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Abstract: For estimation of root-zone moisture content from EO-1/Hyperion imagery, surface soil moisture was 
first predicted by hyperspectral reflectance data using partial least square regression (PLSR) analysis. The textures 
of more than 300 soil samples extracted from a 900 m × 900 m field site located within the Hetao Irrigation 
District in China were used to parameterize the HYDRUS-1D numerical model. The study area was spatially 
discretized into 18,000 compartments (30 m × 30 m × 0.02 m), and Monte Carlo simulations were applied to 
generate 2000 different soil-particle size distributions for each compartment. Soil hydraulic properties for each 
realization were determined by application of artificial neural network analysis and used to parameterize 
HYDRUS-1D to simulate averaged soil-moisture contents within the root zone (0-40 cm) and surface 
(approximately 0-4 cm). Then the link between surface moisture and root zone was established by use of linear 
regression analysis, resulting in R and RMSE of 0.38 and 0.03, respectively. Kriging and co-kriging with observed 
surface moisture, and co-kriging with surface moisture obtained from Hyperion imagery were also used to 
estimate root-zone moisture. Results indicated that PLSR is a powerful tool for soil moisture estimation from 
hyperspectral data. Furthermore, co-kriging with observed surface moisture had the highest R (0.41) and linear 
regression model, and HYDRUS Monte Carlo simulations had a lowest RMSE (0.03) among the four methods. In 
regions that have similar climatic and soil conditions to our study area, a linear regression model with HYDRUS 
Monte Carlo simulations is a practical method for root-zone moisture estimation before sowing and it can be easily 
coupled with remote sensing technology. 
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Introduction 

Irrigation is essential for crop cultivation in arid and semi-arid regions to increase the 
water availability in the soil and to leach a fraction of accumulated salts [1]. In the irrigated 
regions of northern China, a flood-irrigation system has been in development since the 
1980s to reduce salinity levels in the root zone and increase water availability for spring 
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crops [2]. However, the flood-irrigation system may both cause a waste of water resources 
and present a risk of environment problems, such as groundwater pollution [3-5]. 
Therefore, it is important to supply the exact amount of irrigation water to crops that is 
required. This allocation of water is one of the most appropriate ways to reduce agricultural 
water use in water-scarce areas [6]. To determine the appropriate irrigation amount before 
sowing, precipitation, evaporation, crop species, and, especially, the initial soil-moisture 
information of the root zone should be taken in consideration [7]. 

The most common method of obtaining soil-moisture information is soil sampling and 
oven drying [8]. However, these in situ soil-moisture observations are both time-consuming 
and lacking over large spatial scales [9, 10]. The development of hyperspectral remote 
sensing provides a novel and effective way to obtain the topsoil properties. Hyperspectral 
sensors are different from conventional broadband sensors, such as SPOT [11], Landsat 
MSS [12], and Landsat TM [13], which are unsuitable for mapping soil properties because 
soil elements have characteristic features that mostly occur in narrow-wavelength regions 
and their bandwidths of 100-200 µm cannot resolve diagnostic spectral features of 
terrestrial materials. Hyperspectral remote sensing is an advanced technique that usually 
provides ample spectral information to delineate material characteristics [14]. This 
capability enables the identification of targets on the basis of their established spectral 
absorption features [15]. Ben-Dor et al. [16] indicated that nearly all soil components, 
including moisture, could be explored by hyperspectral inversion. However, for 
hyperspectral remote sensing, limitations still exist, especially with extending surface 
moisture information to the root zone. Previous research showed that geostatistical methods 
such as co-kriging could overcome these limitation by considering more than one variable 
to improve the prediction accuracy [17, 18]. Sun et al. [19] compared different 
geostatistical analysis methods for precipitation interpolation and found co-kriging methods 
that utilize altitude as the supplementary data could obtain the minimum root mean square 
error (RMSE). Yates et al. [20] used co-kriging methods to estimate the gravimetric 
moisture content by regarding bare-soil surface temperature and the percent sand content as 
two additional data. Ghadermazi et al. [21] predicted the spatial distribution of nitrate 
concentration in drinking water by using pH as the auxiliary co-kriging variable. Therefore, 
we can also use the surface-soil moisture as a secondary variable for co-kriging to estimate 
root-zone moisture. 

In addition, mathematical simulations of hydrology processes were also used to 
estimate root-zone moisture from surface soil [22]. For example, Blonquist Jr et al. [23] 
created a non-site-specific and physically constrained root-zone model by combining the 
finite-element HYDRUS-1D model with meteorological observations and artificial neural 
network analysis. Manfreda et al. [24] developed a physical approach for the estimation of 
root-zone soil moisture from surface measurements by analysis of assimilated data. 
However, these methods all need a time series of observations, which might be 
inconvenient to obtain in some regions. And it is still a challenge to estimate root-zone 
moisture from surface-soil conditions with very limited observations for these methods. 

Therefore, the purposes of this study were to (1) obtain the surface-soil moisture of the 
study area using a hyperspectral inversion model, and (2) evaluate the accuracy of different 
methods of estimating root-zone moisture from surface soil moisture from a limited number 
of experimental observations. 
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Materials and methods 

Study site and data collection 

Soil sampling was conducted in a square field of 81 ha, located in Hetao Irrigation 
District (40°19′-41°18′N, 106°20′-109°19′E) of Inner Mongolia, China (Fig. 1). The 
climate of the study area is temperate continental and monsoonal. The average annual 
precipitation is 139-222 mm, with approximately 60% of the rain falling in July and 
August. The annual potential evaporation is approximately 2200-2400 mm. A grid and 
stratified sampling scheme was used on April 6 and April 26 in 2013 to take soil samples. 
More precisely, on April 6, soil samples were taken at nine depths: 0-2, 2-5, 5-10, 10-15, 
15-20, 20-25, 25-30, 30-35, and 35-40 cm (red triangle in Fig. 1). On April 26, 227 
sampling points were arranged and 114 points among them had the soil profile samples at 
depths of 0-5, 5-10, 10-20, 20-30, and 30-40 cm (blue circle and red triangle in Fig. 1). 
Another 113 sampling points had soil samples at 0-5 cm only (green circle in Fig. 1).  

 

 
Fig. 1. Location (40°19′-41°18′N, 106°20′-109°19′E) and overview (image from Google Earth) of the 

study site. Soil samples at red triangles were taken on April 6 and April 26 in 2013 as scheduled. 
Red triangle and blue circle points were taken for both surface and root zone. Green circle points 
were only taken for 0-5 cm depths 

In addition, satellite and ground based hyperspectral data were collected during late 
April of 2013. The hyperspectral image before spring sowing was acquired by the  
EO-1/Hyperion sensor on April 11, 2013. The ground based soil reflectance data were 
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acquired with an analytical spectral device (ASD, AgriSpec, Inc., 400-2500 nm, FOV, 25°) 
at the exact sampling locations where soil samples were collected on April 26. ASD soil 
reflectance data were taken from 10:00 am to 2:00 pm in the field, measured at nadir and  
25 repeated readings were averaged as the ultimate hyperspectral data for each soil 
sampling point to minimize random noise. A white Spectralon panel by barium sulphate 
(BaSO4) was used to get the absolute reflectance. 

Laboratory analysis 

Soil mass moisture content [g·g–1] was measured for all soil samples by use of the oven 
drying method. Then we multiplied the mass of moisture content by 1.4 g·cm–3 (bulk 
density) to convert it into volumetric moisture content [cm3·cm–3]. Electrical conductivity 
of 1:5 soil:water extraction (EC1:5) of the 0-5 cm samples collected on April 26 were also 
measured by use of a conductivity meter (DDSJ-318, LEICI, China). In addition, we 
selected 42 0-5 cm samples collected on April 26 and all the soil samples collected on April 
6 to perform particle-size analysis using the sieve-pipette method [25, 26]. 

Pre-treatment of hyperspectral data 

The EO-1/Hyperion image was processed to Level 1R and then treated with Hyperion 
tools V2.0 integrated in ENVI/IDL software to eliminate empty bands, atmospheric water 
absorption bands, and overlapped bands from 242 original bands. Then, 155 bands with 
average full-width at half-maximum (FWHM) of 10 nm were built up by visible  
near-infrared (VNIR) (426.8-925.4 nm) and short-wave infrared (SWIR) (933, 973-1366, 
1477-1790, 1982-1992, and 2032-2355 nm). The vertical striping was nonexistent after 
band-by-band check, and the spectral smile was not significant after MNF (Minimum Noise 
Fraction Rotation) examination. Then, the Fast Line-of-Sight Atmospheric Analysis of 
Spectral Hypercube (FLAASH) in the ENVI software package was used for atmospheric 
correction, with standard options applied to converted the digital number (DN) to apparent 
surface reflectance in accordance with the ASD data. In addition, seven ground control 
points were carefully selected to make geo-reference with RMSE lower than 0.3 pixels.  

The ASD data were used to establish near-surface soil-moisture prediction models. For 
the purpose of matching ASD data and EO-1/Hyperion image closer in spectral resolution 
and band position, the ASD data were resampled to 10 nm spectral resolution and the 
resampled ASD data were used as spectral reflectance in the following analysis. 

Surface soil moisture content estimation 

Experimental data of surface-soil moisture (0-5 cm) collected on April 26 were 
randomly divided into 2 subsets. One subset was used for model calibration and the other 
was used for model validation. Then, partial least square regression (PLSR) and the variable 
importance in projection (VIP) were used to establish models for predicting surface 
moisture from hyperspectral data (ASD data). More precisely, PLSR is a kind of regression 
that was developed back in the 1980s [27-29]. It combines features from and generalizes 
principal component analysis (PCA) and multiple linear regression [30], which were 
beneficial for solving severe collinearity contained in hyperspectral reflectance [31]. 
Considering the facts that wavelength selection is necessary and important for the 
hyperspectral signature [32], we first used PLSR to establish a prediction model with  
first-order derivative filtered reflectance [33], and then we calculated the VIP.  
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If a wavelength had a VIP that was higher than 1 and its regression coefficient  
(b-coefficient) was higher than the standard deviation of all b-coefficients, it would be 
regarded as a significant wavelength and retained in our final model. Otherwise, it was 
removed. After, the VIP calculation, the new PLSR model was established with the 
remaining wavelengths and applied to estimate surface-soil moisture. 

Random field of soil hydraulic parameters 

Geostatistical analysis was first used to calculate the mean value, variance, and 
correlation scales in horizontal (X and Y direction) and vertical (Z direction) sections of soil 
sand and clay percentages in our study area. Then, the study area was spatially discretized 
into 18,000 compartments (30×30×0.02 m), and Monte Carlo simulations were applied to 
generate 2000 different soil-particle size distributions for each compartment according to 
the geostatistical analysis results. After that, soil hydraulic properties of each compartment, 
including residual soil-water content (θr, [cm3·cm–3]), saturated soil-water content (θs, 
[cm3·cm–3]), empirical parameters α [cm–1], and n in the van Genuchten-Mualem soil water 
retention function [34], and the saturated hydraulic conductivity (Ks, [cm·d–1]) were 
predicted by artificial neural network (ANN) analysis by use of Rosetta procedure [35]. 

HYDRUS-1D simulation 

HYDRUS-1D (referred to hereafter as HYDRUS) was used in our study to simulate 
soil-water movement in each generated compartment with different soil hydraulic 
parameters. It uses a Galerkin-type linear finite element scheme to numerically solve the 
Richard’s equation for saturated and unsaturated water flow. For more details about 
HYDRUS theory and applications, see He et al. [2]. 

 

 
Fig. 2. Soil evaporation during the simulation period from April 4 to April 28 in 2013. No precipitation 

occurred during this period 
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In our study, the initial soil-water condition was obtained on the basis of laboratory 
analysis of soil samples taken on April 6, and the soil evaporation (Fig. 2) was calculated 
with HYDRUS according to the daily weather parameters provided by a weather station, 
which was located approximately 1500 m from our study area. The upper conditions of the 
soil profile correspond to atmosphere boundary conditions. Because we only wanted to 
determine the irrigation requirement before sowing, and the main crop of the study area was 
sunflower, with roots mainly in the 0-40 cm depth range while the groundwater depth was 
approximately at 200 cm [36], the lower boundary condition was free drainage, and the 
simulation period was from April 6 to April 26 in 2013. After simulation, the mean soil 
moisture from 0 to 4 cm depth and from 0 to 40 cm depth were both calculated, and we 
regarded the former as surface soil moisture (SM) and the latter as the root-zone soil 
moisture (RM). 

Estimation of root-zone moisture  

Four different methods for estimating root-zone moisture (0-40 cm) were evaluated in 
our study. More precisely, we used kriging with the measured root-zone moisture in the 
first method (M1). In the second method we applied the measured surface moisture as 
covariate and used co-kriging to obtain root-zone moisture (M2). In the third method (M3) 
the surface moisture estimated from hyperspectral imagery was used as the covariate in  
co-kriging. Finally, in the fourth method (M4) the relation between SM and RM from 
HYDRUS simulation was established using linear regression analysis: 

 RM = a·SM + b (1) 

where a and b are regression coefficients. 

Model evaluation 

Pearson's correlation coefficient (R) and RMSE were used in our study to evaluate the 
model performance. The methods to calculate these statistical indexes are shown by: 

  (2) 

  (3) 

where Yi
obs and Yi

sim are the ith observed and simulated value, respectively, and Yi
obsm and 

Yi
simm are averages of the ith observed and simulated value, respectively. 

Results 

Geostatistical analysis of soil-particle size 

The relation between semi-variance value and separation distance of the spatial 
distribution of sand and clay percentages are shown in Figure 3. A Gaussian model was 
used to fit the sand percentage in the horizontal (X and Y direction) and vertical  
(Z direction) sections, and the R2 values were both larger than 0.6 (0.655 and 0.651, 
respectively), which indicated the fitting curve could reflect the semi-variance information 
accurately. For the distribution of clay percentage, a spherical model was used for fitting 
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the horizontal section, whereas the vertical section was fitted by a Gaussian model. 
Furthermore, the fitting accuracy of clay percentage was also acceptable because the R2 
values were 0.601 and 0.486 for horizontal and vertical sections, respectively. 

 

 
Fig. 3. Relation between semivariance value and separation distance of the spatial distribution of sand 

and clay percentages (a and b). The sand percentage distribution in X-Y and Z directions, 
respectively (c and d). The clay percentage distribution in X-Y and Z directions, respectively. Lx, 
Ly and Lz indicate the correlation scales in X, Y, and Z directions, respectively. C0 indicates the 
nugget 

Furthermore, after comparing the semivariance value of sand and clay percentages in 
the direction of 25°, 70°, 115°, and 160°, we deemed the distribution of sand and clay 
percentages to be isotropic. More precisely, the mean value, standard deviation, and 
correlation scale of sand percentage in the X and Y directions were 8.35%, 7.22%, and  
375 m, respectively (Fig. 3a). In the Z direction, these indexes for sand percentage were 
6.21%, 4.67%, and 14.83 cm, respectively (Fig. 3b). These geostatistical indexes for clay 
percentage were also calculated similarly, and the values were 31.04%, 6.78%, and 424 m 
in the X and Y direction and 30.78%, 9.35%, and 16.66 cm in the Z direction (Fig. 3c-d). 
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Surface soil moisture  

On the basis of the wavelength selection principle mentioned in Section “Pre-treatment 
of hyperspectral data”, appropriate wavelengths were selected (Fig. 4) and the relation 
between reflectance and SM was established by PLSR. Before wavelength selection, the 
RMSE in the model calibration and validation process were 1.49 and 2.04, respectively. The 
R value in the two processes were 0.78 and 0.54, respectively. After wavelengths selection 
by VIP scores and b-coefficients, the RMSE in the model calibration and validation 
processes decreased 3.36 and 4.41%, whereas R increased 2.56 and 3.70%, respectively 
(Table 1).  

These low RMSE and high R values indicated the symmetrical distribution of observed 
and simulated SM and PLSR could be regarded as the optimal method to establish the 
relations between SM and hyperspectral data by use of the selected wavelengths in our 
study. This method was applied in the EO-1/Hyperion imagery to estimate surface moisture 
of the whole study area (Fig. 5). 

 

 
Fig. 4. PLSR coefficients (b-coefficients) and variable importance in projection (VIP) of each 

wavelength (gray columns indicated the selected wavelengths) 

Table 1 
Evaluation of PLSR analysis 

Processes 
Statistical 

indices 
Before wavelengths 

selection 
After wavelengths 

selection 

Calibration 
R 0.78 0.80 

RMSE 1.49 1.44 

Validation 
R 0.54 0.56 

RMSE 2.04 1.95 
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Fig. 5. Surface mass soil moisture [%] mapped from EO-1/Hyperion imagery. UTM is the abbreviation 

of Universal Transverse Mercator Grid System 

Root zone soil moisture 

In method 1 (M1) to method 3 (M3), the semi-variogram values of observed SM, SM 
from Hyperion imagery, and observed RM were calculated. The semi-variogram values 
between RM and observed SM and SM from Hyperion imagery were also calculated before 
kriging or co-kriging. All of these semi-variogram values could be fitted by use of  
a spherical model. The Pearson's correlation coefficients (R) were all larger than 0.6, and all 
the RMSE values were smaller than 0.5. The nugget, partial sill, and range of each spherical 
model are shown in Figure 6. 

In method 4 (M4), we generated 900 grids in the X and Y directions, and HYDRUS 
simulation was run 2000 times in each gird. Therefore, for each grid, the coefficients of the 
linear regression model (e.g., a and b) were determined on the basis of 2000 HYDRUS 
results, and we could get a total of 900 regression models for our study site in linear 
regression analysis. Figure 7 is the box plots that indicated the range of coefficients and R 
values. We found that the 900 coefficients in the linear regression analysis (a, b, and R) 
were similar. More precisely, mean and standard deviation of a, b, and R were 0.3566, 
0.2218, and 0.6900 and 0.0161, 0.0031, and 0.0201, respectively. Therefore, the linear 
regression model with the mean value of 900 coefficients (Eq. (4)) was selected to estimate 
root-zone moisture from surface moisture (M4):  

 0.3566 0.1584RM SM= ⋅ +  (4) 

In Equation (4), RM and SM indicated the root zone moisture and surface soil moisture 
in mass unit [g·g–1] respectively. 
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Fig. 6. Semi-variogram of kriging and co-kriging 

Figure 8 indicates the performance of four different methods of estimating root-zone 
moisture. The RMSE values from M1 to M4 were 1.43, 1.32, 1.40, and 0.03, respectively, 
and the R values of the four methods were 0.15, 0.41, 0.27, and 0.38, respectively. 
Therefore, M2 had the highest R value and the RMSE value in M4 was lowest when data in 
our study were used. 
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Fig. 7. Box plots of the range of coefficients and R for linear regression analysis with HYDRUS results. 

The filled points indicated mean value, and open points indicated abnormal value 

 
Fig. 8. Root-zone mass moisture and evaluation indices of four different methods: a) kriging,  

b) co-kriging with observed surface moisture, c) co-kriging with surface moisture obtained from 
Hyperion imagery, d) linear regression model based on HYDRUS simulations 
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Discussion  

Methods for estimating surface soil moisture 

The surface-soil moisture content provides valuable ecosystem services and is critical 
for both hydrological applications and watershed management [37]. With the development 
of remote sensing technology, researchers are trying to obtain near-surface moisture content 
from satellite data. More precisely, they first used satellite images (e.g., MODIS, EO-1/ 
Hyperion, LANDSAT) to extract valuable information and then establish models to predict 
near-surface moisture content from this information [38]. However, because of the low 
resolution of satellite images, estimating the accuracy of model performance when 
establishing models directly from satellite images might be difficult. For example, the 
spatial resolution of the MODIS sensor ranges from 250 m×250 m to 1 km×1 km and 
although EO-1/Hyperion has higher resolution (30 m×30 m), it is still difficult to use soil 
sampling or other simple methods to obtain the accurate average soil moisture for the 
specific pixel of a satellite image [14]. Therefore, an increasing number of researchers are 
using analytical spectral devices (ASDs) to collect coincident soil reflectance and soil 
moisture measurements and establish models based on these data [39]. After reflectance 
resampling, the ASD data can match the satellite image exactly [40]. Therefore, our study 
used the resampled ASD data to establish models and then applied them into the  
EO-1/Hyperion image. In recent decades, researchers developed many methods to establish 
soil-moisture prediction models from ASD data.  

 

 
Fig. 9. Histogram of soil-salt content of surface-soil samples taken on April 26 in 2013 

For example, Haubrock et al. [41] selected 1800 nm and 2119 nm and then used 
normalized difference (ND) as SMI to predict soil-moisture content; Wang et al. [15] used 
derivative difference (dD) with the wavelengths of 1300 nm and 1970 nm to establish  
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a soil-moisture prediction model; and Whiting et al. [42] used a soil reflectance curve to fit 
the inverted Gaussian function and then extract the geometrical characteristics of the fitted 
curve to predict water content. However, all these methods were applied in non-saline soils 
or when the soil-salt content was uniform. In our samples, the salt content varied from soil 
sample to sample. More precisely, the mean soil-salt content (indicated in EC1:5) of  
222 surface soil samples (5 data points are missing) was 0.99 dS·m–1, but the standard 
derivation was as large as 1.10 dS·m–1 (Fig. 9). Therefore, we chose the PLSR, which can 
make use of the entire wavelength’s information to establish prediction models, and the 
results (R = 0.80 in calibration and 0.56 in validation) proved that PLSR is a powerful tool 
to predict soil-moisture content based on in situ hyperspectral data in saline soils. The use 
of b-coefficients and VIP to select wavelengths could improve the PLSR accuracy. 

Estimating root-zone moisture from surface soil 

Obtaining root-zone moisture information from near-surface has great importance for 
expanding the application of remote sensing technology and has attracted broad attention, 
recently [43, 44]. Unlike Manfreda et al. [24] and Kornelsen et al. [45], we did not have 
extensive time series observations, and we were only concerned with 0-40 cm (root zone) 
soil moisture before sowing. Therefore, in M4, we combined Monte Carlo simulation  
(2000 realizations), geostatistical analysis, and an ANN with the HYDRUS model to obtain 
the surface and root-zone (0-40 cm) soil-moisture information. Then, we use regression 
analysis to establish the root-zone soil-moisture prediction model on the basis of surface 
moisture (SM). Because M4 was based on the soil physical characteristics of the study area 
and the calculation was done using HYDRUS, it had a clear physical representation. 
Therefore, Equation (4) can be used not only in our study area but likely also in regions that 
have similar climatic and soil conditions. However, although the RMSE is very low 
compared with the RMSE in other research, the accuracy of estimating root-zone moisture 
in M4 is not very good. For example, Das et al. [46], using time series measurements and  
an ensemble Kalman filter (EnKF) technique coupled with a numerical one-dimensional 
vadose zone flow model (HYDRUS-ET) obtained a highly accurate estimation of 0-60 cm 
moisture from surface soil moisture (R > 0.8). However, even with time series soil-moisture 
measurements, the accuracy of root-zone soil-moisture estimation from surface soil varied 
with different studies [47, 48]. Li et al. [49] indicated that the accuracy of soil-moisture 
profile retrieval from surface measurements depends strongly on the initial surface  
soil-moisture conditions. More precisely, they pointed out that wetter surface conditions 
could provide better root-zone moisture estimations than drier surface conditions. Although 
we did not have time series observations in our study, no precipitation or irrigation occurred 
for a long period before our HYDRUS simulation, so we can assume that the link between 
surface moisture and root-zone moisture was only affected by soil properties. In addition, 
kriging of observed root-zone moisture (M1) provided very poor accuracy in our study, 
whereas co-kriging with observed surface moisture (M2) had the highest R (0.41) in all four 
methods (Fig. 8b). It indicated that use of surface moisture as a covariate could improve 
estimation accuracy. However, when surface moisture retrieved from Hyperion imagery 
was used as covariate (M3), the R was lower than M2. The possible reasons might be that 
the observed surface moisture points were large enough and the accuracy of surface 
moisture retrieved from Hyperion imagery was not as high because the PLSR model was 
established on the basis of ASD point data, not the Hyperion coarser scale imagery data. 
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Conclusion 

Estimation of the soil-moisture profile is necessary for various hydro-meteorological, 
ecological, and biogeochemical modeling and applications. Remote sensing techniques are 
increasingly used for monitoring surface soil-moisture conditions over large areas, but 
extending surface soil moisture to the root zone is still facing some limitations, especially 
when no time series observations are available, which is very common in practice. 

In this study, we retrieved surface moisture from hyperspectral data with PLSR, and 
the calibration and validation process proved that PLSR is a powerful tool for soil-moisture 
estimation. Then, we compared four different methods, including kriging, co-kriging (using 
observed data and imagery respectively), and HYDRUS Monte Carlo simulations.  
Co-kriging with observed surface moisture (M2) had the highest R and linear regression 
model, and HYDRUS Monte Carlo simulations (M4) had the lowest RMSE among the four 
methods. Although the accuracy of M4 was not the highest among these 4 methods, we also 
recommend this method for root-zone moisture estimation before sowing if no time series 
observations are available because M4 is based on physical hydrological models and can be 
easily applied to satellite images. 

However, although we considered the distribution of soil hydraulic parameters in the 
X, Y, and Z directions, we only considered water movement in the Z direction because we 
selected HYDRUS-1D to do calculations. We simplified these processes because the scale 
of each pixel of EO-1/Hyperion image was large enough (30 m×30 m) to regard water 
movement as one dimensional, and we did not have sufficient observations to validate the 
parameters of a three-dimensional (3D) water-movement model (e.g., HYDRUS-3D). 
Therefore, in further research, time series observations should be made, and 3D  
water-movement models combined with other technology (e.g., data assimilation) can be 
tried to improve the prediction accuracy. 
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