition-of-dry-mass.html.

[23] Weiland P. Biogas production: current state and perspectives. Appl Microbiol Biot. 2010;85(4):849-860. DOI: 10.1007/s00253-009-2246-7.

[24] Divya D, Gopinath LR, Merlin Christy P. A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew Sust Energy Rev. 2015;42:690-699. DOI: 10.1016/j.rser.2014.10.055.

[25] Dobre P, Nicolae F, Matei F. Main factors affecting biogas production - an overview. Rom Biotech Lett. 2014;19(3):9283-9296. https://www.rombio.eu/vol19nr3/lucr%201_Dobre%20Paul_Main%20factors%20affecting%20biogas%20production_revistaRBL_2014%20_1_.pdf.

[26] Mao C, Feng Y, Wang X, Ren G. Review on research achievements of biogas from anaerobic digestion. Renew Sust Energy Rev. 2015;45:540-555. DOI: 10.1016/j.rser.2015.02.032.

[27] Merlin Christy P, Gopinath LR, Divya D. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sust Energy Rev. 2014;34:167-173. DOI: 10.1016/j.rser.2014.03.010.

[28] Zhang Y, Zamudio Cañas EM, Zhu Z, Linville JL, Chen S, He Q. Robustness of archaeal populations in anaerobic co-digestion of dairy and poultry wastes. Bioresour Technol. 2011;102:779-785. DOI: 10.1016/j.biortech.2010.08.104.

[29] Ali SS, Sun J. Physico-chemical pretreatment and fungal biotreatment for park wastes and cattle dung for biogas production. SpringerPlus. 2015;4,712. DOI: 10.1186/s40064-015-1466-9.

[30] Amirta R, Tanabe T, Watanabe T, Honda Y, Kuwahara M, Watanabe T. Methane fermentation of Japanese cedar wood pretreated with a white rot fungus, Ceriporiopsis subvermispora. J Biotechnol. 2006;123:71-77. DOI: 10.1016/j.jbiotec.2005.10.004.

[31] Zhao J, Zheng Y, Li Y. Fungal pretreatment of yard trimmings for enhancement of methane yield from solid-state anaerobic digestion. Bioresour Technol. 2014;156:176-181. DOI: 10.1016/j.biortech.2014.01.011.

[32] Valladão ABG, Freire DMG, Cammarota MC. Enzymatic pre-hydrolysis applied to the anaerobic treatment of effluents from poultry slaughterhouses. Int Biodeter Biodegr. 2007;60:219-225. DOI: 10.1016/j.ibiod.2007.03.005.

[33] Lewicki A, Kozłowski K, Pietrowski M, Zbytek Z. Methane fermentation of chicken droppings. J Res Appl Agric Eng. 2016;4:28-30. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-ddaa78b1-e86d-4a13-8c37-a505d23c8a18.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information


IMPACT FACTOR 2017: 0.7
5-year IMPACT FACTOR: 0.815

CiteScore 2017: 0.79

SCImago Journal Rank (SJR) 2017: 0.227
Source Normalized Impact per Paper (SNIP) 2017: 0.535

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 141 141 15
PDF Downloads 108 108 15