Energy Willow From Experimental Plantation as a Potentially Clean Energy Source

Open access

Abstract

Energy willow as a species with broad adaptation possibilities, large production capacity and a wide range of applications, takes a special place among the plants grown for energy production. In this work an analysis was conducted in respect of the usefulness of this type of wood from experimental plantations as a clean source of energy generated in the combustion process. The heat of combustion and net calorific value of dry matter of energy willow wood, including selected sorts and classes of thickness were determined. Energy willow has a natural ability to accumulate heavy metals which are oxidized during the combustion process or remain in the ash, and consequently repollute the environment. In order to determine the environmental impact the content of heavy metals was examined in energy willow wood and in the soil of the experimental plantation. Metal concentrations were determined by the Atomic Absorption Spectrometry method (AAS). Results of the tests confirmed a close relationship between the heat of combustion, calorific value and wood thickness as well as its location in the tree structure. Furthermore, very large differences were found in the content of heavy metals in the samples of both willow wood and soil. The levels of heavy metal content in the wood of energy willow determine the agricultural use of ashes produced during combustion.

[1] Lindroth A, Bath A. Assessment of regional willow coppice yield in Sweden on basis of water availability. Forest Ecol Manage. 1999;121:57-65. DOI: 10.1016/S0378-1127(98)00556-8.

[2] Stolarski JM, Szczukowski S, Tworkowski J, Klasa A. Willow biomass production under conditions of low-input agriculture on marginal soils. Ecol Manage. 2011;262:1558-1566. DOI: 10.1016/j.foreco.2011.07.004.

[3] Chum, HL, Overend RP. Biomass and renewable fuels. Fuel Process Technol. 2001;71:187-195. DOI: 10.1016/S0378-3820(01)00146-1.

[4] Long, H, Li X, Wang H, Jia J. Biomass resources and their bioenergy potential estimation: A review. Renew Sust Energy Rev. 2013;26:344-352. DOI: 10.1016/j.rser.2013.05.035.

[5] Kuzovkina AY, Volk AT. The characterization of willow (Salix L.) varieties for use in ecological engineering applications: Co-ordination of structure function and autecology. Ecol Eng. 2009;38:1178-1189. DOI: 10.1016/j.ecoleng.2009.03.010.

[6] Jezierska-Thole A, Rudnicki R, Kluba M. Development of energy crops cultivation for biomass production in Poland. Renew Sust Energ Rev. 2016;62:534-545. DOI: 10.1016/j.rser.2016.05.024.

[7] Obernberger T, Bruner T, Barnthaler G. Chemical properties of solid biofuels - significance and impact. Biomass Bioenerg. 2006;30:973-982. DOI: 10.1016/j.biombioe.2006.06.011.

[8] Linderson ML, Iritz Z, Lindroth A. The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones. Biomass Bioenerg. 2007;31:460-468. DOI: 10.1016/j.biombioe.2007.01.014.

[9] Field CB, Campbell JE, Lobell DB. Biomass energy: the scale of the potential resource. Trends Ecol Evolution. 2008;23: 65-72. DOI: 10.1016/j.tree.2007.12.001.

[10] Carneiro P, Ferreira P. The economic, environmental and strategic value of biomass. Renew Energy. 2012;44:17-22. DOI: 10.1016/j.renene.2011.12.020.

[11] Ledin S. Willow wood properties, production and economy. Biomass Bioenerg. 1996;11:75-83. DOI: 10.1016/0961-9534(96)00022-0.

[12] Martin PJ, Stephens W. Willow growth in response to nutrients and moisture on a clay landfill cap soil. II: Water use. Bioresour Technol. 2006;97:449-458. DOI: 10.1016/j.biortech.2005.03.004.

[13] Mirck J, Volk TA. Response of three shrub willow varieties (Salix spp.) to storm water treatments with different concentrations of salts. Bioresour Technol. 2010;101:3484-3492. DOI: 10.1016/j.biortech.2009.12.128.

[14] Mleczek M, Rissmann I, Rutkowski P, Kaczmarek Z, Golinski P. Accumulation of selected heavy metals by different genotypes of Salix. Environ Exper Bot. 2009;66:289-296. DOI: 10.1016/j.envexpbot.2009.02.010.

[15] Dimitriou I, Eriksson J, Adler A, Aronsson P, Verwijst T. Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice. Environ Pollut. 2006;142:160-169. DOI: 10.1016/j.envpol.2005.09.001.

[16] Stolarski JM, Szczukowski S, Tworkowski J, Krzyżaniak M. Cost of heat energy generation from willow biomass. Renew Energy. 2013;59:100-104. DOI: 10.1016/j.renene.2013.03.025.

[17] Wuilloud JCA, Wuilloud RG, Vonderheide AP, Caruso JA. Gas chromatography/plasma spectrometry - an important analytical tool for elemental speciation studies. Spectrochim Acta. 2004;59:755-792. DOI: 10.1016/j.sab.2004.03.009.

[18] Ebdon L, Evans EH, Fisher A, Hill SJ. An Introduction to Analytical Atomic Spectometry. Plymouth: Wiley; 1998.

[19] Abbasi T, Abbasi SA. Biomass energy and the environmental impacts associated with its production and utilization. Renew Sust Energy Rev. 2010;919-937. DOI: 10.1016/j.rser.2009.11.006.

[20] Demirbas A. Combustion characteristics of different biomass fuels. Progress Energy Combust Sci. 2004;30:219-230. DOI: 10.1016/j.pecs.2003.10.004.

[21] Carroll J, Finnan J. Emissions and efficiencies from the combustion of agricultural feedstock pellets using a small scale tilting grate boiler. Biosys Eng. 2013;115:50-55. DOI: 10.1016/j.biosystemseng.2013.01.009.

[22] Fang S, Xue J, Tang L. Biomass production and carbon sequestration potential in poplar plantations with different management patterns. J Environ Manage. 2007;85:672-679. DOI: 10.1016/j.jenvman.2006.09.014.

[23] Nixon DJ, Stephens W, Tyrrel SF, Brierley EDR. The potential for short rotation energy forestry on restored landfill caps. Bioresour Technol. 2001;77:237-245. DOI: 10.1016/S0960-8524(00)00081-X.

[24] Williams JM, Jones LM, Pourkashanian M. Pollutants from the combustion of solid biomass fuels. Progress Energy Combust Sci. 2012;38:113-137. DOI: 10.1016/j.pecs.2011.10.001.

[25] Ghafghazi S, Sowlati T, Sokhansanj S, Bi X, Melin S. Particulate matter emissions from combustion of wood in district heating applications. Renew Sust Energy Rev. 2011;15:3019-3028. DOI: 10.1016/j.rser.2011.04.001.

[26] Ericsson K, Rosenqvist H, Ganko E, Pisarek M, Nilsson L. An agro-economic analysis of willow cultivation in Poland. Biomass Bioenerg. 2006;30:16-27. DOI: 10.1016/j.biombioe.2005.09.002.

[27] Adler A, Dimitriou I, Aronsson P, Verwijst T, Weih M. Wood fuel quality of two Salix viminalis stands fertilized with sludge, ash and sludge-ash mixtures. Biomass Bioenerg. 2008;32:914-925. DOI: 10.1016/j.biombioe.2008.01.013.

[28] Vassilev SV, Vassileva CG, Vassil SV. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel. 2015;158:330-350. DOI: 10.1016/j.fuel.2015.05.050.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information


IMPACT FACTOR 2017: 0.7
5-year IMPACT FACTOR: 0.815

CiteScore 2017: 0.79

SCImago Journal Rank (SJR) 2017: 0.227
Source Normalized Impact per Paper (SNIP) 2017: 0.535

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 201 198 15
PDF Downloads 114 112 8