Microbiological and Energetic Assessment of the Effects of the Biodrying of Fuel Produced from Waste

Open access

Abstract

Biological drying (biodrying) is one of the methods of biological processing of waste, used mainly as part of the mechanical biological treatment of mixed municipal waste. Biological drying uses the heat released during the decomposition of organic matter to reduce the amount of water in dried waste. The aim of the analyses was to provide a microbiological and energetic (fuel) assessment of the process of biodrying of alternative fuel (RDF) obtained by mechanical sorting of mixed municipal waste. The resulting alternative fuel (obtained with just sorting) is characterised by varied moisture content and the presence of diverse groups of microorganisms. The analyses were intended to assess 3 alternative methods of biodrying of alternative fuel in order to produce a stable end product for utility power generation and the cement industry. The analyses were performed using special bioreactors equipped with custom (innovative) fluidised bed, aeration system (air flow rate 500 m3 · h−1), effluents drain systems, post-process air offtake and 4 temperature sensors. The assessment of the impact of the employed bed aeration methods on the quality of the alternative fuel was performed in 3 repetitions with the same external parameters. The obtained results show that after 8 days of biodrying, in the most favourable option, the moisture content in the fuel was reduced to the level of 18.7%, i.e. by 39%, the resulting fuel was microbiologically stable and the calorific value of the fuel was increased on average by 3.2 MJ · kg−1.

[1] Skutan S, Brunner H. Metals in RDF and other high calorific value fractions from mechanical treatment of MSW: Analysis and sampling errors. Waste Manage Res. 2012;30.7:645-655. DOI: 10.1177/0734242X12442740.

[2] Malinowski M. Selected properties of an alternative fuel manufactured from municipal solid waste. Infrastruct Ecol Rural Areas. 2013;2013/4/2:125-139. http://www.infraeco.pl/pl/art/a_17260.htm?plik=1520.

[3] Mokrzycki E, Uliasz-Bocheńczyk A, Sarna M. Use of alternative fuels in the Polish cement industry. Appl Energy. 2003;74:101-111. DOI: 10.1016/S0306-2619(02)00136-8.

[4] Trezza MA, Scian AN. Waste fuels: their effect on Portland cement clinker. Cement and Concrete Res. 2005;35:438-444. DOI: 10.1016/j.cemconres.2004.05.045.

[5] Yuan J, Zhang D, Li Y, Chadwick D, Li G, Li Y, Du L. Effects of adding bulking agents on biostabilization and drying of municipal solid waste. Waste Manage. 2017;62:52-60. DOI: 10.1016/j.wasman.2017.02.027.

[6] Tom A, Pawels R, Haridas A. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content. Waste Manage. 2016;49:64-71. DOI: 10.1016/j.wasman.2016.01.004.

[7] Yasuhara A, Amano Y, Shibamoto T. Investigation of the self-heating and spontaneous ignition of refuse-derived fuel (RDF) during storage. Waste Manage. 2010;30:1161-1164. DOI: 10.1016/j.wasman.2009.11.003.

[8] Gao L, Hirano T. Process of accidental explosions at a refuse derived fuel storage. J Loss Prevent Proc. 2006;19:288-291. DOI: 10.1016/j.jlp.2005.05.016.

[9] Hogland W, Marques M. Physical, biological and chemical processes during storage and spontaneous combustion of waste fuel. Resour Conserv Recy. 2003;40:53-69. DOI: 10.1016/S0921-3449(03)00025-9.

[10] Hurka M, Malinowski M. Assessment of the use of EWA bioreactor in the process of bio-drying of undersize fraction manufactured from mixed municipal solid waste. Infrastruct Ecol Rural Areas. 2014;2014/IV/1:1127-1136. DOI: 10.14597/infraeco.2014.4.1.083.

[11] Adani F, Baido D, Calcatera E, Genevini P. The influence of biomass temperature on biostabilization-biodrying of municipal solid waste. Bioresour Technol. 2002;83/3:173-179. DOI: 10.1016/S0960-8524(01)00231-0.

[12] Sugni M, Calcatera E, Adani F. Biostabilization-biodrying of municipal solid waste by inverting air-flow. Bioresour Technol. 2005;96/12:1331-1337. DOI: 10.1016/j.biortech.2004.11.016.

[13] Zeng Y, De Guardia A, Ziebal C, De Macedo FJ, Dabert P. Nitrification and microbiological evolution during aerobic treatment of municipal solid wastes. Bioresour Technol. 2012;110:144-152. DOI: 10.1016/j.biortech.2012.01.135.

[14] Passamani G, Ragazzi M, Torretta V. Potential SRF generation from a closed landfill in Northern Italy. Waste Manage. 2016;47:157-163. DOI: 10.1016/j.wasman.2015.07.024.

[15] Dębicka M, Żygadło M, Latosińska J. Investigations of bio-drying process of municipal solid waste. Ecol Chem Eng A. 2013;20(12):1461-1470. DOI: 10.2428/ecea.2013.20(12)132.

[16] Bilgin M, Tulun S. Biodrying for municipal solid waste: volume and weight reduction. Environ Technol. 2015:1-7. DOI: 10.1080/09593330.2015.1006262.

[17] Dziedzic K, Łapczyńska-Kordon B, Malinowski M, Niemiec M, Sikora J. Impact of aerobic biostabilization and biodrying process of municipal solid waste on minimization of waste deposited in landfills. Chem Process Eng-Inz. 2015;36/4:381-394. DOI: 10.1515/cpe-2015-0027.

[18] Montejo C, Tonini D, Marquez MC, Astrup TF. Mechanical-biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization. J Environ Manage. 2013;128:661-673. DOI: 10.1016/j.jenvman.2013.05.063.

[19] Frączek K, Ropek D. Impact of the municipal landfill site on bacteria participating in transformation of soil nitrogen. Ecol Chem Eng A. 2011;18(5-6):685-695. http://tchie.uni.opole.pl/ece_a/A_18_5-6/ECE_A_18(5-6).pdf.

[20] Frączek K, Ropek D. Municipal waste dumps as the microbiological threat to the natural environment. Ecol Chem Eng S. 2011;18/1:93-110. http://tchie.uni.opole.pl/ece_s/S18_1/S1_2011.pdf.

[21] Zeng Y, De Guardia A, Ziebal C, De Macedo FJ, Dabert P. Nitrogen dynamic and microbiological evaluation during aerobic treatment of digested sludge. Waste Biomas Valori. 2014;5/3:441-450. DOI: 10.1007/s12649-013-9275-2.

[22] Sawamura H, Yamada M, Endo K, Soda S, Ishigaki T, Ike M. Characterization of microorganisms at different landfill depths using carbon-utilization patterns and 16S rRNA gene based T-RFLP. J Biosci Bioeng. 2010;109/2:130-137. DOI: 10.1016/j.jbiosc.2009.07.020.

[23] Giusti L. A review of waste management practices and their impact on human health. Waste Manage. 2009;29(8):2227-2239. DOI: 10.1016/j.wasman.2009.03.028.

[24] Yang K, Zhou XN, Yan WA, Hang DR, Steinmann P. Landfills in Jiangsu province, China, and potential threats for public health: Leachate appraisal and spatial analysis using geographic information system and remote sensing. Waste Manage. 2008;28(12):2750-2757. DOI: 10.1016/j.wasman.2008.01.021.

[25] Franke-Whittle IH, Confalonieri A, Insam H, Schlegelmilch M, Körner I. Changes in the microbial communities during co-composting of digestates. Waste Manage. 2014;34:632-641. DOI: 10.1016/j.wasman.2013.12.009.

[26] Sakka M, Kimura T, Sakka K. Comparison of microbial consortia in refuse-derived fuel (RDF) preparations between Japan and Germany. Biosci Biotechnol Biochem. 2006;70/12:2868-2873. DOI:10.1271/bbb.60261.

[27] PN Z 15006:1993: Odpady komunalne stałe -- Oznaczanie składu morfologicznego. (Municipal solid waste - Determination of morphological contents). http://sklep.pkn.pl/pn-z-15006-1993p.html?options=cart.

[28] PN-EN 15407:2011: Refuse derived fuels. - Determination of carbon (C), hydrogen (H) and nitrogen (N) content. https://sklep.pkn.pl/catalogsearch/result/?q=PN-EN%2015407:2011.

[29] PN-G-04584:2001: Paliwa stałe -- Oznaczanie zawartości siarki całkowitej i popiołowej automatycznymi analizatorami (Solid fuels - Determination of total sulfur and ash through the automatic analyzers). https://sklep.pkn.pl/catalogsearch/result/?q=PN-G-04584:2001.

[30] Jakubowski M. Patent application No P121933. Dno napowietrzające kontenerowego urządzenia do obróbki, biosuszenia i kompostowania biofrakcji odpadów komunalnych (Aerating bottom of the container device for biological treatment (biological drying and composting) biofraction of municipal solid waste). 2013.

[31] Velis CA, Longhurst H, Drew R, Smith R, Pollard SJT. Biodrying for mechanical-biological treatment of wastes: A review of process science and engineering. Bioresour Technol. 2009;100(11):2747-2761. DOI: 10.1016/j.biortech.2008.12.026.

[32] Juniper. Mechanical-Biological Treatment: A Guide for Decision Makers, Processes, Policies and Markets. Juniper Consultancy Services. UK. 2005.

[33] Environment Agency. Eco-deco. http://www.environmentagency.gov.uk/wtd/679004/679026/679079/973452/?version=1&lang=_e (accessed: 15.09.2007).

[34] Cozens P. EfW - an alternative vision. In: Papadimitriou EK, Stentiford EI, editors. Biodegradable and Residual Waste Management: First UK Conference and Exhibition. Harrogate, UK. 2004:464-472.

[35] European Committee for Standardization, 2006. Characterization of Waste - Sampling of Waste Materials - Framework for the Preparation and Application of a Sampling Plan. EN 2006, 14899. http://www.srcosmos.gr/srcosmos/showpub.aspx?aa=14179.

[36] PN-EN 18134-3:2015-11. Solid biofuels - Determination of moisture content - Oven dry method - Part 3: Moisture in general analysis sample. http://sklep.pkn.pl/pn-en-iso-18134-3-2015-11e.html.

[37] PN-ISO 1928:2002: Paliwa stałe -- Oznaczanie ciepła spalania metodą spalania w bombie kalorymetrycznej i obliczanie wartości opałowej. (Solid fuels - Determination of combustion heat by combustion in a bomb calorimeter and calculation of net calorific value). http://sklep.pkn.pl/pn-iso-1928-2002p.html?options=cart.

[38] PN-Z 15008-04:1993: Odpady komunalne stałe -- Badania właściwości paliwowych -- Oznaczanie ciepła spalania i obliczanie wartości opałowej. (Municipal solid waste - Testing of fuel - Determination of the heat of combustion and calculation of net calorific value). http://sklep.pkn.pl/pn-z-15008-04-1993p.html?options=cart.

[39] PN-EN 18122:2016-01. Solid biofuels - Determination of ash content. http://sklep.pkn.pl/pn-en-iso-18122-2016-01e.html.

[40] Giannis A, Makripodis G, Simantiraki F, Somara M, Gidarakos E. Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor. Waste Manage. 2008;28:1346-1354. DOI: 10.1016/j.wasman.2007.06.024.

[41] Borglin SE, Hazen TC, Oldenburg CM. Comparison of aerobic and anaerobic biotreatment of municipal solid waste. J Air Waste Manage Assoc. 2004;54:815-822. DOI: 10.1080/10473289.2004.10470951.

[42] Paredes C, Roig A, Bernal MP, Sanchez-Monedero MA, Cegarra J. Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes. Biol Fertil Soils. 2000;32/3:222-227. DOI: 10.1007/s003740000239.

[43] Paoli L, Pirintsos SA, Kotzabasis K, Pisani T, Navakoudis E, Loppi S. Effects of ammonia from livestock farming on lichen photosynthesis. Environ Pollut. 2010;158/6:2258-2265. DOI: 10.1016/j.envpol.2010.02.008.

[44] Colomer-Mendoza FJ, Herrera-Prats L, Robles-Martínez F, Gallardo-Izquierdo A, Piña-Guzmán AB. Effect of airflow on biodrying of gardening wastes in reactors. J Environ Sci. 2013;25(5):865-872. DOI: 10.1016/S1001-0742(12)60123-5.

[45] Ma J, Zhang L, Li A. Energy-efficient co-biodrying of dewatered sludge and food waste: Synergistic enhancement and variables investigation. Waste Manage. 2016;56:411-422. DOI: 10.1016/j.wasman.2016.06.007.

[46] Mohammed M, Ozbay I, Durmusoglu E. Bio-drying of green waste with high moisture content. Process Saf Environ. 2017;111:420-427. DOI: 10.1016/j.psep.2017.08.002.

[47] Wolny-Koładka K, Żukowski W. Mixed municipal solid waste hygienisation for refuse-derived fuel production by ozonation in the novel configuration using fluidized bed and horizontal reactor. Waste Biomass Valor. 2017. DOI: 10.1007/s12649-017-0087-7. (in press).

[48] Mosher D, Anderson RK. Composting sewage sludge by high-rate suction aeration techniques - the process as conducted at Bangor, Maine, and some guidelines of general applicability. Interim Report Number SW-614d. US Government Printing Office. 1977.

[49] Voberková S, Vaverková MD, Burešová A, Adamcová D, Vršanská M, Kynický J, et al. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Manage. 2016;61:157-164. DOI:10.1016/j.wasman.2016.12.039.

[50] MacGregor ST, Miller FC, Psarianos KM, Finstein MS. Composting process control based on interaction between microbial heat output and temperature. Appl Environ Microbiol. 1981;41:1321-1330. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC243918/pdf/aem00199-0043.pdf.

[51] Liang C, Das KC, Mc Clendon RW. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour Technol. 2003;86:131-137. DOI: 10.1016/S0960-8524(02)00153-0.

[52] Sundberg C, Smars S, Jonsson H. Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresour Technol. 2004;95/2:145-150. DOI: 10.1016/j.biortech.2004.01.016.

[53] Beck-Friis B, Smars S, Jonsson H, Kirchmann H. Gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. J Agr Eng Res. 2001;78(4):423-430. DOI: 10.1006/jaer.2000.0662.

[54] Strom PF. Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl Environ Microbiol. 1985;50/4:899-905. http://pubmedcentralcanada.ca/pmcc/articles/PMC291766/pdf/aem00230-0168.pdf.

[55] Atlas RM, Bartha R. Microbial Ecology. Fundamentals and Applications. Menlo Park, California: Addison Wesley Longman; Chapter 8; 1998.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information


IMPACT FACTOR 2018: 1,467
5-year IMPACT FACTOR: 1,226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 128 6
PDF Downloads 124 82 7