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PREDICTION OF THE SEASONAL CHANGES
OF THE CHLORIDE CONCENTRATIONS
IN URBAN WATER RESERVOIR

PROGNOZOWANIE SEZONOWYCH ZMIAN ST EZENIA CHLORKOW
W MIEJSKIM ZBIORNIKU WODNYM

Abstract: This study investigated the possibility of usingjf@ial neural networks to predict changes in the
concentration of chloride ions in the urban pondgt® example of the inflow and outflow zones otevdo and
from the ponds Syrenie Stawy in Szczecin (NW-PoJaiitie possibility of using selected water qualitgices
(selected based on correlation matrix of wateriguaddices with Cl), in particular: COD-Cr, BOR DO, water
saturation by @and NQ and their influence on the chloride concentraf@ecast was tested.
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Introduction

The protection of water quality in urban water lesdishould be one of the most
important tasks in environmental programs undertakg municipalities in each city.
Lakes, river ponds and streams, especially in tagjies, play an important role in
recreation and tourism, and are often very oftarupied by valuable biocoenoses [1-4].

Unfortunately, urban water bodies are collectorpalfution discharged into municipal
and industrial sewage, leading to the degradatfahese ecosystems. The changes in the
water's biotope of such tanks are primarily theease of dissolved concentrations and the
involved organic matter and the change of mineaitin, both qualitative and quantitative.
One of the indicators investigated for the assesswfewater quality, and especially for the
study of changes in their mineralization, is thaamtration of chloride ions [1-5].

The increase in salinity of water characterized thg increase in chloride ions
concentrations signals changes in the quality ef lifotope and the risks of biocenosis
settling such reservoirs [5-15].

It is true that in cities located in the coastahepthe increase in surface chlorine
concentrations may be related to the depositicseafwater aerosols and to the washout of
salt from the soil by rain. Due to the fact thatam water reservoirs are very often included
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in the rain drainage network in cities in temperabt@e, where during the winter months
NaCl and/or CaGlis used to remove glazed frost. In the periodshafvs, especially in
early spring, when melting snow and ice cover bf streets flow into the tank substantial
amounts of chloride ions. In this case the chamgehloride concentrations are seasonal
[5-15]. Generally, in recent years we have seeimen@ase in the concentration of chloride
ions in freshwater bodies of water around the wfid5].

However, examination of the changes in concentatiof chloride ions in freshwater
ecosystems in urban areas is a convenient way é¢ckcthe nature of the changes of
biotopes of examined water bodies [5-15].

Because urban water quality is often examined onbasional it seems to be justified
using modern techniques which allows to discern ma#te predictions based on a limited
number of measurements, which seems to be of pkmti¢mportance for the study of
changes in the quality of the water environmertities.

One of the tools for predicting and modeling isfiaral neural networks (ANN) -

a specialized mathematical "cause-effect” systamijts structure resembling a simple
network of biological neurons. At first, artificialeural networks were used in economic
sciences [16] and in meteorology [17]. Currentlygrenand more often used in prediction
of changes in surface waters, demersal waters yandlogical changes [18-28].

There were studies using ANN to predict and deteentihe impact of various factors,
such as catchment area, environmental or atmospfaeiors - on the salinity level of
marine, fresh or groundwater [29-32].

The aim of this work was to demonstrate the usartificial neural networks for the
forecasting of chloride ion concentrations in scefavater in Ponds Syrenie Stawy in
Szczecin using a relatively small number of measdeaa (20 measurements in subsequent
months).

Lake characteristic

Ponds Syrenie Stawy in Szczecin are four artififialv water reservoirs (Table 1,
Fig. 1) formed in the second half of the 19th centafter damming the waters of the
Osowka stream. The Ponds are located in the ArkoRekest, which is part of the
protected nature and landscape complex "Kasprowkenski Park Complex". The total
area of Syrenie Stawy is about 1.99 ha, with amame=depth of about 2 m. Syrenie Stawy
like others urban water bodies are included intmigipal rain drainage system, where they
play the role of reservoirs for precipitation wates well as of settling ponds and biological
treatment plants [33-36].

By the beginning of the 90s of the last centurgngicant amounts of various
pollutants, including urban waste water and indalstvaste water, were discharged into the
Syrenie Stawy waters e.g. from POLMO Workshops anmilitary unit workshops. This
state of affairs was about to change after the gewsetwork was completed. After
a gradual reduction of pollutant inflow with Osowkteam waters which flows through
Ponds Syrenie Stawy the entire ecosystem of Poradsgnadually self purificating, which
was interrupted in August - November 2003 by hyelthhical works to regulate the runoff
of the Osowka by constructing a new trough of Osamvalnd then in period from December
2010 to December 2012, when a large-scale hydrmiealhworks had place - changing the
riverbed leading waters of Osowka and regulatirg ftbw of water through the Ponds
Syrenie Stawy which caused a negative change iqubéty of ponds in subsequent years
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after these regulations. Since 2010, preparationd@ing made for the construction of the
Botanical Garden - Arboretum "Syrenie Stawy" [33-35

Szczecin City

0 100 m
LEGEND
@@ Sampling Station WP Water bodies - Forests
P> Surface . - Underground
poie > pol.ohiy Bridge

Wetlands | Sstreets S) sewage discharge site

Fig. 1. Syrenie Stawy Ponds in Szczecin city (NWaRd) (after: [33] with changes)

Table 1
Morphometric characteristic of Syrenie Stawy Ponds
Geographical coordinates Latltp de 53°4569.4'N
Longitude 14°5705.1"E
Morphometric data
Morphometric indicator Units Pond No.
1 2 3 4
Water level [m as] 21.1 21.0 21.0 20.0
Area [10 m? 0.27 1.15 0.34 0.13
Capacity [16 mY 4.0 23 6.8 0.7
Depth - max [m] 1.8 2.5 2.4 0.6
Depth - average [m] 15 2.0 2.0 0.5
Length max [m] 86 217 97 77
Width max [m] 36 80 37 26
Length of coastline [m] 216 565 250 195

" meters above sea level

After performing hydrotechnical works Syrenie Staagt as retention tanks on the
bypass passage of the Osowka watercourse. It tgfisantly contributed to the
stabilization of the flow rate of this stream. Agesult, the retention time of ponds is



59¢ Tymoteusz Miller and Gorzystaw Poleszczuk

variable - during intense and prolonged preciptatit reaches up to 14 days, and in
periods when precipitation does not occur - watePonds stagnate. So Ponds Syrenie
Stawy from the hydrological point of view are ovevied Osowka [33, 34].

Material and methods

The water samples of Ponds Syrenie Stawy wereatetldfor examination at the place
of two sampling stations located respectively ie thgion of inflow of water to the Pond
No. 1 and the water outflow area of the Pond Newhich is the main flow path of water
by Syrenie Stawy. Surface water samples were tgkem a depth of c.a. 25 cm at 30-day
intervals from January 2014 to August 2015. 19ctetewater quality indices, in particular
temperature, pH, chemical oxygen demand as CODnGrGOD-Mn, dissolved oxygen
(DO), water saturation by LO(WS), 5-day biochemical oxygen demand (B{HD
concentration of N@, NO,, NH,", PQ>, total concentrations of nitrogen (TN) and
phosphorus (TP), total hardness (TH), concentratibralcium (C&), sulfate (SG),
chloride (Cr), alkalinity (ALK) and total concentrations of mdFe.). Samples methods as
well as all analyzes were performed according ¢omemendations [37].

Artificial neural network (ANN)

Artificial neural networks are considered nonlinstatistical tools for modeling and
forecasting data variability. It is used when stadd statistical and mathematical
procedures do not provide a satisfactory answenwbéring a problem [38-46].

ANNSs are groups of interconnected artificial newarsing a mathematical model for
processing information based on a "connection" adatpnal approach. This is an
adaptive system that changes its structure acaptdithe data flowing to and through the
system network [38-46].

The basic unit of artificial neural networks aredas. They are connected by the
so-called synapses which are related with apprpriseighting factors. The most
commonly used network model is the three-layer Abdel, in which we distinguish the
input layer, hidden layer and output layer [38-46].

In order to produce mathematical models with ANNjsi necessary to introduce
so-called typical data pairs - to generate a tngiréet. An appropriately trained network
will test its knowledge of a given problem by ciegta testing set and then validating the
set [38-46].

In order to develop an automatic neural networkt tpaedicts chloride ion
concentration in incoming and outgoing water taffr&yrenie Stawy, the data set was
divided into three sets: 60% for the learning set 20% for the test and validation set. To
define the final model, time series regressionyaisilwas performed using the multilayer
perceptron (MLP) ANN model with the maximum numioéhidden layers defined as 10,
and linear, logistic, tanh, exponential, and simdelofunctions were used as activation
functions for hidden and output neurons [38-46].

Model performance indicators

In this study, the results obtained using ANN weoenpared and evaluated [44-51].
It is important to define average forecast error (M8E, RMSE), model fit &), and
prognostic error distribution when creating foreca®dels. The robustness of the model
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was tested by determining the mean absolute efribregprediction MAPE) - defining the
percent precision of the model according to thenfda [44-51]:

n
100 xX; — D
MAPE=—2|’ p‘|
i=1

n X

wherex; is the measured chloride ion concentrations-tim month, p; - calculated with
ANN values of chlorides iirth month,n - is the total number of observations.

As a criterion for determining the model performamesults obtained by the ANN the
coefficient of determinatiorRf) was calculated, defined as [18, 19, 44-51]:

Z?zl(Pi - %)?
Z?zl(xi — %)?

To determine the value of the prognostic error meguare errorMSE) and the root
mean square erroRSE) were calculated by the formulas:

R? =

BN ,
MSE = ;Z(xi = Pi)
i=1

RMSE =

In addition, the discrepancy ratio for the obtaimtada (ANN output) was defined as
[49-51]:

In order to avoid the multidimensional scatterinf measured data, the data
standardization was performed on the basis of exquft4, 45]:
Xi— X
SD
where:Xs - represents a standardized vakje, value of the parameter being standardized,

X - average value within the given parameter watatity, andSD - standard deviation.
All calculations were performed using computerwafie STATISCITA 12.0PL.

Xg =

Results and discussion

The results of the 19 indicators of water qualityhe inflow and inlet from the Syrenie
Stawy are presented in Table 2 and Figures 2 aiM@3ability of most of the indices was
very similar in nature at both sampling statiomstHe zone of water inflow to the Syrenie
Stawy higher values - in relation to the outflowngmf the Ponds had COD-Cr, BIOTN,
SRP, CI, and Fg, at the same time with worse aerobic conditions (WS) and lower pH
values. This shows the influx of pollutants inte tRonds primarily with the waters of
Osowka.

During the flow of water through the Syrenie Stawyhe study period, all changes in
the values of the sedimentation indices are rel&dedhanges in the indices of organic
matter sedimentation to bottom sediments and toottwmurrence of relatively intensive
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oxidation processes of organic matter (OM). Thiggasts that the Ponds Syrenie Stawy in
the study period were relatively well-functionireservoirs - biological treatment plants.

Table 2

Statistical characteristics of selected water ieslin Ponds Syrenie Stawy

Water quality Units Descriptive Syrenie Stawy Ponds
indices statistics Pond No. 1 - inflow area| Pond No. 2 - outflow are
Mean 15D 10.8£7.9 10.0+7.4
Temperature [°C] Range 0.4-25.2 0.4-24.1
CcVv 0.72 0.74
Mean 15D 7.96 +0.39 7.95 +0.35
pH [] Range 7.10-8.60 7.10-8.40
CcVv 0.04 0.04
Mean 15D 11.0+2.5 9.8+1.5
COD-Mn [mg Q- dm? Range 7.2-18.7 7.2-14.1
CcVv 0.22 0.15
Mean 1D 160 +82 157 +81
COD-Cr [mg Q- dm Range 67.4-388.0 64.7-388.0
CcVv 0.52 0.52
Mean 1D 3.1+1.3 35#15
BODs [mg O - dm? Range 0.50-6.60 0.50-6.60
CcVv 0.43 0.44
Mean 1D 3317 3.7£19
DO [mg Q- dm? Range 0.5-8.4 0.5-1.9
CcVv 0.53 0.50
Mean 1D 28 £14 31 £15
WS [%] Range 4.00-67.00 4.00-67.00
CcVv 0.51 0.50
Mean 1D 0.77 £0.36 0.85 +0.38
NOs~ [mg N-NG; - dnT Range 0.11-1.75 0.11-1.75
Ccv 0.74 0.44
Mean 1D 0.28 £+0.23 0.17 +0.07
NO; [mg N-NQ; - dn1? Range 0.104-0.997 0.083-0.403
Ccv 0.80 0.43
Mean 15D 0.77 +0.33 0.79 +0.28
NH, [mg N-NH, - dnT Range 0.25-1.60 0.25-1.16
Ccv 0.42 0.35
Mean 15D 2.67 +0.60 2.59 +0.65
TN [mg N - dm? Range 1.52-3.80 1.52-3.80
CV 0.22 0.25
Mean 1D 0.23+0.14 0.24 +0.16
SRP [mg P-P® dm? Range 0.04-0.57 0.05-0.57
CV 0.62 0.63
Mean 15D 1.03 +0.46 1.13 +0.65
TP [mg P-PQ- dni?| Range 0.31-2.06 0.31-3.06
CV 0.44 0.57
Mean 15D 247 £150 289 +129
TH [mg CaCQ- dm? Range 99-681 166-681
CV 0.61 0.44
Mean 15D 73 £29 85 +25
ca* [mg Ca - drf] Range 34-131 54-131
CcV 0.40 0.30
Mean 15D 39 +20 37 £19
cr [mg Cl - dm? Range 22-105 22-105
CcVv 0.53 0.53
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Water quality Units Descriptive Syrenie Stawy Ponds
indices statistics Pond No. 1 - inflow area| Pond No. 2 - outflow area
Mean 18D 64 +37 62 +37
ok [mg SQ - dm? Range 33-193 33-193
CcVv 0.57 0.59
Mean 18D 222 +50 221 +49
Alkalinity [mg HCO; - dm?| Range 100-350 100-350
CcVv 0.22 0.22
Mean 18D 0.47 £0.33 0.52 +0.36
Feo [mg Fe - dm| Range 0.05-1.33 0.07-1.33
CcVv 0.70 0.68

where:SD - standard deviation (uncertainty of measuremé\); coefficient of variation

On the other hand, higher concentrations of biagenibstances, TP and mineral
substances in the outflow compared to the inflowy rimalicate the influx of pollutants
directly into the Ponds, or the periodic releasamfrthe bottom sediments under heavy
water flow conditions during intensive and suffitly long precipitation, when by the
bypass, which are the Ponds Syrenie Stawy in oglati the Osowka Stream, flows large

amounts of water from precipitation.
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Fig. 2. Comparison of the variability of selectedter quality indices of Ponds Syrenie Stawy in the
inflow and outflow zone, where: - inflow, x - outflow
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Fig. 3. Comparison of the variability of selectedter quality indices of Ponds Syrenie Stawy in the
inflow and outflow zone, where - inflow, x - outflow

Table 3
Correlation matrices of selected water quality d¢egiin inflow area of Ponds Syrenie Stawy

Temp. pH | COD-Mn COD-Cr| BODs DO WS NG NGO,
Temperature 1.00
pH 0.45 1.00
COD-Mn 0.25 0.09 1.00
COD-Cr -0.07 —0.45 0.61 1.00
BODs —0.46 -0.33 0.27 0.60 1.00
DO —0.46 —0.30 0.25 0.54 0.98 1.0
WS —0.26 -0.21 0.45 0.62 0.93 0.95 1.00
NOs -0.49 -0.12 -0.17 —0.07 -0.18 -0.19 -0]22 1,00
NO; 0.15 —0.08 0.73 0.67 0.40 0.31 050 -0p9 1.00
NH," 0.08 0.32 0.07 -0.07 —0.19 -0.12  -0.15 0.p1 —Q.35
TN 0.04 0.01 —0.05 0.07 —0.29 -0.24 -0.p2 058 103
SRP 0.30 0.45 -0.13 —0.23 -0.4p -040 032 0{38 .22-D
TP 0.38 0.42 -0.12 —0.27| -0.49 -0.47 -0]37 025 18-0.
TH -0.34 -0.12 —0.66 —0.37] 0.07] 0.1  -0/03 0.p2 470Q.
ca’ -0.42 -0.17 —0.64 —0.26 0.21 0.26 0.12 0.04 -Q.37
CI- —0.32 —0.29 0.43 0.72 0.67 0.58 0.62| —0.01 | 0.60
s> —0.30 —0.59 0.21 0.51 0.14 0.1 0.16 0.42 0.p2
Alkalinity —-0.07 0.48 -0.22 -0.25 —0.071 -0.09 -0.120.19 —-0.10
F&ot —0.32 -0.14 —0.20 —0.08 —0.1% 011 -0j10 046 17-0.
NH," TN SRP| TP TH] CGi | cr sQ” Alkalinity Feot
Temperature
pH
COD-Mn
COD-Cr
BODs
DO
WS
NOs
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NH, | TN [ SRP| TP| TH| Ca | cr | so* Alkalinity Féo

NO;

NH," 1.00

TN 0.28 | 1.00

SRP 0.17 | 0.27] 1.00

TP 0.23 | 017| 084 1.0

TH -0.30| 0.08] —0.28-0.35] 1.00

cd’ —0.31| 0.03] —0.30-0.33] 0.97 | 1.00

Cr —0.02 | —0.33] -0.18-0.26] —0.36] —0.22] 1.00

SO> —0.03| 0.34| —0.24-0.07] -0.10] 0.01 [ 0.31] 1.00
Alkalinity —0.20 | 0.11] 0.04] -0.070.48| 0.46] -0.12 —0.13 1.00

Fao —0.12| 0.29] —0.11-0.04] 046 | 0.46] -0.14 051 0.39 1.00

The bolded values show a statistically significamtrelation, at the level of = 0.05 between the values of @hd
the other water quality indices

Table 4
Correlation matrices of selected water qualitydediin outflow area of Ponds Syrenie Stawy
Temp. pH | COD-Mn COD-Cr| BODs DO WS NG NO,
Temperature 1.00
pH 0.44 1.00
COD-Mn 0.22 0.16 1.00
COD-Cr —0.18 —0.46) 0.14 1.00
BODs -0.38 -0.26 0.08 0.73 1.00
DO -0.43 —0.23 0.17 0.67 0.96 1.0
WS -0.34 -0.21 0.20 0.66 0.95 0.98 1.00
NO; -0.32 —-0.06 -0.05 0.09 —0.16 -0.17 -0[16 1.00
NO; -0.07 -0.13 —0.02 0.42 0.51] 0.4 0.54 0.07 1
NH,* 0.28 0.47 0.17 -0.07 —-0.11 -0.07 -0.p2 -0j03 -0.
TN —0.10 0.09 0.12 —0.01 —0.34 -0.25 09 0.51 25-Q.
SRP 0.35 0.46 —-0.06 —0.13 -0.2p -081 -027 0{37 .22-p
TP 0.29 0.38 -0.01 —0.27| -0.43 -0.43 -0J42 040 43-0.
TH —0.20 -0.24 -0.27 0.01 0.13 0.2p 0.19 —0J31 0
ca’ -0.33 -0.24 -0.33 0.10 0.27| 0.3B 0.34 -0/19 0
CI- -0.42 -0.27 -0.09| 0.70 0.77 0.67 0.65| 0.14 0.63
SQ* -0.40 -0.62 0.10 0.42 0.10 0.11 0.14 0.44 0.
Alkalinity —0.06 0.41 —0.06 —0.26 —0.27 -0.18 -0.p00.18 0.06
Feot -0.25 -0.15 0.01 —0.10, -0.24 -0.16 -0[12 042 0
NH, TN SRP| TP TH] Cd | cr SQ> Alkalinity Feot
Temperature
pH
COD-Mn
COD-Cr
BODs
DO
WS
NOs
NO;~
NH, 1.00
TN 0.20 1.00
SRP 0.26 0.25| 1.04¢
TP 0.28 0.30| 0.82 1.0
TH -0.41| -0.18] -0.51-0.58| 1.00
ca’ -0.32 | -0.20] -0.47-0.53| 0.95| 1.00
CI -0.02 | -0.37| -0.10-0.27| 0.00 | 0.17| 1.00

100

32
42

10
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NH, | TN [ SRP| TP| TH| Ca | cr | so* Alkalinity Féo
SO” -0.06 | 0.25| —0.25-0.06] 0.00 | 0.12] 0.22] 1.00
Alkalinity —0.20 | 0.21] —0.04 —0.14] 0.44 | 0.40] -0.11 —0.15 1.00
Flo 0.01 [ 025] —0.21 0.08] 0.35] 0.39] —0.1f 0.50 0.30 1.00

The bolded values show a statistically signifiazmtrelation, at the level of = 0.05 between the values of @hd
the other water quality indices

During creation artificial neural networks modetlse choice of input parameters is
a very important aspect. Inadequate parameterdeatitl to inappropriate network learning,
resulting in inadequate results and efficiency bé twhole process. The higher the
correlation between the independent variables &eddependent variable, the network
architecture learning ANN is better. In order toiavintroducing unnecessary variables
during the calculations, the correlation betweenttsted water quality indices and thé ClI
concentration was performed. Correlation coeffitseare summarized in Table 3 for water
inflow zone, and Table 4 for the water outflow zasfethe Ponds Syrenie Stawy. The
results show that strong correlations with @lues were COD-Cr, BQ)pDO, WS and
NO,™ at both sampling stations. Strong correlation $oathy indicate that the calculated
values of chlorides with ANN should be highly proea[18, 19, 42, 43, 46].

Frequent phenomena during neural network reseamnehthe overfitting of training
data, leading to a deterioration in the generaliitplof the model resulting in undesirable
output values. To avoid this phenomenon, the nundbdridden layers of neurons was
tested [18, 44, 48]. The analyzes were performémgud, 4, 6, 8 and 10 nodes during the
calculation. It was determined that the most likBNN results are obtained with 5 hidden
layers, 1000 iterations and 6 nodes.

In order to check the quality and impact of sel@ctariables on changes in chloride
ion concentrations 6 prognostic models were geedréidr each measurement station.
Different input parameters were used for their gialiton - each selected water quality
indicator independently and collectively using 8iges together.
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Fig. 4. Results of computed models for each inpwameter for the inflow of Syrenie Stawy Ponds
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Fig. 5. Results of computed models for each inpuameter for the outflow of Syrenie Stawy Ponds

Compatibility of forecasted data with "real" dataswetermined additionally on the
basis of indications of? coefficient obtained from linear equations (Figsand 5). The
models with the highest values®f - 0.9746 and 0.9893 - for the inflow and outfloane
- respectively - were characterized by models wladirevater quality indices were selected
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as input parameters (i.e. COD-Cr, BEIDO, WS, NQ). The lowest values of the
determination coefficient were obtained for singégameter models, in particular COD-Cr
(R?=0.667) and DOF¢ = 0.6654) - for the inflow zone and COD-GE 0.6411) for the
outflow zone. It should be noted that the modekdasn the WS in the outflow zone was
also high R = 0.9429) - in comparison to the rest of the testedels.

Tables 5 and 6 show the results of the computdtmmalyzes. It has been shown that
the WS determines the highest coefficient of deileation | = 0.887) among the water
quality indices selected for ANN calculations ir tivater inflow zone to the Ponds. It also
showed the lowed¥ISE and RMSE values, and its mean absolute prediction error avéys
10.64%.

Table 5
Evaluation of ANN models for inflow area of pondgé&hie Stawy
Performance Input parameter
criteria COD-Cr | BODs DO WS Ne’y COD-Cr + BODs + DO + WS + NG~
MSE 175.68 46.76 | 166.4( 56.97 98.86 13.99
RMSE 13.25 6.83 12.89 7.54 9.94 3.74
MAPE 30.51 13.51 16.95 10.64 11.56 7.05
R 0.799 0.819 0.666 0.887 0.788 0.999
Table 6
Evaluation of ANN models for outflow area of por8igenie Stawy
Performance Input parameter
criteria COD-Cr BODs DO WS NO, COD-Cr + BODs + DO + WS+ NQ~
MSE 174.26 60.59| 102.11 34.14 95.04 4.94
RMSE 13.20 7.78 10.10 5.84 9.75 2.22
MAPE 26.55 18.38 20.74 8.66 17.72 3.42
R 0.781 0.687 0.532 0.854 0.731L 0.995

Analysis of the efficiency and goodness of fit amdhe water quality indices in the
Ponds Syrenie Stawy outflow zone has also showtrthibabest performing indicator is also
the WS ofR? of 0.854 andMIAPE on level of 8.66%.

For both measurement stations, the worst predidtedicator based on the
determination coefficient of 0.666 in the wateddomf zone and 0.532 in the water outflow
zone, respectively, was the concentration of digsbloxygen (DO). On the other hand,
while analyzing the mean absolute prediction efkdAPE), despite the high determination
coefficient - caR? = 0.8 for both measurement stations - COD-Cr - ddpet models had
the highest prediction error.

The best calculated ANN models are models with fingut parameters, which clearly
coincides with the other papers [18, 44]. The dwiteation coefficients obtained were
0.999 and 0.995 in the inflow and outflow zone essjvely. Despite a slightly high&? in
the inlet zone, the rest of the performance andanétting criteria were better for the
forecasts of chlorine concentrations in the outfloene from Ponds Syrenie Stawy, in
particularMSE = 4.94,RMSE = 2.22 andMAPE of only 3.42%

In order to finally compare the ANN results, theatepancy ratio coefficient®() -
summarized in Table 7 and Figure 6 were calculafedble 7 presents the results of the
basic statistical analysis, which shows that theerdjence of the computed models result
for the water inflow zone is lower than for the ftaw zone of the Ponds Syrenie Stawy.
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At the same time, following the scattering of tlesults in Figure 6, it can be seen that the
D, factor is most similar to the perfect data disttibn in the inflow zone, where - in the
outflow area, the discrepancy is greater and imse ®fD, over 50% has been reported.
However, such a decomposition could be found iritemture [I8, 49-51].

Table 7
Alignment of ANN models as coefficients of discrapg of results
Discrepancy ratio
ANN models for - D, - SD v
Inflow 0.748 0.973 1.251 0.12 0.12
Outflow 0.670 1.171 1.766 0.34 0.29
a) b)
20 Inflow T 50 Outflow
B B [
% 15 g 15 _—
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Fig. 6. The discrepancy ratios of best computed ANbdbels for ponds Syrenie Stawy in inflow and
outflow area, where- shows 50% error bands, and (-) perfect fittingnfzo

Conclusions

The possibility of using artificial neural networks estimate changes in chloride ion
concentrations in urban ponds was investigatecherekample of Ponds Syrenie Stawy in
Szczecin (NW-Poland). Based on the five selectetkmwguality indices used as input
parameters for the ANN model generation, satisfgctoathematical models with high
predictive power and low predictive error valuegavebtained. It has been shown that out
of the five selected water quality indices, thegpagter that creates the ANN models with
the best prognostic coefficient values is wateursdion both in the inflow zone and in the
outflow zone of water to and from the ponds Syr&twy.
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