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Abstract: For estimation of root-zone moisture content fié@-1/Hyperion imagery, surface soil moisture was
first predicted by hyperspectral reflectance daiagipartial least square regressiBh$R) analysis. The textures
of more than 300 soil samples extracted from a ®08 900 m field site located within the Hetao latign
District in China were used to parameterize the IRYI3-1D numerical model. The study area was spatiall
discretized into 18,000 compartments (30 m x 30 ®.02 m), and Monte Carlo simulations were apptied
generate 2000 different soil-particle size distiitns for each compartment. Soil hydraulic progsrtior each
realization were determined by application of aigi neural network analysis and used to paranzeter
HYDRUS-1D to simulate averaged soil-moisture cotgewithin the root zone (0-40 cm) and surface
(approximately 0-4 cm). Then the link between stefanoisture and root zone was established by usineafr
regression analysis, resultingandRMSE of 0.38 and 0.03, respectively. Kriging and cazkrg with observed
surface moisture, and co-kriging with surface mwoistobtained from Hyperion imagery were also used t
estimate root-zone moisture. Results indicated &R is a powerful tool for soil moisture estimatiororn
hyperspectral data. Furthermore, co-kriging witlsesbed surface moisture had the highe€0.41) and linear
regression model, and HYDRUS Monte Carlo simulatibad a lowesRMSE (0.03) among the four methods. In
regions that have similar climatic and soil corafi to our study area, a linear regression modél MiYDRUS
Monte Carlo simulations is a practical method fastrzone moisture estimation before sowing andritlze easily
coupled with remote sensing technology.
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I ntroduction

Irrigation is essential for crop cultivation in édrand semi-arid regions to increase the
water availability in the soil and to leach a fiantof accumulated salts [1]. In the irrigated
regions of northern China, a flood-irrigation systéas been in development since the
1980s to reduce salinity levels in the root zond mtrease water availability for spring
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crops [2]. However, the flood-irrigation system niagth cause a waste of water resources
and present a risk of environment problems, suchgrmindwater pollution [3-5].
Therefore, it is important to supply the exact antoof irrigation water to crops that is
required. This allocation of water is one of thestrappropriate ways to reduce agricultural
water use in water-scarce areas [6]. To deternfieeappropriate irrigation amount before
sowing, precipitation, evaporation, crop species], &specially, the initial soil-moisture
information of the root zone should be taken insideration [7].

The most common method of obtaining soil-moistmferimation is soil sampling and
oven drying [8]. However, these in situ soil-moistwbservations are both time-consuming
and lacking over large spatial scales [9, 10]. Tleeelopment of hyperspectral remote
sensing provides a novel and effective way to obthé topsoil properties. Hyperspectral
sensors are different from conventional broadbambsars, such as SPOT [11], Landsat
MSS [12], and Landsat TM [13], which are unsuitatdle mapping soil properties because
soil elements have characteristic features thatlynoscur in narrow-wavelength regions
and their bandwidths of 100-200 pm cannot resoliegristic spectral features of
terrestrial materials. Hyperspectral remote sengngn advanced technique that usually
provides ample spectral information to delineatetemal characteristics [14]. This
capability enables the identification of targets thie basis of their established spectral
absorption features [15]. Ben-Dor et al. [16] iraded that nearly all soil components,
including moisture, could be explored by hypersp#ctinversion. However, for
hyperspectral remote sensing, limitations stillsexiespecially with extending surface
moisture information to the root zone. Previougagsh showed that geostatistical methods
such as co-kriging could overcome these limitatignconsidering more than one variable
to improve the prediction accuracy [17, 18]. Sun att [19] compared different
geostatistical analysis methods for precipitatieripolation and found co-kriging methods
that utilize altitude as the supplementary datdctobtain the minimum root mean square
error RMSE). Yates et al. [20] used co-kriging methods toineste the gravimetric
moisture content by regarding bare-soil surfacepgrature and the percent sand content as
two additional data. Ghadermazi et al. [21] presticthe spatial distribution of nitrate
concentration in drinking water by using pH asdleiliary co-kriging variable. Therefore,
we can also use the surface-soil moisture as andacy variable for co-kriging to estimate
root-zone moisture.

In addition, mathematical simulations of hydrologyocesses were also used to
estimate root-zone moisture from surface soil [Ejr example, Blonquist Jr et al. [23]
created a non-site-specific and physically conséghiroot-zone model by combining the
finite-element HYDRUS-1D model with meteorologiaabservations and artificial neural
network analysis. Manfreda et al. [24] developgshgsical approach for the estimation of
root-zone soil moisture from surface measurementsabalysis of assimilated data.
However, these methods all need a time series aferehtions, which might be
inconvenient to obtain in some regions. And ittil a challenge to estimate root-zone
moisture from surface-soil conditions with very iied observations for these methods.

Therefore, the purposes of this study were to ftjio the surface-soil moisture of the
study area using a hyperspectral inversion moael,(2) evaluate the accuracy of different
methods of estimating root-zone moisture from sgfsoil moisture from a limited number
of experimental observations.
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Materials and methods

Study site and data collection

Soil sampling was conducted in a square field ofh@l located in Hetao Irrigation
District (40°19-41°18N, 106°20-109°19E) of Inner Mongolia, China (Fig. 1). The
climate of the study area is temperate contineatel monsoonal. The average annual
precipitation is 139-222 mm, with approximately 6086 the rain falling in July and
August. The annual potential evaporation is appnexely 2200-2400 mm. A grid and
stratified sampling scheme was used on Apeh@ April 26 in 2013 to take soil samples.
More precisely, on April 6, soil samples were talkémine depths: 0-2, 2-5, 5-10, 10-15,
15-20, 20-25, 25-30, 30-35, and 35-40 cm (red @glarin Fig. 1). On April 26, 227
sampling points were arranged and 114 points anttemy had the soil profile samples at
depths of 0-5, 5-10, 10-20, 20-30, and 30-40 craeg(ldircle and red triangle in Fig. 1).
Another 113 sampling points had soil samples ac@i%only (green circle in Fig. 1).
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Fig. 1. Location (40°1'941°18N, 106°20-109°19E) and overview (image from Google Earth) of the
study site. Soil samples at red triangles werertaite April 6and April 26 in 2013 as scheduled.
Red triangle and blue circle points were takerbfath surface and root zone. Green circle points
were only taken for 0-5 cm depths

In addition, satellite and ground based hyperspbcata were collected during late
April of 2013. The hyperspectral image before sprisowing was acquired by the
EO-1/Hyperion sensor on April 11, 2013. The grodrased soil reflectance data were
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acquired with an analytical spectral device (AS@yiSpec, Inc., 400-2500 nm, FOV, 25°)
at the exact sampling locations where soil sample®e collected on April 26. ASD soil
reflectance data were taken from 10:00 am to 2rdmpthe field, measured at nadir and
25 repeated readings were averaged as the ultimgierspectral data for each soil
sampling point to minimize random noise. A whitee§palon panel by barium sulphate
(BaSQ) was used to get the absolute reflectance.

Laboratory analysis

Soil mass moisture content [gYjgwas measured for all soil samples by use of teno
drying method. Then we multiplied the mass of maistcontent by 1.4 g-cr(bulk
density) to convert it into volumetric moisture ¢emt [cr-cm). Electrical conductivity
of 1:5 soil:water extractionEC;.s) of the 0-5 cm samples collected on April 26 walso
measured by use of a conductivity meter (DDSJ-318CI, China). In addition, we
selected 42 0-5 cm samples collected on April 2balhthe soil samples collected on April
6 to perform particle-size analysis using the sipipette method [25, 26].

Pre-treatment of hyper spectral data

The EO-1/Hyperion image was processed to Level ddRthen treated with Hyperion
tools V2.0 integrated in ENVI/IDL software to elingite empty bands, atmospheric water
absorption bands, and overlapped bands from 24finatibands. Then, 155 bands with
average full-width at half-maximumF(WHM) of 10 nm were built up by visible
near-infrared YNIR) (426.8-925.4 nm) and short-wave infrarédM(R) (933, 973-1366,
1477-1790, 1982-1992, and 2032-2355 nm). The &ritriping was nonexistent after
band-by-band check, and the spectral smile wasignificant afteMMNF (Minimum Noise
Fraction Rotation) examination. Then, the Fast {0ft&ight Atmospheric Analysis of
Spectral HypercubeFLAASH) in the ENVI software package was used for atmesph
correction, with standard options applied to coteethe digital numbeDN) to apparent
surface reflectance in accordance with the ASD .dataaddition, seven ground control
points were carefully selected to make geo-referavith RMSE lower than 0.3 pixels.

The ASD data were used to establish near-surfatensisture prediction models. For
the purpose of matching ASD data and EO-1/Hypeinasge closer in spectral resolution
and band position, the ASD data were resampledOtarh spectral resolution and the
resampled ASD data were used as spectral reflexiartbe following analysis.

Surface soil moisture content estimation

Experimental data of surface-soil moisture (0-5 arojlected on April 26 were
randomly divided into 2 subsets. One subset wad fegemodel calibration and the other
was used for model validation. Then, partial leagtare regressio®i(SR) and the variable
importance in projection\|P) were used to establish models for predicting amaf
moisture from hyperspectral data (ASD data). Maezisely,PLSR is a kind of regression
that was developed back in the 1980s [27-29]. ihlwoes features from and generalizes
principal component analysiPCA) and multiple linear regression [30], which were
beneficial for solving severe collinearity containén hyperspectral reflectance [31].
Considering the facts that wavelength selectionnégzessary and important for the
hyperspectral signature [32], we first usBdSR to establish a prediction model with
first-order derivative filtered reflectance [33],nch then we calculated the&/IP.
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If a wavelength had &/IP that was higher than 1 and its regression coefiici
(b-coefficient) was higher than the standard dewviatid all b-coefficients, it would be
regarded as a significant wavelength and retainedur final model. Otherwise, it was
removed. After, theVIP calculation, the newPLSR model was established with the
remaining wavelengths and applied to estimate seréail moisture.

Random field of soil hydraulic parameters

Geostatistical analysis was first used to calculdte mean value, variance, and
correlation scales in horizontaX @ndY direction) and verticalZ direction) sections of soil
sand and clay percentages in our study area. Therstudy area was spatially discretized
into 18,000 compartments (30x30x0.02 m), and M@&#do simulations were applied to
generate 2000 different soil-particle size disttidmos for each compartment according to
the geostatistical analysis results. After thail, lsgdraulic properties of each compartment,
including residual soil-water contend,( [cn®-cm]), saturated soil-water contends(
[cm® cnT?), empirical parameters [cm™], andn in the van Genuchten-Mualem soil water
retention function [34], and the saturated hyd@uibnductivity Ks [cm-d?]) were
predicted by artificial neural networRKIN) analysis by use of Rosetta procedure [35].

HYDRUS-1D simulation

HYDRUS-1D (referred to hereafter as HYDRUS) wasduseour study to simulate
soil-water movement in each generated compartmeitth wifferent soil hydraulic
parameters. It uses a Galerkin-type linear finlEment scheme to numerically solve the
Richard’s equation for saturated and unsaturateterwfiow. For more details about
HYDRUS theory and applications, see He et al. [2].

5
I soil evaporation

Soil evaporation [mm]

04
Apr4 Apr 8 Apr 12 Apr 16 Apr 20 Apr 24 Apr 28

Date

Fig. 2. Soil evaporation during the simulation pdrirom April 4 to April 28 in 2013. No precipitati
occurred during this period
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In our study, the initial soil-water condition wabtained on the basis of laboratory
analysis of soil samples taken on April 6, and gbi# evaporation (Fig. 2) was calculated
with HYDRUS according to the daily weather paraneterovided by a weather station,
which was located approximately 1500 m from oudgtarea. The upper conditions of the
soil profile correspond to atmosphere boundary itimd. Because we only wanted to
determine the irrigation requirement before sowang] the main crop of the study area was
sunflower, with roots mainly in the 0-40 cm depémge while the groundwater depth was
approximately at 200 cm [36], the lower boundaryditon was free drainage, and the
simulation period was from April 6 to April 26 in023. After simulation, the mean soil
moisture from 0 to 4 cm depth and from 0 to 40 aptd were both calculated, and we
regarded the former as surface soil moistu#el)(and the latter as the root-zone soil
moisture RM).

Estimation of root-zone moisture

Four different methods for estimating root-zone shaie (0-40 cm) were evaluated in
our study. More precisely, we used kriging with theasured root-zone moisture in the
first method (M1). In the second method we applieed measured surface moisture as
covariate and used co-kriging to obtain root-zorstare (M2). In the third method (M3)
the surface moisture estimated from hyperspectnalgery was used as the covariate in
co-kriging. Finally, in the fourth method (M4) thelation betweerSM and RM from
HYDRUS simulation was established using linear esgion analysis:

RM=a-SM +b (1)
wherea andb are regression coefficients.
M odel evaluation

Pearson's correlation coefficiem®)(andRMSE were used in our study to evaluate the
model performance. The methods to calculate thasistical indexes are shown by:

ne Zinzl(YiObs _YiobS(n)(YiSm _Yisimm> (2)
’zinzl(Yiobs _Yiobsrn)z \/zin:l(YiSim _Yisim'n)z
_ n (Yiobs_Yisim)Z (3)
RMSE Zl T

whereY,® andY;*™ are theith observed and simulated value, respectively, 4id' and
Y;°™ are averages of thith observed and simulated value, respectively.

Results

Geostatistical analysis of soil-particle size

The relation between semi-variance value and stparalistance of the spatial
distribution of sand and clay percentages are shiowFigure 3. A Gaussian model was
used to fit the sand percentage in the horizon¥alagd Y direction) and vertical
(Z direction) sections, and the&® values were both larger than 0.6 (0.655 and 0.651,
respectively), which indicated the fitting curveuta reflect the semi-variance information
accurately. For the distribution of clay percentagespherical model was used for fitting
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the horizontal section, whereas the vertical sactieas fitted by a Gaussian model.
Furthermore, the fitting accuracy of clay percestaas also acceptable because Rhe
values were 0.601 and 0.486 for horizontal andcadrsections, respectively.
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Fig. 3. Relation between semivariance value anarsgipn distance of the spatial distribution ofdan
and clay percentages (a and b). The sand perceniagéution in X-Y and Z directions,
respectively (c and d). The clay percentage digtidn in X-Y andZ directions, respectivelyy,

L, andL, indicate the correlation scales Xy Y, andZ directions, respectivelyC, indicates the
nugget

Furthermore, after comparing the semivariance vafusand and clay percentages in
the direction of 25°, 70°, 115°, and 160°, we dertee distribution of sand and clay
percentages to be isotropic. More precisely, thamealue, standard deviation, and
correlation scale of sand percentage in XhandY directions were 8.35%, 7.22%, and
375 m, respectively (Fig. 3a). In tixedirection, these indexes for sand percentage were
6.21%, 4.67%, and 14.83 cm, respectively (Fig. 3tese geostatistical indexes for clay
percentage were also calculated similarly, andvitiees were 31.04%, 6.78%, and 424 m
in theX andY direction and 30.78%, 9.35%, and 16.66 cm inZloérection (Fig. 3c-d).
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Sur face soil moisture

On the basis of the wavelength selection prinaipémtioned in Section “Pre-treatment
of hyperspectral data”, appropriate wavelengthsewszlected (Fig. 4) and the relation
between reflectance arM was established bpLSR. Before wavelength selection, the
RMSE in the model calibration and validation processente49 and 2.04, respectively. The
R value in the two processes were 0.78 and 0.5g¢otisely. After wavelengths selection
by VIP scores andb-coefficients, theRMSE in the model calibration and validation
processes decreased 3.36 and 4.41%, wh&edasreased 2.56 and 3.70%, respectively
(Table 1).

These lowRMSE and highR values indicated the symmetrical distribution berved
and simulatedSM and PLSR could be regarded as the optimal method to estalthie
relations betweer® and hyperspectral data by use of the selected leryths in our
study. This method was applied in the EO-1/Hypeiagery to estimate surface moisture
of the whole study area (Fig. 5).
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Fig. 4. PLSR coefficients k-coefficients) and variable importance in projestigviP) of each
wavelength (gray columns indicated the selectedeleamgths)

Table 1
Evaluation ofPLSR analysis
Proc Statistical Beforewavelengths | After wavelengths
indices selection selection
Calibration R 0.78 0.80
RMSE 1.49 1.44
I R 0.54 0.56
Validation RVME 2.04 1.95
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Fig. 5. Surface mass soil moisture [%] mapped fE&@1/Hyperion imagery. UTM is the abbreviation
of Universal Transverse Mercator Grid System

Root zone soil moisture

In method 1 (M1) to method 3 (M3), the semi-varangrvalues of observeM, SV
from Hyperion imagery, and observ&M were calculated. The semi-variogram values
betweerRM and observe@®M andSM from Hyperion imagery were also calculated before
kriging or co-kriging. All of these semi-variograralues could be fitted by use of
a spherical model. The Pearson's correlation aeffis R) were all larger than 0.6, and all
the RMSE values were smaller than 0.5. The nugget, paifialand range of each spherical
model are shown in Figure 6.

In method 4 (M4), we generated 900 grids in ¥handY directions, and HYDRUS
simulation was run 2000 times in each gird. Thewféor each grid, the coefficients of the
linear regression model (e.g., a and b) were détesnon the basis of 2000 HYDRUS
results, and we could get a total of 900 regressmmulels for our study site in linear
regression analysis. Figure 7 is the box plots ithditated the range of coefficients aRd
values. We found that the 900 coefficients in tinedr regression analysia, (b, andR)
were similar. More precisely, mean and standardatien of a, b, andR were 0.3566,
0.2218, and 0.6900 and 0.0161, 0.0031, and 0.0Xpectively. Therefore, the linear
regression model with the mean value of 900 cdefiis (Eq. (4)) was selected to estimate
root-zone moisture from surface moistuké):

RM =0.35665M + 0.1584 (4)

In Equation (4)RM andSM indicated the root zone moisture and surfacersoisture
in mass unit [g-d] respectively.
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Fig. 6. Semi-variogram of kriging and co-kriging

Figure 8 indicates the performance of four différerethods of estimating root-zone
moisture. TheRMSE values from M1 to M4 were 1.43, 1.32, 1.40, and3pr@spectively,
and theR values of the four methods were 0.15, 0.41, 0&¥] 0.38, respectively.
Therefore, M2 had the higheltvalue and th&@MSE value in M4 was lowest when data in
our study were used.
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Discussion
M ethods for estimating surface soil moisture

The surface-soil moisture content provides valu&glesystem services and is critical
for both hydrological applications and watershechaggement [37]. With the development
of remote sensing technology, researchers areggttgilmbtain near-surface moisture content
from satellite data. More precisely, they first dissatellite images (e.g., MODIS, EO-1/
Hyperion, LANDSAT) to extract valuable informati@amd then establish models to predict
near-surface moisture content from this informatj88]. However, because of the low
resolution of satellite images, estimating the amcy of model performance when
establishing models directly from satellite imagaght be difficult. For example, the
spatial resolution of the MODIS sensor ranges fra0 mx250 m to 1 kmx1 km and
although EO-1/Hyperion has higher resolution (3086xn), it is still difficult to use soll
sampling or other simple methods to obtain the mteuaverage soil moisture for the
specific pixel of a satellite image [14]. Therefoam increasing number of researchers are
using analytical spectral devices (ASDs) to colleoincident soil reflectance and soil
moisture measurements and establish models basédese data [39]. After reflectance
resampling, the ASD data can match the satelliggnexactly [40]. Therefore, our study
used the resampled ASD data to establish models thed applied them into the
EO-1/Hyperion image. In recent decades, researdesloped many methods to establish
soil-moisture prediction models from ASD data.
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Fig. 9. Histogram of soil-salt content of surfacd-samples taken on April 26 in 2013

For example, Haubrock et al. [41] selected 1800 amd 2119 nm and then used
normalized differenceND) asSMI to predict soil-moisture content; Wang et al. [LSkd
derivative differencedD) with the wavelengths of 1300 nm and 1970 nm takdish
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a soil-moisture prediction model; and Whiting et[dR] used a soil reflectance curve to fit
the inverted Gaussian function and then extracgdmmetrical characteristics of the fitted
curve to predict water content. However, all thesthods were applied in non-saline soils
or when the soil-salt content was uniform. In camgples, the salt content varied from soil
sample to sample. More precisely, the mean sdil-sahtent (indicated irEC;.5) of
222 surface soil samples (5 data points are missieg 0.99 dS-m but the standard
derivation was as large as 1.10 dS- (fig. 9). Therefore, we chose tReSR, which can
make use of the entire wavelength’'s informatiorestablish prediction models, and the
results R = 0.80 in calibration and 0.56 in validation) prdvihatPLSR is a powerful tool

to predict soil-moisture content based on in sifperspectral data in saline soils. The use
of b-coefficients and/IP to select wavelengths could improve BieSR accuracy.

Estimating root-zone moistur e from surface soil

Obtaining root-zone moisture information from nearface has great importance for
expanding the application of remote sensing teayywblnd has attracted broad attention,
recently [43, 44]. Unlike Manfreda et al. [24] aKdrnelsen et al. [45], we did not have
extensive time series observations, and we weng emicerned with 0-40 cm (root zone)
soil moisture before sowing. Therefore, in M4, wembined Monte Carlo simulation
(2000 realizations), geostatistical analysis, amédN with the HYDRUS model to obtain
the surface and root-zone (0-40 cm) soil-moistmfermation. Then, we use regression
analysis to establish the root-zone soil-moisturedigtion model on the basis of surface
moisture BM). Becausévi4 was based on the soil physical characteristicheoftudy area
and the calculation was done using HYDRUS, it hadlear physical representation.
Therefore, Equation (4) can be used not only insbudy area but likely also in regions that
have similar climatic and soil conditions. Howevatthough theRMSE is very low
compared with th&MSE in other research, the accuracy of estimating-zooe moisture
in M4 is not very good. For example, Das et al. [46]ng time series measurements and
an ensemble Kalman filteEQKF) technique coupled with a numerical one-dimendiona
vadose zone flow model (HYDRUS-ET) obtained a higitcurate estimation of 0-60 cm
moisture from surface soil moistur ¥ 0.8). However, even with time series soil-moistur
measurements, the accuracy of root-zone soil-nteiststimation from surface soil varied
with different studies [47, 48]. Li et al. [49] ilwdted that the accuracy of soil-moisture
profile retrieval from surface measurements depestlengly on the initial surface
soil-moisture conditions. More precisely, they geth out that wetter surface conditions
could provide better root-zone moisture estimatithas drier surface conditions. Although
we did not have time series observations in outystoo precipitation or irrigation occurred
for a long period before our HYDRUS simulation,v8e can assume that the link between
surface moisture and root-zone moisture was orfgctefd by soil properties. In addition,
kriging of observed root-zone moistur®lX) provided very poor accuracy in our study,
whereas co-kriging with observed surface moisti®)(had the highed® (0.41) in all four
methods (Fig. 8b). It indicated that use of surfat@sture as a covariate could improve
estimation accuracy. However, when surface moistateeved from Hyperion imagery
was used as covariat®18), theR was lower tharM2. The possible reasons might be that
the observed surface moisture points were largauginand the accuracy of surface
moisture retrieved from Hyperion imagery was nohagh because thBLSR model was
established on the basis of ASD point data, notHyygerion coarser scale imagery data.
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Conclusion

Estimation of the soil-moisture profile is necegstar various hydro-meteorological,
ecological, and biogeochemical modeling and apfitina. Remote sensing techniques are
increasingly used for monitoring surface soil-mwist conditions over large areas, but
extending surface soil moisture to the root zonstilsfacing some limitations, especially
when no time series observations are availablestwisivery common in practice.

In this study, we retrieved surface moisture froypdrspectral data witFLSR, and
the calibration and validation process proved Biz8R is a powerful tool for soil-moisture
estimation. Then, we compared four different meshaacluding kriging, co-kriging (using
observed data and imagery respectively), and HYDRMG&nte Carlo simulations.
Co-kriging with observed surface moistufd?) had the highedR and linear regression
model, and HYDRUS Monte Carlo simulationd4) had the lowedRMSE among the four
methods. Although the accuracyM#l was not the highest among these 4 methods, we als
recommend this method for root-zone moisture estimabefore sowing if no time series
observations are available becaggis based on physical hydrological models andizEan
easily applied to satellite images.

However, although we considered the distributiorsaf hydraulic parameters in the
X, Y, andZ directions, we only considered water movemenh@z direction because we
selected HYDRUS-1D to do calculations. We simptifthese processes because the scale
of each pixel of EO-1/Hyperion image was large (30 mx30 m) to regard water
movement as one dimensional, and we did not hafficisat observations to validate the
parameters of a three-dimensional (3D) water-movemmeodel (e.g., HYDRUS-3D).
Therefore, in further research, time series obgiems should be made, and 3D
water-movement models combined with other technol@yg., data assimilation) can be
tried to improve the prediction accuracy.
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