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PREDICTION OF THE SEASONAL CHANGES  
OF THE CHLORIDE CONCENTRATIONS  

IN URBAN WATER RESERVOIR  

PROGNOZOWANIE SEZONOWYCH ZMIAN ST ĘŻENIA CHLORKÓW  
W MIEJSKIM ZBIORNIKU WODNYM 

Abstract:  This study investigated the possibility of using artificial neural networks to predict changes in the 
concentration of chloride ions in the urban ponds on the example of the inflow and outflow zones of water to and 
from the ponds Syrenie Stawy in Szczecin (NW-Poland). The possibility of using selected water quality indices 
(selected based on correlation matrix of water quality indices with Cl-), in particular: COD-Cr, BOD5, DO, water 
saturation by O2 and NO2

- and their influence on the chloride concentration forecast was tested. 
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Introduction 

The protection of water quality in urban water bodies should be one of the most 
important tasks in environmental programs undertaken by municipalities in each city. 
Lakes, river ponds and streams, especially in larger cities, play an important role in 
recreation and tourism, and are often very often occupied by valuable biocoenoses [1-4].  

Unfortunately, urban water bodies are collectors of pollution discharged into municipal 
and industrial sewage, leading to the degradation of these ecosystems. The changes in the 
water's biotope of such tanks are primarily the increase of dissolved concentrations and the 
involved organic matter and the change of mineralization, both qualitative and quantitative. 
One of the indicators investigated for the assessment of water quality, and especially for the 
study of changes in their mineralization, is the concentration of chloride ions [1-5]. 

The increase in salinity of water characterized by the increase in chloride ions 
concentrations signals changes in the quality of the biotope and the risks of biocenosis 
settling such reservoirs [5-15]. 

It is true that in cities located in the coastal zone, the increase in surface chlorine 
concentrations may be related to the deposition of sea water aerosols and to the washout of 
salt from the soil by rain. Due to the fact that urban water reservoirs are very often included 
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in the rain drainage network in cities in temperate zone, where during the winter months 
NaCl and/or CaCl2 is used to remove glazed frost. In the periods of thaws, especially in 
early spring, when melting snow and ice cover of city streets flow into the tank substantial 
amounts of chloride ions. In this case the changes in chloride concentrations are seasonal 
[5-15]. Generally, in recent years we have seen an increase in the concentration of chloride 
ions in freshwater bodies of water around the world [5-15]. 

However, examination of the changes in concentrations of chloride ions in freshwater 
ecosystems in urban areas is a convenient way to check the nature of the changes of 
biotopes of examined water bodies [5-15]. 

Because urban water quality is often examined only occasional it seems to be justified 
using modern techniques which allows to discern and make predictions based on a limited 
number of measurements, which seems to be of particular importance for the study of 
changes in the quality of the water environment in cities. 

One of the tools for predicting and modeling is artificial neural networks (ANN) -  
a specialized mathematical ”cause-effect” system, in its structure resembling a simple 
network of biological neurons. At first, artificial neural networks were used in economic 
sciences [16] and in meteorology [17]. Currently, more and more often used in prediction 
of changes in surface waters, demersal waters and hydrological changes [18-28]. 

There were studies using ANN to predict and determine the impact of various factors, 
such as catchment area, environmental or atmospheric factors - on the salinity level of 
marine, fresh or groundwater [29-32]. 

The aim of this work was to demonstrate the use of artificial neural networks for the 
forecasting of chloride ion concentrations in surface water in Ponds Syrenie Stawy in 
Szczecin using a relatively small number of measured data (20 measurements in subsequent 
months). 

Lake characteristic 

Ponds Syrenie Stawy in Szczecin are four artificial flow water reservoirs (Table 1,  
Fig. 1) formed in the second half of the 19th century after damming the waters of the 
Osowka stream. The Ponds are located in the Arkonski Forest, which is part of the 
protected nature and landscape complex "Kasprowicz-Arkonski Park Complex". The total 
area of Syrenie Stawy is about 1.99 ha, with an average depth of about 2 m. Syrenie Stawy 
like others urban water bodies are included into municipal rain drainage system, where they 
play the role of reservoirs for precipitation waters as well as of settling ponds and biological 
treatment plants [33-36]. 

By the beginning of the 90s of the last century, significant amounts of various 
pollutants, including urban waste water and industrial waste water, were discharged into the 
Syrenie Stawy waters e.g. from POLMO Workshops and military unit workshops. This 
state of affairs was about to change after the sewage network was completed. After  
a gradual reduction of pollutant inflow with Osowka stream waters which flows through 
Ponds Syrenie Stawy the entire ecosystem of Ponds was gradually self purificating, which 
was interrupted in August - November 2003 by hydrotechnical works to regulate the runoff 
of the Osowka by constructing a new trough of Osowka, and then in period from December 
2010 to December 2012, when a large-scale hydrotechnical works had place - changing the 
riverbed leading waters of Osowka and regulating the flow of water through the Ponds 
Syrenie Stawy which caused a negative change in the quality of ponds in subsequent years 
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after these regulations. Since 2010, preparations are being made for the construction of the 
Botanical Garden - Arboretum "Syrenie Stawy" [33-35]. 

 

 
Fig. 1. Syrenie Stawy Ponds in Szczecin city (NW-Poland) (after: [33] with changes) 

Table 1  
Morphometric characteristic of Syrenie Stawy Ponds 

Geographical coordinates 
Latitude 53°45′69.4″N 

Longitude 14°51′05.1″E 
Morphometric data 

Morphometric indicator Units 
Pond No. 

1 2 3 4 
Water level [m asl*] 21.1 21.0 21.0 20.0 

Area [104 m2] 0.27 1.15 0.34 0.13 
Capacity [103 m3] 4.0 23 6.8 0.7 

Depth - max [m] 1.8 2.5 2.4 0.6 
Depth - average [m] 1.5 2.0 2.0 0.5 

Length max [m] 86 217 97 77 
Width max [m] 36 80 37 26 

Length of coastline [m] 216 565 250 195 
* meters above sea level 

 
After performing hydrotechnical works Syrenie Stawy act as retention tanks on the 

bypass passage of the Osowka watercourse. It had significantly contributed to the 
stabilization of the flow rate of this stream. As a result, the retention time of ponds is 
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variable - during intense and prolonged precipitation it reaches up to 14 days, and in 
periods when precipitation does not occur - water of Ponds stagnate. So Ponds Syrenie 
Stawy from the hydrological point of view are overflowed Osowka [33, 34]. 

Material and methods 

The water samples of Ponds Syrenie Stawy were collected for examination at the place 
of two sampling stations located respectively in the region of inflow of water to the Pond 
No. 1 and the water outflow area of the Pond No. 2 - which is the main flow path of water 
by Syrenie Stawy. Surface water samples were taken from a depth of c.a. 25 cm at 30-day 
intervals from January 2014 to August 2015. 19 selected water quality indices, in particular 
temperature, pH, chemical oxygen demand as COD-Cr and COD-Mn, dissolved oxygen 
(DO), water saturation by O2 (WS), 5-day biochemical oxygen demand (BOD5), 
concentration of NO3

–, NO2
–, NH4

+, PO4
3–, total concentrations of nitrogen (TN) and 

phosphorus (TP), total hardness (TH), concentration of calcium (Ca2+), sulfate (SO4
2–), 

chloride (Cl–), alkalinity (ALK) and total concentrations of iron (Fetot). Samples methods as 
well as all analyzes were performed according to recommendations [37]. 

Artificial neural network (ANN) 

Artificial neural networks are considered nonlinear statistical tools for modeling and 
forecasting data variability. It is used when standard statistical and mathematical 
procedures do not provide a satisfactory answer when solving a problem [38-46]. 

ANNs are groups of interconnected artificial neurons using a mathematical model for 
processing information based on a "connection" computational approach. This is an 
adaptive system that changes its structure according to the data flowing to and through the 
system network [38-46]. 

The basic unit of artificial neural networks are nodes. They are connected by the  
so-called synapses which are related with appropriate weighting factors. The most 
commonly used network model is the three-layer ANN model, in which we distinguish the 
input layer, hidden layer and output layer [38-46]. 

In order to produce mathematical models with ANN, it is necessary to introduce  
so-called typical data pairs - to generate a training set. An appropriately trained network 
will test its knowledge of a given problem by creating a testing set and then validating the 
set [38-46]. 

In order to develop an automatic neural network that predicts chloride ion 
concentration in incoming and outgoing water to/from Syrenie Stawy, the data set was 
divided into three sets: 60% for the learning set and 20% for the test and validation set. To 
define the final model, time series regression analysis was performed using the multilayer 
perceptron (MLP) ANN model with the maximum number of hidden layers defined as 10, 
and linear, logistic, tanh, exponential, and sinusoidal functions were used as activation 
functions for hidden and output neurons [38-46]. 

Model performance indicators 

In this study, the results obtained using ANN were compared and evaluated [44-51].  
It is important to define average forecast error by (MSE, RMSE), model fit (R2), and 
prognostic error distribution when creating forecast models. The robustness of the model 
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was tested by determining the mean absolute error of the prediction (MAPE) - defining the 
percent precision of the model according to the formula [44-51]: 

���� = 	100	 	
 ��
 −	�
�
 ��

��  

where xi is the measured chloride ion concentrations in i-th month, pi - calculated with 
ANN values of chlorides in i-th month, n - is the total number of observations. 

As a criterion for determining the model performance results obtained by the ANN the 
coefficient of determination (R2) was calculated, defined as [18, 19, 44-51]: 
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To determine the value of the prognostic error mean square error (MSE) and the root 
mean square error (RMSE) were calculated by the formulas: 
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In addition, the discrepancy ratio for the obtained data (ANN output) was defined as 
[49-51]:  �� =	�
�
 

In order to avoid the multidimensional scattering of measured data, the data 
standardization was performed on the basis of equation [44, 45]: �� = �
 −	�̅��  

where: xs - represents a standardized value, xi - value of the parameter being standardized,  �̅ - average value within the given parameter water quality, and SD - standard deviation. 
All calculations were performed using computer software STATISCITA 12.0PL. 

Results and discussion 

The results of the 19 indicators of water quality at the inflow and inlet from the Syrenie 
Stawy are presented in Table 2 and Figures 2 and 3. Variability of most of the indices was 
very similar in nature at both sampling stations. In the zone of water inflow to the Syrenie 
Stawy higher values - in relation to the outflow zone of the Ponds had COD-Cr, NO2

–, TN, 
SRP, Cl–, and Fetot at the same time with worse aerobic conditions (WS, DO) and lower pH 
values. This shows the influx of pollutants into the Ponds primarily with the waters of 
Osowka. 

During the flow of water through the Syrenie Stawy in the study period, all changes in 
the values of the sedimentation indices are related to changes in the indices of organic 
matter sedimentation to bottom sediments and to the occurrence of relatively intensive 
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oxidation processes of organic matter (OM). This suggests that the Ponds Syrenie Stawy in 
the study period were relatively well-functioning reservoirs - biological treatment plants. 

 
 

Table 2 
Statistical characteristics of selected water indices in Ponds Syrenie Stawy 

Water quality 
indices Units Descriptive 

statistics 
Syrenie Stawy Ponds 

Pond No. 1 - inflow area Pond No. 2 - outflow area 

Temperature [°C] 
Mean ±SD 

Range 
CV 

10.8 ±7.9 
0.4-25.2 

0.72 

10.0 ±7.4 
0.4-24.1 

0.74 

pH [-] 
Mean ±SD 

Range 
CV 

7.96 ±0.39 
7.10-8.60 

0.04 

7.95 ±0.35 
7.10-8.40 

0.04 

COD-Mn [mg O2 · dm–3] 
Mean ±SD 

Range 
CV 

11.0 ±2.5 
7.2-18.7 

0.22 

9.8 ±1.5 
7.2-14.1 

0.15 

COD-Cr [mg O2 · dm–3] 
Mean ±SD 

Range 
CV 

160 ±82 
67.4-388.0 

0.52 

157 ±81 
64.7-388.0 

0.52 

BOD5 [mg O2 · dm–3] 
Mean ±SD 

Range 
CV 

3.1 ±1.3 
0.50-6.60 

0.43 

3.5 ±1.5 
0.50-6.60 

0.44 

DO [mg O2 · dm–3] 
Mean ±SD 

Range 
CV 

3.3 ±1.7 
0.5-8.4 
0.53 

3.7 ±1.9 
0.5-1.9 
0.50 

WS [%] 
Mean ±SD 

Range 
CV 

28 ±14 
4.00-67.00 

0.51 

31 ±15 
4.00-67.00 

0.50 

NO3
– [mg N-NO3 · dm–3] 

Mean ±SD 
Range 

CV 

0.77 ±0.36 
0.11-1.75 

0.74 

0.85 ±0.38 
0.11-1.75 

0.44 

NO2
– [mg N-NO2 · dm–3] 

Mean ±SD 
Range 

CV 

0.28 ±0.23 
0.104-0.997 

0.80 

0.17 ±0.07 
0.083-0.403 

0.43 

NH4
+ [mg N-NH4 · dm–3] 

Mean ±SD 
Range 

CV 

0.77 ±0.33 
0.25-1.60 

0.42 

0.79 ±0.28 
0.25-1.16 

0.35 

TN [mg N · dm–3] 
Mean ±SD 

Range 
CV 

2.67 ±0.60 
1.52-3.80 

0.22 

2.59 ±0.65 
1.52-3.80 

0.25 

SRP [mg P-PO4 · dm–3] 
Mean ±SD 

Range 
CV 

0.23 ±0.14 
0.04-0.57 

0.62 

0.24 ±0.16 
0.05-0.57 

0.63 

TP [mg P-PO4 · dm–3] 
Mean ±SD 

Range 
CV 

1.03 ±0.46 
0.31-2.06 

0.44 

1.13 ±0.65 
0.31-3.06 

0.57 

TH [mg CaCO3 · dm–3] 
Mean ±SD 

Range 
CV 

247 ±150 
99-681 
0.61 

289 ±129 
166-681 

0.44 

Ca2+ [mg Ca · dm–3] 
Mean ±SD 

Range 
CV 

73 ±29 
34-131 
0.40 

85 ±25 
54-131 
0.30 

Cl– [mg Cl · dm–3] 
Mean ±SD 

Range 
CV 

39 ±20 
22-105 
0.53 

37 ±19 
22-105 
0.53 
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Water quality 
indices 

Units Descriptive 
statistics 

Syrenie Stawy Ponds 
Pond No. 1 - inflow area Pond No. 2 - outflow area 

SO4
2– [mg SO4 · dm–3] 

Mean ±SD 
Range 

CV 

64 ±37 
33-193 
0.57 

62 ±37 
33-193 
0.59 

Alkalinity [mg HCO3 · dm–3] 
Mean ±SD 

Range 
CV 

222 ±50 
100-350 

0.22 

221 ±49 
100-350 

0.22 

Fetot [mg Fe · dm–3] 
Mean ±SD 

Range 
CV 

0.47 ±0.33 
0.05-1.33 

0.70 

0.52 ±0.36 
0.07-1.33 

0.68 

where: SD - standard deviation (uncertainty of measurement), CV - coefficient of variation 
 
On the other hand, higher concentrations of biogenic substances, TP and mineral 

substances in the outflow compared to the inflow may indicate the influx of pollutants 
directly into the Ponds, or the periodic release from the bottom sediments under heavy 
water flow conditions during intensive and sufficiently long precipitation, when by the 
bypass, which are the Ponds Syrenie Stawy in relation to the Osowka Stream, flows large 
amounts of water from precipitation. 

 
a) b) 

 
c) d) 

 
e) f) 
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g) h) 

 
i) j) 

 
Fig. 2. Comparison of the variability of selected water quality indices of Ponds Syrenie Stawy in the 

inflow and outflow zone, where: ○ - inflow, x - outflow 

a) b) 

 
c)  d) 

 
e)  f) 
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g)   h) 

 
i)  

 
Fig. 3. Comparison of the variability of selected water quality indices of Ponds Syrenie Stawy in the 

inflow and outflow zone, where: ○ - inflow, x - outflow 

Table 3 
Correlation matrices of selected water quality indices in inflow area of Ponds Syrenie Stawy 

 
Temp. pH COD-Mn COD-Cr BOD5 DO WS NO3

– NO2
– 

Temperature 1.00 
        

pH 0.45 1.00 
       

COD-Mn 0.25 0.09 1.00 
      

COD-Cr –0.07 –0.45 0.61 1.00 
     

BOD5 –0.46 –0.33 0.27 0.60 1.00 
    

DO –0.46 –0.30 0.25 0.54 0.98 1.00 
   

WS –0.26 –0.21 0.45 0.62 0.93 0.95 1.00 
  

NO3
– –0.49 –0.12 –0.17 –0.07 –0.18 –0.19 –0.22 1.00 

 
NO2

– 0.15 –0.08 0.73 0.67 0.40 0.31 0.50 –0.19 1.00 
NH4

+ 0.08 0.32 0.07 –0.07 –0.18 –0.12 –0.15 0.01 –0.35 
TN 0.04 0.01 –0.05 0.07 –0.29 –0.24 –0.22 0.58 –0.31 
SRP 0.30 0.45 –0.13 –0.23 –0.42 –0.40 –0.32 0.38 –0.22 
TP 0.38 0.42 –0.12 –0.27 –0.49 –0.47 –0.37 0.25 –0.18 
TH –0.34 –0.12 –0.66 –0.37 0.07 0.12 –0.03 0.02 –0.47 
Ca2+ –0.42 –0.17 –0.64 –0.26 0.21 0.26 0.12 0.04 –0.37 
Cl– –0.32 –0.29 0.43 0.72 0.67 0.58 0.62 –0.01 0.60 

SO4
2– –0.30 –0.59 0.21 0.51 0.14 0.11 0.16 0.42 0.22 

Alkalinity –0.07 0.48 –0.22 –0.25 –0.07 –0.09 –0.12 0.19 –0.10 
Fetot –0.32 –0.14 –0.20 –0.08 –0.15 –0.11 –0.10 0.46 –0.17 

 

 
NH4

+ TN SRP TP TH Ca2+ Cl– SO4
2– Alkalinity Fetot 

Temperature 
          

pH 
          

COD-Mn 
          

COD-Cr 
          

BOD5           
DO 

          
WS 

          
NO3

– 
          



Tymoteusz Miller and Gorzysław Poleszczuk 

 

604 

 
NH4

+ TN SRP TP TH Ca2+ Cl– SO4
2– Alkalinity Fetot 

NO2
– 

          
NH4

+ 1.00 
         

TN 0.28 1.00 
        

SRP 0.17 0.27 1.00 
       

TP 0.23 0.17 0.84 1.00 
      

TH –0.30 0.08 –0.28 –0.35 1.00 
     

Ca2+ –0.31 0.03 –0.30 –0.33 0.97 1.00 
    

Cl– –0.02 –0.33 –0.18 –0.26 –0.36 –0.22 1.00 
   

SO4
2– –0.03 0.34 –0.24 –0.07 –0.10 0.01 0.31 1.00 

  
Alkalinity –0.20 0.11 0.04 –0.07 0.48 0.46 –0.12 –0.13 1.00 

 
Fetot –0.12 0.29 –0.11 –0.04 0.46 0.46 –0.14 0.51 0.39 1.00 

The bolded values show a statistically significant correlation, at the level of α = 0.05 between the values of Cl– and 
the other water quality indices 
 

Table 4  
Correlation matrices of selected water quality indices in outflow area of Ponds Syrenie Stawy 

 
Temp. pH COD-Mn COD-Cr BOD5 DO WS NO3

– NO2
– 

Temperature 1.00 
        

pH 0.44 1.00 
       

COD-Mn 0.22 0.16 1.00 
      

COD-Cr –0.18 –0.46 0.14 1.00 
     

BOD5 –0.38 –0.26 0.08 0.73 1.00 
    

DO –0.43 –0.23 0.17 0.67 0.96 1.00 
   

WS –0.34 –0.21 0.20 0.66 0.95 0.98 1.00 
  

NO3
– –0.32 –0.06 –0.05 0.09 –0.16 –0.17 –0.16 1.00 

 
NO2

– –0.07 –0.13 –0.02 0.42 0.51 0.45 0.54 0.07 1.00 
NH4

+ 0.28 0.47 0.17 –0.07 –0.11 –0.07 –0.02 –0.03 –0.28 
TN –0.10 0.09 0.12 –0.01 –0.35 –0.25 –0.29 0.51 –0.25 
SRP 0.35 0.46 –0.06 –0.13 –0.29 –0.31 –0.27 0.37 –0.22 
TP 0.29 0.38 –0.01 –0.27 –0.43 –0.43 –0.42 0.40 –0.43 
TH –0.20 –0.24 –0.27 0.01 0.13 0.20 0.19 –0.31 0.32 
Ca2+ –0.33 –0.24 –0.33 0.10 0.27 0.33 0.34 –0.19 0.42 
Cl– –0.42 –0.27 –0.09 0.70 0.77 0.67 0.65 0.14 0.63 

SO4
2– –0.40 –0.62 0.10 0.42 0.10 0.11 0.14 0.44 0.19 

Alkalinity –0.06 0.41 –0.06 –0.26 –0.22 –0.18 –0.20 0.18 0.06 
Fetot –0.25 –0.15 0.01 –0.10 –0.24 –0.16 –0.12 0.42 0.10 

 

 
NH4

+ TN SRP TP TH Ca2+ Cl– SO4
2– Alkalinity Fetot 

Temperature 
          

pH 
          

COD-Mn 
          

COD-Cr 
          

BOD5           
DO 

          
WS 

          
NO3

– 
          

NO2
– 

          
NH4

+ 1.00 
         

TN 0.20 1.00 
        

SRP 0.26 0.25 1.00 
       

TP 0.28 0.30 0.82 1.00 
      

TH –0.41 –0.18 –0.51 –0.58 1.00 
     

Ca2+ –0.32 –0.20 –0.47 –0.53 0.95 1.00 
    

Cl– –0.02 –0.37 –0.10 –0.27 0.00 0.17 1.00 
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NH4

+ TN SRP TP TH Ca2+ Cl– SO4
2– Alkalinity Fetot 

SO4
2– –0.06 0.25 –0.25 –0.06 0.00 0.12 0.22 1.00 

  
Alkalinity –0.20 0.21 –0.04 –0.14 0.44 0.40 –0.11 –0.15 1.00 

 
Fetot 0.01 0.25 –0.21 0.08 0.35 0.39 –0.17 0.50 0.30 1.00 

The bolded values show a statistically significant correlation, at the level of α = 0.05 between the values of Cl– and 
the other water quality indices 
 

During creation artificial neural networks models, the choice of input parameters is  
a very important aspect. Inadequate parameters will lead to inappropriate network learning, 
resulting in inadequate results and efficiency of the whole process. The higher the 
correlation between the independent variables and the dependent variable, the network 
architecture learning ANN is better. In order to avoid introducing unnecessary variables 
during the calculations, the correlation between the tested water quality indices and the Cl– 
concentration was performed. Correlation coefficients are summarized in Table 3 for water 
inflow zone, and Table 4 for the water outflow zone of the Ponds Syrenie Stawy. The 
results show that strong correlations with Cl– values were COD-Cr, BOD5, DO, WS and 
NO2

– at both sampling stations. Strong correlation loads may indicate that the calculated 
values of chlorides with ANN should be highly probable [18, 19, 42, 43, 46].  

Frequent phenomena during neural network research are the overfitting of training 
data, leading to a deterioration in the generalizability of the model resulting in undesirable 
output values. To avoid this phenomenon, the number of hidden layers of neurons was 
tested [18, 44, 48]. The analyzes were performed using 2, 4, 6, 8 and 10 nodes during the 
calculation. It was determined that the most likely ANN results are obtained with 5 hidden 
layers, 1000 iterations and 6 nodes. 

In order to check the quality and impact of selected variables on changes in chloride 
ion concentrations 6 prognostic models were generated for each measurement station. 
Different input parameters were used for their calculation - each selected water quality 
indicator independently and collectively using 5 indices together. 

 
a)  b) 

 
c)  d) 
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e)  f) 

 
g)  h) 

 
i)    j) 

 
k)   l) 

 
Fig. 4. Results of computed models for each input parameter for the inflow of Syrenie Stawy Ponds 

a)  b) 
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c)  d) 

 
e)  f) 

 
g)  h) 

 
i)    j) 

 
k)   l) 

 
Fig. 5. Results of computed models for each input parameter for the outflow of Syrenie Stawy Ponds 

Compatibility of forecasted data with "real" data was determined additionally on the 
basis of indications of R2 coefficient obtained from linear equations (Figs. 4 and 5). The 
models with the highest values of R2 - 0.9746 and 0.9893 - for the inflow and outflow zone 
- respectively - were characterized by models where all water quality indices were selected 
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as input parameters (i.e. COD-Cr, BOD5, DO, WS, NO2
–). The lowest values of the 

determination coefficient were obtained for single parameter models, in particular COD-Cr 
(R2 = 0.667) and DO (R2 = 0.6654) - for the inflow zone and COD-Cr (R2 = 0.6411) for the 
outflow zone. It should be noted that the model based on the WS in the outflow zone was 
also high (R2 = 0.9429) - in comparison to the rest of the tested models. 

Tables 5 and 6 show the results of the computational analyzes. It has been shown that 
the WS determines the highest coefficient of determination (R2 = 0.887) among the water 
quality indices selected for ANN calculations in the water inflow zone to the Ponds. It also 
showed the lowest MSE and RMSE values, and its mean absolute prediction error was only 
10.64%. 

 
Table 5 

Evaluation of ANN models for inflow area of ponds Syrenie Stawy 

Performance 
criteria 

Input parameter 
COD-Cr BOD5 DO WS NO2

– COD-Cr + BOD5 + DO + WS + NO2
– 

MSE 175.68 46.76 166.40 56.92 98.86 13.99 
RMSE 13.25 6.83 12.89 7.54 9.94 3.74 
MAPE 30.51 13.51 16.95 10.64 11.56 7.05 

R2 0.799 0.819 0.666 0.887 0.788 0.999 

 
Table 6  

Evaluation of ANN models for outflow area of ponds Syrenie Stawy 

Performance 
criteria 

Input parameter 
COD-Cr BOD5 DO WS NO2

– COD-Cr + BOD5 + DO + WS+ NO2
– 

MSE 174.26 60.59 102.11 34.14 95.04 4.94 
RMSE 13.20 7.78 10.10 5.84 9.75 2.22 
MAPE 26.55 18.38 20.74 8.66 17.72 3.42 

R2 0.781 0.687 0.532 0.854 0.731 0.995 

 
Analysis of the efficiency and goodness of fit among the water quality indices in the 

Ponds Syrenie Stawy outflow zone has also shown that the best performing indicator is also 
the WS of R2 of 0.854 and MAPE on level of 8.66%. 

For both measurement stations, the worst predicted indicator based on the 
determination coefficient of 0.666 in the water inflow zone and 0.532 in the water outflow 
zone, respectively, was the concentration of dissolved oxygen (DO). On the other hand, 
while analyzing the mean absolute prediction error (MAPE), despite the high determination 
coefficient - ca. R2 = 0.8 for both measurement stations - COD-Cr - dependent models had 
the highest prediction error. 

The best calculated ANN models are models with five input parameters, which clearly 
coincides with the other papers [18, 44]. The determination coefficients obtained were 
0.999 and 0.995 in the inflow and outflow zone respectively. Despite a slightly higher R2 in 
the inlet zone, the rest of the performance and model fitting criteria were better for the 
forecasts of chlorine concentrations in the outflow zone from Ponds Syrenie Stawy, in 
particular MSE = 4.94, RMSE = 2.22 and MAPE of only 3.42%  

In order to finally compare the ANN results, the discrepancy ratio coefficients (Dr) - 
summarized in Table 7 and Figure 6 were calculated. Table 7 presents the results of the 
basic statistical analysis, which shows that the divergence of the computed models result 
for the water inflow zone is lower than for the outflow zone of the Ponds Syrenie Stawy.  
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At the same time, following the scattering of the results in Figure 6, it can be seen that the 
Dr factor is most similar to the perfect data distribution in the inflow zone, where - in the 
outflow area, the discrepancy is greater and in a case of Dr over 50% has been reported. 
However, such a decomposition could be found in the literature [l8, 49-51]. 

 
Table 7 

Alignment of ANN models as coefficients of discrepancy of results 

ANN models for 
Discrepancy ratio �� !" ��#### �� $% &� '( 

Inflow 0.748 0.973 1.251 0.12 0.12 
Outflow 0.670 1.171 1.766 0.34 0.29 

 

a)  b) 

 
Fig. 6. The discrepancy ratios of best computed ANN models for ponds Syrenie Stawy in inflow and 

outflow area, where (-) shows 50% error bands, and (-) perfect fitting points 

Conclusions 

The possibility of using artificial neural networks to estimate changes in chloride ion 
concentrations in urban ponds was investigated on the example of Ponds Syrenie Stawy in 
Szczecin (NW-Poland). Based on the five selected water quality indices used as input 
parameters for the ANN model generation, satisfactory mathematical models with high 
predictive power and low predictive error values were obtained. It has been shown that out 
of the five selected water quality indices, the parameter that creates the ANN models with 
the best prognostic coefficient values is water saturation both in the inflow zone and in the 
outflow zone of water to and from the ponds Syrenie Stawy.  
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