Health and environmental applications of gut microbiome: a review

Open access


Life on Earth harbours an unimaginable diversity of microbial communities. Among these, gut microbiome, the ecological communities of commensal, symbionts (bacteria and bacteriophages) are a unique assemblage of microbes. This microbial population of animal gut helps in performing organism’s physiological processes to stay healthy and fit. The role of these microbial communities is immense. They continually maintain interrelation with the intestinal mucosa in a subtle equilibrium and help the gut for different functions ranging from metabolism to immunologic functions like upgradation of nutrient-poor diets, aid in digestion of recalcitrant food components, protection from pathogens, contribute to inter- and intra-specific communication, affecting the efficiency as disease vectors etc. The microbial diversity in the gut depends upon environmental competition between microbes, their sieving effects and subsequent elimination. Due to wide diversity of anatomy and physiology of the digestive tracts and food habits, the gut microbiome also differs broadly among animals. Stochastic factors through the history of colonization of the microbiome in a species and in situ evolution are likely to establish interspecies diversity. Moreover, the microbes offer enormous opportunity to discover novel species for therapeutic and/or biotechnological applications. In this manuscript, we review the available knowledge on gut microbiome, emphasising their role in health and health related applications in human.

[1] Kendall AI. Some observations on the study of the intestinal bacteria. J Biol Chem. 1909;6:499-507.

[2] Helander HF, Fändriks L. Surface area of the digestive tract - revisited. Scand J Gastroenterol. 2014;49:681-689.

[3] Bengmark S. Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut. 1998;42:2-7. DOI: 10.1136/gut.42.1.2.

[4] Shanahan F. The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol. 2002;16:915-931. DOI: 10.1053/bega.2002.0342.

[5] Cummings JH, MacFarlane GT. Role of intestinal bacteria in nutrient metabolism. JPEN J Parent Enter Nutr. 1997;21:357-365. DOI: 10.1177/0148607197021006357.

[6] Willyard C. Gut reaction. Nature. 2011;479:S5-S7. DOI: 10.1038/479S5a.

[7] van Deventer SJ, ten Cate JW, Tytgat GN. Intestinal endotoxemia: Clinicalsignificance. Gastroenterology. 1988;94:825-831.

[8] MacFarlane MP, Fraker DL, Alexander HR, Norton JA, Lubensky I, Jensen RT. Prospective study of surgical resection of duodenal and pancreatic gastrinomas in multiple endocrine neoplasia type 1. Surgery. 1995;118:973-979. DOI: 10.1016/S0039-6060(05)80102-3.

[9] Bocci V. The neglected organ: bacterial flora has a crucial immunostimulatory role. Perspect Biol Med. 1992;35:251-260. DOI: 10.1353/pbm.1992.0004.

[10] O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Reports. 2006;7:688-693. DOI: 10.1038/sj.embor.7400731.

[11] Lederberg J, McCray AT. 'Ome sweet 'omics: -- A genealogical treasury of words. Scientist. 2001;15:8.

[12] Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008;6:776-788. DOI: 10.1038/nrmicro1978.

[13] Guarner F, Malagelada J. Gut flora in health and disease. Lancet. 2003;361:512-519. DOI: 10.1016/S0140-6736(03)12489-0.

[14] Canny GO, McCormick BA. Bacteria in the intestine, helpful residents or enemies from within. Infect Immunit. 2008;76:3360-3373. DOI: 10.1128/IAI.00187-08.

[15] Stephen AM, Cummings JH. The microbial contribution to human faecal mass. J Med Microbiol. 1980;13:45-56. DOI: 10.1099/00222615-13-1-45.

[16] Haynes M, Rohwer F. The human virome. In: Nelson KE, editor. Metagenomics of the Human Body. Springer; 2011; 63-77.

[17] Nardi JB, Mackie RI, Dawson JO. Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? J Ins Physiol. 2002;48:751-763. DOI: 10.1016/S0022-1910(02)00105-1.

[18] Reeson AF, Jankovic T, Kasper ML, Rogers S, Austin AD. Application of 16S rDNA-DGGE to examine the microbial ecology associated with a social wasp Vespulagermanica. Insect Mol Biol. 2003;12:85-91.

[19] Mrázek J, Strosová L, Fliegerová K, Kott T, Kopecný J. Diversity of insect intestinal microflora. Folia Microbiol Praha. 2008;53:229-233. DOI: 10.1007/s12223-008-0032-z.

[20] Hernández N, Escudero JA, Millán AS, González-Zorn B, Lobo JM, Verdú JR et al. Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle Thorecteslusitanicus Jeckel. Insect Sci. 2013;22:178-190. DOI: 10.1111/1744-7917.12094.

[21] Wang Y, Gilbreath TM III, Kukutla P, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One. 2011;6:e24767. DOI: 10.1371/journal.pone.0024767.

[22] Dillon RJ, Dillon VM. The gut bacteria of insects: Nonpathogenic interactions. Ann Rev Entomol. 2004;49:71-92. DOI: 10.1146/annurev.ento.49.061802.123416.

[23] Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L, Schwan MR, et al. Microbial ecology of the hive and pollination landscape: Bacterial associates from floral nectar, the alimentary tract and stored food of honey bees Apismellifera. PloS One. 2013;8:e83125. DOI: 10.1371/journal.pone.0083125.

[24] Engel P, Moran NA. Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes. 2013;4:60-65. DOI: 10.4161/gmic.22517.

[25] Kuraishi T, Hori A, Kurata S. Host-microbe interactions in the gut of Drosophila melanogaster. Front Physiol. 2013;4:1-8. DOI: 10.3389/fphys.2013.00375.

[26] Zug R, Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PloS One. 2012;7:e38544. DOI: 10.1371/journal.pone.0038544.

[27] Friberg U, Miller PM, Stewart AD, Rice WR. Mechanisms promoting the long-term persistence of a Wolbachia infection in a laboratory-adapted population of Drosophila melanogaster. PloS One. 2011;6:e16448. DOI: 10.1371/journal.pone.0016448.

[28] Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedesaegypti limits infection with dengue: Chikungunya: and Plasmodium. Cell. 2009;139:1268-1278. DOI: 10.1016/j.cell.2009.11.042.

[29] Bian G, Xu Y, Lu P, Xie Y, Xi Z. The endosymbiotic bacterium Wolbachiainduces resistance to dengue virus in Aedesaegypti. PLoSPathog. 2010;6:e1000833. DOI: 10.1371/journal.ppat.1000833.

[30] Ye YH, Woolfit M, Rancès E, O'Neill SL, McGraw EA. Wolbachia-associated bacterial protection in the mosquito Aedes aegypti. PloS Negl Trop Dis. 2013;7:e2362. DOI: 10.1371/journal.pntd.0002362.

[31] Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HC, Sinden RE, et al. Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae. PLoS Pathog. 2010;6:e1001143. DOI: 10.1371/journal.ppat.1001143.

[32] Yatsunenko T, Rey FE, Manary MJ, Trehan, I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222-227. DOI: 10.1038/nature11053.

[34] Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet Jean-P, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11:2574-2584. DOI: 10.1111/j.1462-2920.2009.01982.x.

[35] Vedantam G, Hecht DW. Antibiotics and anaerobes of gut origin. Cur Opin Microbiol. 2003;6:457-461. DOI: 10.1016/j.mib.2003.09.006.

[36] Newton IL, Bordenstein SR. Correlations between bacterial ecology and mobile DNA. Curr Microbiol. 2011;62:198-208. DOI: 10.1007/s00284-010-9693-3.

[37] Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, et al. Mucosal flora in inflammatory bowel disease. Gastroenterology. 2002;122:44-54.

[38] Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150:470-480. DOI: 10.1016/j.cell.2012.07.008.

[39] Arumugam M, Raes J, Pelletier E, Le-Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174-180. DOI: 10.1038/nature09944.

[40] Marchesi JR. Human distal gut microbiome. Environ Microbiol. 2011;13:3088-3102. DOI: 10.1111/j.1462-2920.2011.02574.x.

[41] Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE. A core gut microbiome in obese and lean twins. Nature. 2009;457:480-484. DOI: 10.1038/nature07540.

[42] Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70:S38-S44. DOI: 10.1111/j.1753-4887.2012.00493.x.

[43] Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107:11971-11975. DOI: 10.1073/pnas.1002601107.

[44] Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA. 2011;108:4578-4585. DOI: 10.1073/pnas.1000081107.

[45] Reyes A, Haynes M, Hanson N Angly FE, Heath AC, Rohwer F, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466:334-338. DOI: 10.1038/nature09199.

[46] Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21:1616-1625. DOI: 10.1101/gr.122705.111.

[47] Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027-1031. DOI: 10.1038/nature05414.

[48] Vijay-Kumar M, Aitken JD, Carvalho FA, Fifadara NH, Gewirtz AT. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328:228-231. DOI: 10.1126/science.1179721.

[49] Gophna U. Microbiology. The guts of dietary habits. Science. 2011;334:45-46. DOI: 10.1126/science.1213799.

[50] Hehemann J, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464:908-912. DOI: 10.1038/nature08937.

[51] Macdonald TT, Monteleone G. Immunity, inflammation, and allergy in the gut. Science. 2005;307:1920-1925. DOI: 10.1126/science.1106442.

[52] Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA. 2011;108:4554-4561. DOI: 10.1073/pnas.1000087107.

[53] Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915-1920. DOI: 10.1126/science.1104816.

[54] Khan KJ, Ullman TA, Ford AC, Abreu MT, Abadir A, Marshall JK, et al. Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol. 2011;106:661-673. DOI: 10.1038/ajg.2011.72.

[55] Willing BP, Russell SL, Finlay BB. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol. 2011;9:233-243. DOI: 10.1038/nrmicro2536.

[56] Silverman MS, Davis I, Pillai DR. Success of self-administered home fecal transplantation for chronic Clostridium difficile infection. Clin Gastroenterol Hepatol. 2010;8:471-473. DOI: 10.1016/j.cgh.2010.01.007.

[57] Scaldaferri F, Pizzoferrato M, Pecere S, Forte F, Gasbarrini A. Bacterial flora as a cause or treatment of chronic diarrhea. Gastroenterol Clin North Amer. 2012;41:581-602. DOI: 10.1016/j.gtc.2012.06.002.

[58] Ringel Y, Quigley E, Lin H. Probiotics and gastrointestinal disorders. Amer J Gastroenterol Suppl. 2012;1:34-40. DOI: 10.1038/ajgsup.2012.7.

[59] McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD, Goodman AL, et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med. 2011;3:106ra106. DOI: 10.1126/scitranslmed.3002701.

[60] Backhed F, Fraser CM, Ringel Y, Backhed, F, Fraser CM, Ringel Y, et al. Defining a healthy human gut microbiome: Current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12:611-622. DOI: 10.1016/j.chom.2012.10.012.

[61] Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev. 2004;17:259-275. DOI: 10.1079/NRR200479.

[62] Brownawell AM, Caers W, Gibson GR, Kendall CW, Lewis KD, Ringel Y, et al. Prebiotics and the health benefits of fiber: current regulatory status, future research, and goals. J Nutr. 2012;142:962-974. DOI: 10.3945/jn.112.158147.

[63] Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci USA. 2010;107:20051-20056. DOI: 10.1073/pnas.1009906107.

[64] Morimoto J, Simpson SJ, Ponton F. Direct and trans-generational effects of male and female gut microbiota in Drosophila melanogaster. Biol Lett. 2017;13(7). pii: 20160966. DOI: 10.1098/rsbl.2016.0966.

[65] Coyne JA. Genetics of sexual isolation in females of the Drosophila-Simulans species complex. Genet Res. 1992;60:25-31. DOI: 10.1017/S0016672300030639.

[66] Smadja C, Butlin RK. On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity. 2009;102:77-97. DOI: 10.1038/hdy.2008.55.

[67] de Oliveira AK, Cordeiro AR. Adaptation of Drosophila-Willistoni experimental populations to extreme pH medium. I. Changes in viability and developmental rate. Heredity. 1980;44:111-122. DOI: 10.1038/hdy.1980.10.

[68] Dodd DMB. Reproductive isolation as a consequence of adaptive divergence in Drosophila-pseudoobscura. Evolution. 1989;43:1308-1311.

[69] Rice WR, Hostert EE. Laboratory experiments on speciation: What have we learned in 40 years? Evolution. 1993;47:1637-1653.

[70] Rosengaus RB, Zecher CN, Schultheis KF, Brucker RM, Bordenstein SR. Disruption of the termite gut microbiota and its prolonged consequences for fitness. Appl Environ Microbiol. 2011;77:4303-4312. DOI: 10.1128/AEM.01886-10.

[71] Brucker RM, Bordenstein SR. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science. 2013;9:667-669. DOI: 10.1126/science.1240659.

[72] Brucker RM, Bordenstein SR. The capacious hologenome. Zoology Jena. 2013;116:260-261. DOI: 10.1126/science.1240659.

[73] Teaford MF, Ungar PS. Diet and the evolution of the earliest human ancestors. Proc Natl Acad Sci USA. 2000;97:13506-13511. DOI: 10.1073/pnas.260368897.

[74] Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, et al. Diet and the evolution of human amylase gene copy number variation. Nat Genet. 2007;39:1256-1260. DOI: 10.1038/ng2123.

[75] Woese CR. On the evolution of cells. Proc Natl Acad Sci USA. 2002;99:8742-8747. DOI: 10.1073/pnas.132266999.

[76] Beja-Pereira A, Luikart G, England PR, Bradley DG, Jann OC, Bertorelle G, et al. Gene-culture co-evolution between cattle milk protein genes and human lactase genes. Nat Genet. 2003;35:311-313. DOI: 10.1038/ng1263.

[77] Ungar PS, Grine FE, Teaford MF. Diet in early homo: A review of the evidence and a new model of adaptive versatility. Ann Rev Anthrop. 2006;35:209-228. DOI: 10.1146/annurev.anthro.35.081705.123153.

[78] Yeakel JD, Bennett NC, Koch PL, Dominy NJ. The isotopic ecology of African mole rats informs hypotheses on the evolution of human diet. Proc Royal Soc B: Biol Sci. 2007;274:1723-1730. DOI: 10.1098/rspb.2007.0330.

[79] Zhu J, Wang J, Shi Z, Franklin JL, Deane NG, Coffey RJ, et al. Deciphering genomic alterations in colorectal cancer through transcriptional subtype-based network analysis. PLoS One. 2013;15:8e79282. DOI: 10.1371/journal.pone.0079282.

[80] Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859-904. DOI: 10.1152/physrev.00045.2009.

[81] Mohammadi M, Czinn S, Redline R, Nedrud J. Helicobacter specific cell-mediated immune responses display a predominant Th1 phenotype and promote a delayed-type hypersensitivity response in the stomachs of mice. J Immunol. 1996;156:4729-4738.

[82] Roth KA, Kapadia SB, Martin SM, Lorenz RG. Cellular immune responses are essential for the development of Helicobacter felis associated gastric pathology. J Immunol. 1999;163:1490-1497.

[83] Mannick EE, Bravo LE, Zarama G, Realpe JL, Zhang XJ, Ruiz B, et al. Inducible nitric oxide synthase, nitrotyrosine, and apoptosis in Helicobacter pylori Gastritis: effect of antibiotics and antioxidants. Cancer Res. 1996;56:3238-3243.

[84] Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg. 2006;391:499-510. DOI: 10.1007/s00423-006-0073-1.

[85] Hope ME, Hold GL, Kain R, El-Omar EM. Sporadic colorectal cancer-role of the commensal microbiota. FEMS Microbiol Lett. 2005;244:1-7. DOI: 10.1016/j.femsle.2005.01.029.

[86] Moore WE, Moore LH. Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol. 1995;61:3202-3207.

[87] Scanlan PD, Shanahan F, Clune Y, Collins JK, O’Sullivan GC, O’Riordan M, et al. Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol. 2008;10:789-798. DOI: 10.1111/j.1462-2920.2007.01503.x.

[88] Bingham SA. Diet and colorectal cancer prevention. Biochem Soc Trans. 2000;28:12-16.

[89] O’Keefe SJ. Nutrition and colonic health: the critical role of the microbiota. Curr Opin Gastroenterol. 2008;24:51-58. DOI: 10.1097/MOG.0b013e3282f323f3.

[90] Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis. 2002;23:529-536.

[91] Wang X, Allen TD, May RJ, Lightfoot S, Houchen CW, Huycke MM. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res. 2008;68:9909-9917. DOI: 10.1158/0008-5472.CAN-08-1551.

[92] Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, et al. Fecal microbiota transplantation workgroup. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol. 2011;9:1044-1049. DOI: 10.1016/j.cgh.2011.08.014.

[93] Brandt LJ, Borody TJ, Campbell J. Endoscopic fecal microbiota transplantation: “first-line” treatment for severe Clostridium difficile infection? J Clin Gastroenterol. 2011;45:655-657. DOI: 10.1097/MCG.0b013e3182257d4f.

[94] Hamilton MJ, Weingarden AR, Sadowsky MJ, Khoruts A. Standardised frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Amer J Gastroenterol. 2012;107:761-767. DOI: 10.1038/ajg.2011.482.

[95] Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28:127-181. DOI: 10.1016/j.femsre.2003.08.001.

[96] Stern A, Mick E, Tirosh I, Sagy O, Sorek R. CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res. 2012;22:1985-1994. DOI: 10.1101/gr.138297.112.

[97] Marinelli LJ, Fitz-Gibbon S, Hayes C, Bowman C, Inkeles M, Loncaric A, et al. Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates. mBio2012;3:e00279-12. DOI: 10.1128/mBio.00279-12.

[98] Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, et al. Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci USA. 2004;101:4894-4899. DOI: 10.1073/pnas.0307800101.

[99] Popgeorgiev N, Temmam S, Raoult D, Desnues C. Describing the silent human virome with an emphasis on giant viruses. Intervirology. 2013;56:395-412. DOI: 10.1159/000354561.

[100] Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA, et al. Viral diversity and dynamics in an infant gut. Res Microbiol. 2008;159:367-373. DOI: 10.1016/j.resmic.2008.04.006.

[101] Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, et al. Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol. 2003;185:6220-6223. DOI: 10.1128/JB.185.20.6220-6223.2003.

[102] Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD. Rapid evolution of the human gut virome. Proc Natl Acad Sci USA. 2013;110:12450-12455. DOI: 10.1073/pnas.1300833110.

[103] Kim MS, Park EJ, Roh SW, Bae JW. Diversity and abundance of single-stranded DNA viruses in human feces. Appl Environ Microbiol. 2011;77:8062-8070. DOI: 10.1128/AEM.06331-11.

[104] Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci USA. 2013;110:10771-10776. DOI: 10.1073/pnas.1305923110.

[105] Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL, Soh SW, et al. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol. 2006;4:e3. DOI: 10.1371/journal.pbio.0040003.

[106] Colson P, Richet H, Desnues C, Balique F, Moal V, Grob JJ, et al. Pepper mild mottle virus, a plant virus associated with specific immune responses, fever, abdominal pains, and pruritus in humans. PLoS One. 2010;5:e10041. DOI: 10.1371/journal.pone.0010041.

[107] Ogilvie LA, Caplin J, Dedi C, Diston D, Cheek E, Bowler L, et al. Comparative (meta)genomicanalysis and ecological profiling of human gut-specific bacteriophage wB124-14. PLoS One. 2012;7:e35053. DOI: 10.1371/journal.pone.0035053.

[108] Kim BS, Jeon YS, Chun J. Current status and future promise of the human microbiome. Pediatr Gastroenterol Hepatol Nutr. 2013;16:71-79. DOI: 10.5223/pghn.2013.16.2.71.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information

5-year IMPACT FACTOR: 0.815

CiteScore 2017: 0.79

SCImago Journal Rank (SJR) 2017: 0.227
Source Normalized Impact per Paper (SNIP) 2017: 0.535


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1218 1218 116
PDF Downloads 993 993 119