Determination of Sorption Properties of Heavy Metals in Various Biosorbents

Open access


Various techniques of determination of properties of physicochemical processes of heavy metal sorption in biosorbents were analysed. The methods of preparing and storing samples, conditions of experiment performance, as well as the methods of data interpretation were discussed. Two procedures of study were analysed: (1) in the static system of biosorbent-solution contact and (2) in the system of dynamic flow of solution. Copper cation sorption was studied. The effect of consecutive stages of the study on the quality of final results was shown. A high degree of uncertainty of the sorption capacity assessment was reported, which was dependent on the manner of conducting the study. The application of the pseudo-second order reaction model was substantiated to describe kinetics of cation-exchange sorption and the model of Langmuir isotherm to describe equilibria. The study conducted reveals that in order to perform comparative analyses, it is necessary to establish a joint concept of conducting studies and the interpretation of results.

[1] Bayramoglu G, Akbulut A, Acıkgoz-Erkaya I, Arica MY. J Appl Phycol. 2017;1-13. DOI: 10.1007/s10811-017-1238-8.

[2] Cheng J, Yin W, Chang Z, Lundholm N, Jiang Z. Biosorption capacity and kinetics of cadmium(II) on live and dead Chlorella vulgaris. J Appl Phycol. 2017;29:211-221. DOI: 10.1007/s10811-016-0916-2.

[3] Herrero R, Lodeiro P, Rey-Castro C, Vilariño T, Sastre de Vicente ME. Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga Cystoseira baccata. Water Res. 2005;39:3199-3210. DOI: 10.1016/j.watres.2005.05.041.

[4] Hauck M, Huneck S. Lichen substances affect metal adsorption in Hypogymnia physodes. J Chem Ecol. 2007;33:219-223. DOI: 10.1007/s10886-006-9225-6.

[5] Balarama Krishna MV, Chandrasekaran K, Rao SV, Karunasagar D, Arunachalam J. Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS. Talanta. 2005;65:135-143. DOI: 10.1016/j.talanta.2004.05.051.

[6] Ferreira D, Ciffroy P, Tusseau-Vuillemin M-H, Garnier C, Garnier J-M. Modelling exchange kinetics of copper at the water-aquatic moss (Fontinalis antipyretica) interface: Influence of water cationic composition (Ca, Mg, Na and pH). Chemosphere. 2009;74:1117-1124. DOI: 10.1016/j.chemosphere.2008.10.031.

[7] Bhat SV, Melo JS, Chaugule BB, D’Souza SF. Biosorption characteristics of uranium(VI) from aqueous medium onto Catenella repens, a red alga. J Hazard Mater. 2008;158:628-635. DOI: 10.1016/j.jhazmat.2008.02.042.

[8] Srivastava S, Agrawal SB, Mondal MK. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res. 2015;22:15386-15415. DOI: 10.1007/s11356-015-5278-9.

[9] Ringqvist L, Holmgren A, Oborn I. Poorly humified peat as an adsorbent for metals in wastewater. Water Res. 2002;36:2394-2404. DOI: 10.1016/S0043-1354(01)00430-4.

[10] Jain CK, Malik DS, Yadav AK. Applicability of plant based biosorbents in the removal of heavy metals: a review. Environ Process. 2016;3:495-523. DOI: 10.1007/s40710-016-0143-5.

[11] Ramrakhiani L, Ghosh S, Majumdar S. Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: A review. Appl Biochem Biotechnol. 2016;180:41-78. DOI: 10.1007/s12010-016-2083-y.

[12] Genc-Fuhrman H, Mikkelsen PS, Ledin A. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: Experimental comparison of 11 different sorbents. Water Res. 2007;41:591-602. DOI: 10.1016/j.watres.2006.10.024.

[13] Wu P, Zhou Y. Simultaneous removal of coexistent heavy metals from simulated urban stormwater using four sorbents: A porous iron sorbent and its mixtures with zeolite and crystal gravel. J Hazard Mater. 2009;168:674-680. DOI: 10.1016/j.jhazmat.2009.02.093.

[14] Kłos A, Rajfur M, Wacławek M, Wacławek W. Determination of the atmospheric precipitation pH value on the basis of the analysis of lichen cationactive layer constitution. Electrochim Acta. 2006;51:5053-5061. DOI: 10.1016/j.electacta.2006.03.039.

[15] Martins RJE, Pardo R, Boaventura RAR. Cadmium(II) and zinc(II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Res. 2004;38:693-699. DOI: 10.1016/j.watres.2003.10.013.

[16] Sen Gupta B, Curran M, Shameem H, Ghosh TK. Adsorption characteristics of Cu and Ni on Irish peat moss. J Environ Manage. 2009;90:954-960. DOI: 10.1016/j.jenvman.2008.02.012.

[17] Ho YS, John Wase DA, Forster CF. Batch nickel removal from aqueous solution by sphagnum moss peat. Water Res. 1995;29:1327-1332. DOI: 10.1016/0043-1354(94)00236-Z.

[18] Li Z-Y, Guo S-Y, Li L. Study on the process, thermodynamical isotherm and mechanism of Cr(III) uptake by Spirulina platensis. J Food Eng. 2006;75:129-136. DOI: 10.1016/j.jfoodeng.2005.04.003.

[19] Saeed A, Iqbal M. Bioremoval of cadmium from aqueous solution by blackgram husk (Cicer arientinum). Water Res. 2003;37:3472-3480. DOI: 10.1016/S0043-1354(03)00175-1.

[20] Pipíška M, Horník M, Vortoch L, Augustín J, Lesný J. Biosorption of Co2+ ions by lichen Hypogymnia physodes from aqueous solutions. Biologia. 2007;62:276-282. DOI: 10.2478/s11756-007-0047-y.

[21] Uluozlu OD, Sari A, Tuzen M, Soylak M. Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresour Technol. 2008;99:2972-2980. DOI: 10.1016/j.biortech.2007.06.052.

[22] Chen Z, Ma W, Han M. Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models. J Hazard Mater. 2008;155:327-333. DOI: 10.1016/j.jhazmat.2007.11.064.

[23] Dhananjay Kumar, Pandey LK, Gaur JP. Evaluation of various isotherm models, and metal sorption potential of cyanobacterial mats in single and multi-metal systems. Colloids Surf B Biointer. 2010;81:476-485. DOI: 10.1016/j.colsurfb.2010.07.042.

[24] Gupta VK, Rastogi A, Saini VK, Jain N. Biosorption of copper(II) from aqueous solutions by Spirogyra species. J Colloid Interface Sci. 2006;296:59-63. DOI: 10.1016/j.jcis.2005.08.033.

[25] Romera E, Gonzàlez F, Ballester A, Blázquez ML, Muñoz JA. Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol. 2007;98:3344-3353. DOI: 10.1016/j.biortech.2006.09.026.

[26] Sari A, Tuzen M. Removal of mercury(II) from aqueous solution using moss (Drepanocladus revolvens) biomass: Equilibrium, thermodynamic and kinetic studies. J Hazard Mater. 2009;171:500-507. DOI: 10.1016/j.jhazmat.2009.06.023.

[27] Khan TA, Mukhlif AA, Khan EA, Sharma DK. Isotherm and kinetics modeling of Pb(II) and Cd(II) adsorptive uptake from aqueous solution by chemically modified green algal biomass. Model Earth Syst Environ. 2016;2:117. DOI: 10.1007/s40808-016-0157-z.

[28] Witek-Krowiak A, Mitek M, Pokomeda K, Szafran RG, Modelski S. Biosorption of cationic dyes by beech sawdust I. Kinetics and equilibrium modeling. Chem Process Eng. 2010;31:409-420. ISSN: 0208-6425.

[29] Aksu Z, İşoğlu İA. Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem. 2005;40:3031-3044. DOI: 10.1016/j.procbio.2005.02.004.

[30] Sari A, Mendil D, Tuzen M, Soylak M. Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: Equilibrium, kinetic and thermodynamic studies. Chem Eng J. 2008;144:1-9. DOI: 10.1016/j.cej.2007.12.020.

[31] Kłos A. Mchy w biomonitoringu środowiska (Mosses in Environmental Biomonitoring). Warszawa: WN PWN; 2017. ISBN: 9788301194345.

[32] Ribeiro RFL, Magalhães SMS, Barbosa FAR, Nascentes CC, Campos LC, Moraes DC. Evaluation of the potential of microalgae Microcystis novacekii in the removal of Pb2+ from an aqueous medium. J Hazard Mater. 2010;179:947-953. DOI: 10.1016/j.jhazmat.2010.03.097.

[33] Kłos A, Rajfur M, Wacławek M, Wacławek W. Heavy metal sorption in the lichen cationactive layer. Bioelectrochemistry. 2007;71:60-65. DOI: 10.1016/j.bioelechem.2006.12.005.

[34] Rajfur M, Kłos A, Wacławek M. Sorption of copper(II) ions in the biomass of alga Spirogyra sp. Bioelectrochemistry. 2012;87:65-70. DOI: 10.1016/j.bioelechem.2011.12.007.

[35] Nuhoglu Y, Malkoc E, Gürses A, Canpolat N. The removal of Cu(II) from aqueous solutions by Ulothrix zonata. Bioresour Technol. 2002;85:331-333. DOI: 10.1016/S0960-8524(02)00098-6.

[36] Garty J, Weissman L, Cohen L, Karnieli A, Orlovsky L. Transplanted Lichens in and around the Mount Carmel National Park and the Haifa Bay Industrial Region in Israel: Physiological and Chemical Responses. Environ Res. 2001;85:159-176. DOI: 10.1006/enrs.2000.4222.

[37] Mehta SK, Gaur JP. Characterization and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris. Ecol Eng. 2001;18:1-13. DOI: 10.1016/S0925-8574(00)00174-9.

[38] Tuzen M, Sari A, Mendil D, Soylak M. Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: Kinetic and equilibrium studies. J Hazard Mater. 2009;169:263-270. DOI: 10.1016/j.jhazmat.2009.03.096.

[39] Sari A, Mendil D, Tuzen M, Soylak M. Biosorption of palladium(II) from aqueous solution by moss (Racomitrium lanuginosum) biomass: Equilibrium, kinetic and thermodynamic studies. J Hazard Mater. 2009;162:874-879. DOI: 10.1016/j.jhazmat.2008.05.112.

[40] Ajjabi LCh, Chouba L. Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. J Environ Manage. 2009;90:3485-3489. DOI: 10.1016/j.jenvman.2009.06.001.

[41] Singh A, Kumar D, Gaur JP. Removal of Cu(II) and Pb(II) by Pithophora oedogonia: Sorption, desorption and repeated use of the biomass. J Hazard Mater. 2008;152:1011-1019. DOI: 10.1016/j.jhazmat.2007.07.076.

[42] Kuśmierek K, Świątkowski A. Influence of pH on adsorption kinetics of monochlorophenols from aqueous solutions on granular activated carbon. Ecol Chem Eng. 2015;22:95-105. DOI: 10.1515/eces-2015-0006.

[43] Boustie J, Grube M. Lichens, a promising source of bioactive secondary metabolites. Plant Gen Res. 2005;3:273-287. DOI: 10.1079/PGR200572.

[44] Kłos A, Rajfur M, Wacławek M, Wacławek W. Ion equilibrium in lichen surrounding. Bioelectrochemistry. 2005;66:95-103. DOI: 10.1016/j.bioelechem.2004.04.006.

[45] Sharma SK, Mahiya S, Lofrano G. Removal of divalent nickel from aqueous solutions using Carissa carandas and Syzygium aromaticum: isothermal studies and kinetic modelling. Appl Water Sci. 2017;7:1855-1868. DOI: 10.1007/s13201-015-0359-y.

[46] Ho YS, McKay G. Sorption of dye from aqueous solution by peat. Chem Eng J. 1998;70:115-124. DOI: 10.1016/S0923-0467(98)00076-1.

[47] Ho YS. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics. 2004;59:171-177. DOI: 10.1023/B:SCIE.0000013305.99473.

[48] Ho YS. Review of second-order models for adsorption systems. J Hazard Mater. 2006;136:681-689. DOI: 10.1016/j.jhazmat.2005.12.043.

[49] Grimm A, Zanzi R, Björnbom E, Cukierman AL. Comparison of different types of biomasses for copper biosorption. Bioresour Technol. 2008;99:2559-2565. DOI: 10.1016/j.biortech.2007.04.036.

[50] Rathinam A, Maharshi B, Janardhanan SK, Jonnalagadda RR, Nair BU. Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study. Bioresour Technol. 2010;101:1466-1470. DOI: 10.1016/j.biortech.2009.08.008.

[51] Özer A, Özer D, Ekiz HI. The equilibrium and kinetic modeling of the biosorption of copper(II) ions on Cladophora crispate. Adsorption. 2004;10:317-326. DOI: 10.1007/s10450-005-4817-y.

[52] Yildiz S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus Dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information

IMPACT FACTOR 2018: 1,467
5-year IMPACT FACTOR: 1,226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 398 265 14
PDF Downloads 397 265 15