Mitigation of Greenhouse Gases Emissions by Management of Terrestrial Ecosystem

Open access

Abstract

Carbon dioxide fluxes between ecosystems of the Earth are presented. It was shown that intensifying its absorption of terrestrial ecosystems by 3.2% would prove sufficient to neutralize carbon dioxide emissions from the combustion of fossil fuels and cement production. It was shown that Polish forests absorb 84.6 million tons of CO2/year, that is 26% of emissions from fossil fuel combustion and cement production, while agricultural crops absorb 103 million tons of CO2/year. Total carbon dioxide sequestration by forests and agricultural crops amounts to 187.5 million tons of CO2/year, which is tantamount to 59% of emissions from fossil fuel combustion and cement production. Forestation of marginal soils would further increase carbon dioxide absorption in Poland by 20.6 million tons of CO2/year. Moreover, if plants were sown in order to produce green manure - instead of leaving soil fallow - sequestration could still be boosted by another 6.2 million tons of CO2/year.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Lindzen R. Global warming: The origin and nature of the alleged scientific consensus. Problemy Ekorozwoju/Problems Sust Develop. 2010;5(2):13-28. http://ekorozwoj.pollub.pl.

  • [2] Bucher S. Sustainable development in the world from the aspect of environmental health and human development index: Regional variations and patterns. Problemy Ekorozwoju/Problems Sust Develop. 2016; 12(1):117-124. https://www.researchgate.net/publication/291832736_Sustainable_Development_in_the_World_from_the_Aspect_of_Environmental_Health_and_Human_Development_Index_Regional_Variations_and_Patterns.

  • [3] Cel W Czechowska-Kosacka A Zhang T. Sustainable mitigation of greenhouse gases emissions. Problemy Ekorozwoju/Problems Sust Develop. 2016;11(1):173-176. http://ekorozwoj.pol.lublin.pl/no21/w.pdf.

  • [4] Fargione J Hill J Tilman D Polasky S Hawthorne P. Land clearing and the biofuel carbon debt. Science. 2008;319(5867):1235-1238. DOI: 10.1126/science.1152747.

  • [5] Searchinger T Heimlich R Houghton RA Dong F Elobeid A Fabiosa J et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319:1238-1240. DOI: 10.1126/science.1151861.

  • [6] Cao Y Cel W. Sustainable mitigation of methane emission by natural processes. Problemy Ekorozwoju/Problems Sust Develop. 2015;10(1):117-121. https://www.researchgate.net/publication/299512360_Sustainable_mitigation_of_methane_emission_by_natural_processes.

  • [7] Dowbor L. Economic democracy - meeting some management challenges. Changing scenarios in Brazil. Problemy Ekorozwoju/Problems Sust Develop. 2013; 8(2): 17-25. http://ekorozwoj.pollub.pl.

  • [8] Le Quere C Moriarty R Andrew RM Peters GP Ciais P Friedligstein P et al. Global Carbon Budget 2014. Earth System Science Data. 2015;7:47-85. http://www.earth-syst-sci-data.net/7/47/2015/essd-7-47-2015.pdf.

  • [9] Houghton RA House JI Pongratz J van der Werf GR DeFries RS Hansen MC et al. Carbon emissions from land use and land-cover change. Biogeosciences. 2012;9:5125-5142. DOI: 10.5194bg-9-5125-2012.

  • [10] Beer C Reichstein M Tomelleri E Ciais P Jung M Carvalhais N et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science. 2010;329(5993):834-838. DOI: 10.1126/science.1184984.

  • [11] Hilton TW Davis KJ Keller K Evaluating terrestrial CO2 flux diagnoses and uncertainties from a simple land surface model and its residuals. Biogeosciences. 2014;11:217-235. DOI: 10.5194/bg-11-217-2014.

  • [12] IPCC. 2014 Climate Change 2014. Impact Adoption and Vulnerability. Summary for Policymakers. 2014. www.ipcc.ch/report/ar5/wg2/.

  • [13] Tans PP Fung IY Takahashi T. Observational constraints on the global atmospheric CO2 budget. Science. 1990;247(4949):1431-1438. DOI: 10.1126/science.247.4949.1431.

  • [14] Schimel D Melillo J Tian H Mc Guire A.D. Kicklighter D Kittel T et al. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science. 2000;287(5460):2004-2006. DOI: 10.1126/science.287.5460.2004.

  • [15] Schimel DS House JI Hibbard KA Bousquet P Ciais P Peylin P et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature. 2001;414:169-172. DOI: 10.1038/35102500.

  • [16] Berthelot M Friedlingstein P Ciais P Monfray P Dufresne JL Le Treut H et al. Global response of the terrestrial biosphere to CO2 and climate change using a coupled climate-carbon cycle model. Global Biogeochem Cycles. 2002;16(4):1084-1096. DOI: 10.1029/2001GB001827.

  • [17] Cole JJ Prairie YT Caraco NF McDowell WH Tranvik LJ Striegl RG. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems. 2007;10:171-184. DOI: 10.1007/s10021-006-9013-8.

  • [18] Trumper K Bertzky M Dickson B van der Heijden G Jenkins M Manning P et al. The Natural Fix? The Role of Ecosystems in Climate Mitigation. A UNEP Rapid Response Assessment. United Nations Environment Programme. UNEP-WCMC. Cambridge UK: 2009.

  • [19] Yu Z Beilman DW Frolking S Mac Donald GM Roulette NT Camill P et al. Peatlands and their role in the global carbon cycle. Eos. 2011;92(12):97-108. DOI: 10.1029/2011EO120001/pdf.

  • [20] Yu ZC. Northern peatland carbon stocks and dynamics: A review. Biogeosciences. 2012;9:4071-4085. DOI: 10.5194/bg-9-4071-2012.

  • [21] Lewis SL Lopez-Gonzalez G Sonké B Affum-Baffoe K Baker TR Ojo LO et al. Increasing carbon storage in intact African tropical forests. Nature. 2009;457:1003-1006. DOI: 10.1038/nature07771.

  • [22] Phillips OL Lewis SL. Evaluating the tropical forest carbon sink. Global Change Biology. 2014;20:2039-2041. DOI: 10.1111/gcb.12423.

  • [23] Pan Y Birdsey RA Fang J Houghton R Kauppi PE Kurz WA et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333(6045):988-993. DOI: 10.1126/science.1201609.

  • [24] Post WM Kwon KC. Soil carbon sequestration and land-use change: Processes and potential. Global Change Biol. 2000;6:317-328. DOI: 10.1046/j.1365-2486.2000.00308.x.

  • [25] Hooijer A Page S Canadell JG Silvius M Kwadijk J Wösten H et al. Current and future CO2 emissions from drained peatlands in southeast Asia. Biogeosciences. 2010;7:1505-1514. DOI: 10.5194/bg-7-1505-2010.

  • [26] Miettinen J Liew SC. Status of peatland degradation and development in Sumatra and Kalimantan. Ambio. 2010;39(5-6):394-401. DOI: 10.1007/s13280-010-0051-2.

  • [27] Krüger JP Leifeld J Glatzel S Szidat S Alewell C. Biogeochemical indicators of peatland degradation - a case study of a temperate bog in northern Germany. Biogeosciences. 2015;12:2861-2871. DOI: 10.5194/bg-12-2861-2015.

  • [28] Jones MB Donnelly A. Carbon sequestration in temperate grassland ecosystems and the influence of management. Climate and elevated CO2. New Phytologist. 2004;164(3):423-439. DOI: 10.1111/j.1469-8137.2004.01201.x.

  • [29] Grace J San Jose J Meir P Miranda HS Montes RA. Productivity and carbon fluxes of tropical savannas. J Biogeogr. 2006;33:387-400. DOI: 10.1111/j.1365-2699.2005.01448.x.

  • [30] Grace J Mitchard E Gloor E. Perturbations in the carbon budget of the tropics. Global Change Biol. 2004;20:3238-3255. DOI: 10.1111/gcb.12600.

  • [31] Goodale CL Apps MJ Birdsey RA Field CB Heath LS Houghton RA et al. Forest carbon sinks in the Northern Hemisphere. Ecol Applicat. 2002;12(3):891-899. www.nrs.fs.fed.us/pubs/jrnl/2002/ne_2002_goodale_001.pdf.

  • [32] Janssens IA Freibauer A Ciais P Smith P Nabuurs G-J Folberth G et al. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science. 2003;300(5625):1538-1542. DOI: 10.1126/science.1093592.

  • [33] Pulina M Burzyk J Burzyk M. Carbon dioxide in the tundra soils of SW Spitsbergen and its role in chemical denudation. Polish Polar Res. 2003;24(3-4):243-260. http://www.polish.polar.pan.pl/ppr24/ppr24-243.pdf.

  • [34] Jorgenson MT Romanovsky V Harden J Shur Y O’Donnell J Schuur EAG et al. Resilience and vulnerability of permafrost to climate change. Can J For Res. 2010;40:1219-1236. DOI: 10.1139/X10-060.

  • [35] Amundson R. The carbon budget in soils. Annual Rev Earth Planetary Sci. 2001;29:535-562. DOI: 10.1146/annurev.earth.29.1.535.

  • [36] Acharya BS Rasmussen J Eriksen J. Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation. Agriculture Ecosyst Environ. 2012;153:33-39. DOI: 10.1016/j.agee.2012.03.001.

  • [37] Tveit A Schwacke R Svenning MM Urich T. Organic carbon transformations in high-arctic peat soils: Key functions and microorganisms. ISME J. 2013;7(2):299-311. DOI: 10.1038/ismej.2012.99.

  • [38] Schuur EAG Bockheim J Canadell JG Euskirchen E Field CB Goryachkin SV et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioScience. 2008;58(8):701-714. DOI: 10.1641/B580807.

  • [39] Schuur EAG Vogel JG Crummer KG Lee H Sickman JO Osterkamp T et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature. 2009;459:556-559. DOI: 10.1038/nature08031.

  • [40] Freibauer A Rounsevell MDA Smith P Verhagen J. Carbon sequestration in the agricultural soils of Europe. Geoderma. 2004;122(1):1-23. DOI: 10.1016/j.geoderma.2004.01.021.

  • [41] Gaj K. Pochłanianie CO2 przez polskie ekosystemy leśne (Carbon dioxide sequestration by Polish forest ecosystems). Leśne Prace Badawcze. 2012;73(1):17-21. DOI: 10.2478/v10111-012-0002-8.

  • [42] Soussana JF Tallec T Blanfort V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal. 2009;4(3):334-350. DOI: 10.1017/S1751731109990784.

  • [43] Sajnóg N Wójcik J. Możliwości zagospodarowania gruntów marginalnych i nieużytków gruntowych w scalaniu gruntów (Possibilities of developing degraded and uncultivated lands in land consolidation). Infrastruktura i Ekologia Terenów Wiejskich. Kraków: PAN; 2013;2(II):155-166. http://www.infraeco.pl/pl/art/a_16983.htm?plik=1385.

  • [44] Oren R Ellsworth DS Johnsen KH Phillips N Ewers BE Maier C et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature. 2001;411:469-472. DOI: 10.1038/35078064.

  • [45] Lal R. Managing soil and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. BioScience. 2010;60(9):708-721. DOI: 10.1525/bio.2010.60.9.8.

  • [46] Statistical Year Book of Agriculture. Główny Urząd Statystyczny; Warszawa: 2014. http://stat.gov.pl/download/gfx/portalinformacyjny/en/defaultaktualnosci/3328/6/9/1/statistical_yearbook_of_agriculture_2014.pdf.

  • [47] Soussana JF Loiseau P Vuichard N Ceschia E Balesdent J Chevallier T et al. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manage. 2004;20:219-230. DOI: 10.1079/SUM2003234.

  • [48] Carvajal M. Investigation into CO2 absorption of the most representative agricultural crops of the region of Murcia. CSIC Report. 2010. http://www.lessco2.es/pdfs/noticias/ponencia_cisc_ingles.pdf.

  • [49] Soussana JF Allarda V Pilegaardb K Ambusb P Ammanc C Campbelld C et al. Full accounting of the greenhouse gas (CO2 N2O CH4) budget of nine european grassland sites. Agricult Ecosystems Environ. 2007;121:121-134. DOI: 10.1016/j.agee.2006.12.022.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 292 165 6
PDF Downloads 173 127 4