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Abstract: The recent advances and potential applicatiomanbparticles and nanofibres for energy, waterd foo
biotechnology, the environment, and medicine hawaénsely conversed. The present review descritgreen’
method for the synthesis and stabilization of namntqles and ‘green electrospinning’ both usinge toims
(arabic, tragacanth, karaya and kondagogu). Fumibrey, this review focuses on the impending appboat of
both gum stabilized nanoparticles and functiondlireembranes in remediation of toxic metals, radicac
effluents, and the adsorptive removal of nanopalgtes from agueous environments as well as frainstrial
effluents. Besides, the antibacterial propertieguwh derivatives, gum stabilized nanoparticles, fandtionalized
electrospun nanofibrous membranes will also beligigted. The functionalities of nanofibrous memlaarthat
can be enhanced by various plasma treatments (oame methane, respectively) will also be emphdsize
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Introduction

In the past few decades, nanoparticles and naesfibave demonstrated superior
performance in numerous applications, including@newater, the environment, medicine,
and health care etc. [1-4]. However, many of théens and processes currently used for
the synthesis of nanoparticles are dependent ofrer@wable resources and also generate
hazardous wastes. The potential environmental aedltth impacts of engineered
nanoparticles have been comprehensively studiedepudted in the literature [5-8]. Green
nanotechnology, the combination of nanotechnology the principles and practices of
green chemistry, may hold the key to building aniemmentally sustainable society in the
near future. Nanomaterials also offer applicatitmgrevent pollution by utilizing certain
catalytic processes to create less waste produyctiense pollutants in water and the
environment, destroy harmful bacteria and virused ereate clean water and a clean
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environment [8-10]. Green chemistry is a set ohgigles or practises that encourages the
design of products and processes that reduce oiinelie the use and generation of
hazardous substances [11-14]. Current green ndmuikxgy practices often involve the
use of natural sources, non-hazardous solventdefradable and biocompatible materials
and energy-efficient processes in the preparatioranoparticles [15-17].

Remarkable applications of the use of electrospanofibres have recently been
reported in many fields such as energy, the enxieart, water purification, sensor devises,
tissue engineering scaffolds, wound dressing, deliyery, etc. [2, 18]. Electrospinning is
one of the most proficient and sophisticated methfod the fabrication of nanofibres on
a large scale and with a large surface area tonelatio, high porosity and stability [19].
The electrospinning process parameters such asnsyatd process variable requirements
have been meticulously reported in the literatu26, [21]. In order to develop ‘green
electrospinning’ technology it is necessary to umsa-toxic, cheap, and environmental
friendly solvents and materials. Compared to thegeru electrospinning process, which
utilises hazardous and corrosive and non-ecologigdnic solvents, water based solvents
and polymers are being developed to produce ekmiro nanofibores and membranes,
which make the electrospinning processes a moreoecsical and greener technology for
environmental protection.

Medical applications
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Fig. 1. Non-food applications of tree gums and te@avith them nanoparticles and nanofibers

In this review, we focus on the green synthesidr{ation, characterization, and
application) of nanoparticles and green electraspion nanofibres based on tree gum
polysaccharides, we also discuss the various fafisit methods using water soluble
polymeric blend solutions of gums with polyvinylcahol or poly ethylene oxide.
Furthermore, the various functionalities of elespon fibrous membranes, surface
modifications and the enhancement of their proeerti(water contact angle,
hydrophobicity/hydrophilicity, fibre diameter, arslirface area) before and after various
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plasma treatments (oxygen and methane) are examihélcurrent report further focuses

on our own studies and describes the environmeantdl antibacterial applications of

gum-stabilized nanoparticles, functionalized fibwesd membranes. Figure 1 shows the
schematic model of the applications of tree gunt @eated with them nanoparticles and
nanofibers.

Natural and renewable sources of reducing agents for the synthesis
of nanoparticles

Nature has created many indispensable materialsireg for the fabrication of
nanoparticles. Among them, plant extractSalgia officinalis, Lippia citriodora,
Pelargonium graveolens, andPunica granatum), biopolymers (starch, cellulose, chitosan,
tree gum polymers), and other natural compounds Nktamins, proteins, peptides
(e.g. glutathione), and sugare.q. glucose, fructose) are such materials, which pi®@vi
suitable reducing and surface agents for the natioleasynthesis/stabilization [14-17,
22-30]. Plant extracts are regarded as one of th&t promising natural reducing agents,
such as metabolities.§. sugars, alkaloids, polyphenols, phenolic acidpeweoids), and
proteins and co-enzymes help to synthesis metalnagtdl oxide nanoparticles [31-37].
These NPs can be used in biomedical applicatioestduheir production advantages
a biosynthetic route, which fashions the defineg smorphology and high chemical purity
of NPs [38].

Biopolymers (cellulose and its derivatives, chitosand its derivatives, alginate,
dextran, and tree gums) are another family of @m&tspurces used as reducing and
stabilizing agents for metal and metal oxide nantga synthesis [39-58]. Vitamin B
Vitamin B, (riboflavin), Vitamin C (ascorbic acid), coffeeditea extracts, beet juice, and
grape pomace are well-known natural reducing agamastioxidants used for the synthesis
of stable nanoparticles and are comprehensivelyrteg [59-65].

Tree gums - an overview

Gums are hydrocolloids, which are hydrophilic iruma and are found in almost every
biosphere on earth; in plants, animals, and macjeba. They contain a large number of
hydroxyl groups, usually arranged in a fairly reguimanner along the backbone of the
molecule, which allows for the chelation of monondadivalent cations, thereby
cross-linking the hydrocolloid chains together afudming complex macrostructures
[66-68]. Hydrocolloids are some of the most welblam polysaccharides, having complex
structures with glycosidic bonding. Most gums amtehogeneous polysaccharides with
complicated structures and extremely high molecutsasses [69-71]. The simplest
interactions of hydrocolloids are (as the hame safjgvith water and it is this interaction
that is key to their use in foodstuffs. Gum hyditmds are effective water adsorbents and
to a greater or lesser extent may be solubilizedvhter. Owing to the high number of
hydroxyl groups, water is held within the molecudénucture by hydrogen bonding and also
within the voids created by the complex moleculanfiguration [72-76]. The important
tree exudate gums available on the market are gabica(GA), gum karaya (GK), gum
tragacanth (GT), kondagogu gum (KG), and gum gli@i®). Extensive research has been
carried out on various aspects of these tree gulysgocharides, which includes their
availability, molecular weight distribution, cheralcstructures, and food & non-food
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applications [77-80]. None of the three gums amdpced in developed countries. They
must be imported from developing countries. Thentbal composition of these gums is
complex and varies depending on the source anagis Therefore, it is not possible to
provide defined structural formulas of these bigpwrs. Exudate gums are used in
an overwhelming number of applications, especialyhe food industry. However, there
are also considerable non-food applications [78].

Gum arabic (GA) is a branched, neutral or sliglatidic, complex polysaccharide
obtained as a mixed calcium, magnesium, and patassalt. The backbone consists of
1- 3-linked B-D-galactopyranosyl units. The side chains are amag of two to five
1- 3-linked -D-galactopyranosyl units, joined to the main chiayn1- 6-linkages. Both
the main and the side chains contain unitg-tfarabinofuranosylg-L-rhamnopyranosyil,
D glucuronopyranosyl, and @-methyl-3-D-glucuronopyranosyl units, the latter two
mostly as end-units [81-83]. It is suggested that high-molecular-weight fraction of the
gum consists of large carbohydrate blocks with aemdar mass of approximately
2.5- 10° Da attached individually to a polypeptide chairA 3 obtained from the stems
and branches ohcacia Senegal andAcacia seyal, and being a branched polysaccharide, it
exhibits unique structural, physical and chemicaipprties [84-87]. Consequently, it is
widely used in food and pharmaceutical applicati@&s90].

Gum tragacanth (GT) is a complex, highly branchesterogeneous polysaccharide,
naturally occurring as a slightly acidic calciumagmesium, and potassium salt. It has
a molecular mass of approximately 8.40° Da [91, 92]. The composition of the gum
obtained from differenfstragalus species shows considerable variation. This vaiighd
not surprising, since the genAstragalus is the largest within theeguminosae family. It
occurs worldwide in tropical regions and contairsuad 2,000 species, grouped into more
than 100 sub-divisions [93]. GT consists of twocfians; tragacanthic acid or bassorin is
insoluble in water, but has the capacity to swell form a gel, and the other fraction is
called tragacanthin and is water-soluble. Both tfosms contain small amounts of
proteinaceous material and methoxyl groups, therléteing present in higher amounts in
the water-soluble fraction [94]. The water-sweltalagacanthic acid fraction has a high
molecular weight and a rod-like molecular shapee Tain chain is formed by 1,4-linked
D-galactose residues with side chains of D-xylosésuattached to the main chain by
1,3 linkages. The water-soluble tragacanthin igatnal, highly branched arabino-galactan
with a spherical molecular shape. Its structurebpbly consists of a core composed of
1,6- and 1,3-linked D-galactose with attached chaof 1,2-, 1,3-, and 1,5-linked
L-arabinose [75, 95]. GT is mainly used in food @hé@rmaceutical fields.

Gum karaya (GK) is a complex, partially acetylatedlysaccharide obtained as
a calcium and magnesium salt. It has a branchedtste and a high molecular mass of
approximately 16 10° Da [96, 97]. The backbone of the gum consists-&f-galacturonic
acid anda-L-rhamnose residues. Side chains are attached2slinkage of3-D-galactose
or by 1,3-linkage ofD-glucuronic acid to the galacturonic acid of thmain chain.
Furthermore, half of the rhamnose residues of tha&innchain are 1,4-linked to
[F-D-galactose units [92, 98, 99]. The chemical cosifiin of gum samples obtained from
different Sterculia species and from different places of origin wamfibhto be quite similar
[96, 100]. Commercial gum karaya contains approieéfygal 3-26% galactose and 15-30%
rhamnose, which is considerably higher than thenrt@se content of other commercial
exudates gums [100]. However, the protein contéapproximately 1% is lower than that
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of other exudate gums. Gum karaya contains appwairimn 40% uronic acid residues and
8% of acetyl groups [98]. Due to the presence e$¢hacetyl groups; native gum karaya is
insoluble and only swells in water. Le Cerf et @ distinguished three fractions in gum

karaya, based on their solubility in water. Onl\d.0f the native gum was solubilized in

cold water, increasing to 30% in hot water. Afteadetylation with dilute ammonia, 90%

of the native gum dissolves in water. The equivalgaight of the deacetylated-soluble

fraction was higher than that of the cold-watemubtd fraction. This indicates that only

lower-molecular-weight molecules are able to digsah cold water, while deacetylation

leads to the solubilisation of material of a highelecular weight [78, 97].
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Fig. 2. Specimens of: a) GA, c) KG, and e) GK wiitleir corresponding partial chemical structures
(b, d, and f, respectively) [79]
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Gum kondagogu (KG) belongs to the specie€athl ospermum and familyBixaceae.
Even though gum karaya, also known as Indian teagac and KG are classified in the
same group, there are considerable differencefain physical and chemical properties
[101, 102]. Extensive research has been carriecbnl{G (Cochlospermum gossypium),

a gum extracted from kondagogu tree, which growmdta, including its morphological,
physical and chemical, structural, rheological, rpieceutical emulsifying properties and
its toxicological evaluation as a food additive [88, 102-107]. Furthermore, this gum can
also be used as a biosorbent for the removal dt tmetal contaminants from aqueous
environments and also as an environmental friemditerial for the stabilization and
a reducing agent for the synthesis of metal/metaleonanoparticles [108-112]. Structural
analysis of this biopolymer has shown that it cotg#augars such as arabinose, rhamnose,
glucose, galactose, mannose, glucuronic acid alagtgaonic acid. Based on spectroscopic
characterization, the probable structural featwssigned to KG is (1- 2) p-D-Gal p,

(1 - 6) p-D-Galp, (1 - 4) B-D-Glc p A, 4-0-Mew-D-Glc p A, (1 - 2) o-L-Rha, and

(1 - 4)o-D-Galp A[79, 80].

Gum ghatti (GG), an Indian gum, is a non-starctygedcharide, and the main species
is Anogeissus latifolia (Combretaceae, Myrtales), a large deciduous traed in dry areas
[113, 114]. GG is used as an emulsifier and thiekeim food industries [115-117].
Recently, Deshmukh et al [118] reported a detaiiedew of the molecular structure,
properties, and pharmaceutical applications of GG.

Tree gums as a natural renewable source for the green synthesis
of nanoparticles

Tree gums (GA, GK, KG, GT, and GG) have been used @mplate for the synthesis
and stabilization of various metal (Ag, Au, Pt, P, Cu, Se etc.) and metal oxide {Bg
CuO, ZnO etc.) nanoparticles [27, 28, 58, 65, 129-139].

All of the above-mentioned NPs (Table 1) were ctimdzed using a variety of
spectroscopic and microscopic analyses, such awitlble spectrophotometry, scanning
electron microscopy (SEM), transmission electrocrogcopy (TEM), Fourier transform
infrared spectroscopy (FTIR), powder X-ray diffiact (XRD) and energy dispersive
spectroscopy (EDS). Vinod et al [131] reported thatcolloidal NPs with average sizes of
Ag (5.5 £2.5 nm), Au (97.8 £2.3 nm) and Pt (2.478m) stabilized with KG were found
to be stable even after 6 months at room temperaturd the reduction was attributed to
the various functional groups (-OH, —COO, —-C=0, &1&CO-) present in the gum
structure. Furthermore, gums have three major peters for the preparation of NPs and
follow the cardinal principles of green chemistrg the environmentally benign solvent
medium (water and ionic liquid-based green soljdiatsthe synthesis of NPs; gum acts as
reducing agent due to the presence of many furaltigroups in the gum structure (—OH,
—COO-, —CO, and Cf£0-) and gums are non-toxic and biodegradable rakdor the
stabilization of NPs. However, even today, manyigsi have reported the use of toxic
solvents such as organic solvents, and toxic, highhctive and environmentally and
biologically risky reducing agents such as hydrazisodium borohydride and dimethyl
formide, and capping agents such as EDTA, trietleamime and tetraethylammonium
bromide, which are known to bio-accumulate in thevimnment and are persistent
pollutants, which may have ecological or human theadks, used for the synthesis of NPs
[8-10, 17].
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Table 1
Synthesis of metal and metal oxide NPs intercegedhtious tree gum polysaccharides
Tree gums Type of NPs Size, morphology and stabiibf NPs References
. ~ 5 nm; face centred cubic structures with cryista)
Gum arabic (GA Ag 5 month stability [119]
GA Ag 16.0 £2.0 n.m; FCC, highly stable [120]
2-20 nm; spherical shape, single crystalline, lyighl
GA Ag stable for one month [121]
GA Au 6.52 £0.66 nm, spherical, stable for 5 weeks [122]
GA Au 5.5 nm, with spherical particles; crystalline [123]
26.8 £5.3 nm, with FCC structures, spherical,
GA Au stable even in the presence of NaClupto 3 M (27]
GA Au 15-20 nm, spherical [124]
GA-FeO, Au 2 nm, spherical [65]
GA Se ~34.9 nm, with spherical structures [28]
GA cu ~3-9nm, W|th spherical particles; [125]
crystalline structure
GA FeO, ~20 nm, with non-spherical morphology [126]
12.5 £2.5 nm, spherical particles, crystalline and
Gum karaya (GK Ag stable for 6 months (58]
GK Ag 4 +2 nm, FCC with crystalline structure [127]
GK Ag 7-10 nm, spherical [128]
GK Au 7.8 £1.8 nm, spherical, stabile for 6 months [58]
GK Au 20-25 nm, spherical [129]
GK Pt 5.0 £1.2 nm, spherical [58]
GK CuO 10.5 £2.4 nm, spherical [130]
GK FeO, 18.5 £3.5 nm, spherical [58]
Gum kondagogu A 5.5 +2.5 nm, spherical, FCC, stable for more than [131]
(KG) 9 6 months
KG Ag 3 nm, spherical, highly stable [132]
7.8 £2.3 nm, spherical, stable for more than
KG Au 6 months [131]
KG Au 12 +2 nm, nano-crystalline [133]
2.4 0.7 nm, crystalline, stable for more than
KG Pt 6 months [131]
spherical size iron oxide particles with diametels
KG FeO in the range of 8-15 nm [134]
Gum(téa%acanth Ag 13.1 £1.0 nm with spherical nanoparticles [135]
GT 7n0 55-80 nm, high crystalline r_]ature and single phase [136]
of synthesized
Gum ghatti (GG) Ag 5.7 £0.2 nm, spherical nanophes [137]
GG Pd 4.8 £1.6 nm, spherical shape [138]
GG FeO, 35nm [139]

Figures 3 and 4 show the various nanoparticles pag,Pt, FgO,, CuO) synthesised
using GK and KG.
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“Green” electrospinning based on tree gums

Fibres produced by electrospinning have been krnimwover ninety years, when the
Czech-American physicist John Zeleny studied tegqies known today as electrospinning
and electrospraying. When a conductive liquid icapillary is exposed to an electric field
in a range of ~10 kV, the liquid shape forms a ¢avieich emits a jet of liquid. Fibres are
formed by the solution drying during flight to tleposite electrode (collector). Industrial
production based on roller electrospinning was bigpexl by Oldrich Jirsak, professor of
TUL, in the Czech Republic in 2004. Nowadays, subrom fibres and nanofibres can be
formed from solutions and melts, from various cleats and material mixtures, from
traditional or “green” materials, in a DC or AClfieand with a core-shell structure of two
different materials, etc. Similar to the broad gpeu of fibre types, the potential for their
application is even broader and includes mechargcajineering, optics, electronics,
medicine and drug production, biotechnologies, mmmental protection etc.

The development of electrospun fibres and membréased on natural renewable
materials for energy and environmental applicatioiss still underway. “Green”
electrospinning technology relies on the developgmeh non-toxic, inexpensive and
environmentally friendly polymers and solvents {sus water or ionic solvents) for the
fabrication of electrospun fibres and membranesctEbspun natural biodegradable
polymers have shown great applicability in manyldiesuch as the development of
filtration membranes, catalytic nanofibres, tisamgineering, drug delivery and sensors
[140, 141]. The application of electrospun nandafthin the area of biomedicine, drug
delivery, tissue engineering, wound dressing, waerification, and energy has been
reported [142-144]. Electrospun nanofibres fromuralttree gum based bio-polymers are
an innovative group of economic and environmentigndly membranes for the potential
applications in energy, environmental and biomddie&s.

Natural biopolymers such as Chiton, chitosan, gragacanth, and guar gum blended
with synthetic biocompatible polymers (PVA or PH@)\e been reported to be suitable for
producing electrospun membranes [145-150]. Vergnmtyg, natural tree polymers such as
GA, GK, and KG have undergone electrospinning dredslystem and process parameters
have been standardised to produce smooth and omifanofibres [151-155]. Furthermore,
many combinations of tree gums have been blendd#dR¥A or PEO and the solubility of
the polymer has been determined to subsequentlyoirepthe spinnability, solubility,
biocompatibility, biodegradability, and mechanicaroperties of the electrospun
membranes. In addition, chemical modifications afunal polymers, with DDSA or Ag
NPs to develop the antibacterial membranes hawebasn reported [152].

Electrospun fibres and membranes of GA, GK, and KG

As reported by Padil et al [151, 152, 154, 155jyeampys PVA (10-12 wt. %) was
mixed with GA, GK, and KG solutions (varying fromt@ 5 wt. %) in different weight
proportions of PVA or PEO with GA, GK, and KG (10050/50, 60/40, 70/30, 80/20,
90/10 and 0/100), to determine the good spinnghdiitd uniform size of nanofibres after
electrospinning. The electrospinning is carried aum a Nanospider electrospinning
machine (Elmarco, NS IWS500U, Liberec, Czech Replblith interchangeable electrode
systems, working with both water or non-water stdupolymers. The details of the
electrospinning conditions are as follows: spinnaigctrode width of 500 mm, effective
nanofibre layer width of 200-500 mm; spinning digta of 130-280 mm, substrate speed of
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0.015-1.95 m/min, voltage of 0-55 kV and processflaiv of 20-150 nih. The ratios of
the best combinations of the blend mixtures of guene as follows: PVA was found to
have a 30:70 to 10:90 ratio of gum/PVA in the fielctrospinning mixture. The SEM and
TEM images of GA, GK, and KG with their electrosdibres and plasma treated fibres are
presented in Figures 5, 6, and 7, respectively.

AT - SAmm  Sigod A-Tales  Daed Dec 018 gy
= —_— il

Fig. 5. SEM photographs of KG showing irregulartigée sizes (a); TEM analysis of KG showing
network molecular structure (b); electrospun fiboe&G (c); plasma treated membranes of KG
(d); Au NP adsorbed on fibres of KG (e); EDX anaysf Au adsorbed structures of KG (f)
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b

Fig. 6. SEM picture of GK showing the irregular tide sizes (a); electrospun fibres of GK (b); phas
treated membranes of GK (c); Ag adsorbed membrah&3K (d); EDX analysis of Ag NPs
adsorbed membrane (e); schematic interpretatiometél ion interaction with GK structure (f)
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Fig. 7. SEM pictures of GA indicating the differaminge of particles sizes (a); electrospun memkirane
of GA (b); plasma treated membranes of GA (c); Aggon of FeO, onto GA electrospun
membranes (d); EDX analysis showing Fe traces erGik-FeO, membranes (e); XRD patterns
of Fe;0, observed in GA-F©, membranes (f)
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Membrane treatments and characteristics
Plasma treatment

Plasma-surface modification is an efficient and t-effective surface treatment
technique used in biomedical research such asesmgtand etching, implantation,
deposition, polymerization, spraying, and lasersipia deposition [156]. The unique
advantage of plasma modification is that the serfaperties and biocompatibility can be
significantly altered, while the bulk qualities tfe materials remain unchanged [157].
Various gas plasma treatment methods (oxygen, aggamhmethane) have been developed
to modify the surface properties of polymers, su@ds the balance of
hydrophilicity/hydrophobicity and surface free ege{158]. Typically, plasma treatment
modifies the surface by grafting hydroxyl (—OH),rlmanyl (—CO), and carboxylate
(—-COOH) groups [159-162]. Through the processgdaxma modification, it is possible to
influence the change of the wettability and watentact angle either to strongly
hydrophilic or more hydrophobic, depending upon tia¢ure of the plasma used for the
modification and the plasma treatment time [162}188 it is stated in the literature, the
treatment of membranes using various gas plasnamesnt methods such as oxygen,
argon, nitrogen has been developed to modify thdrdphilic surface properties of
polymers [165, 166]. However, methane or sulphuxafaoride plasma treatment on
various polymeric membranes is used to enhancehtidgophobicity of the polymer
surfaces, resulting in higher contact angles [1638].

The GA, GK, and KG fibres were treated with methgi@sma to improve their
hydophobility, stability, water contact angle anoface area [151, 152, 154]. The methane
plasma treated membrane was prepared in a 13.56 id#ip frequency (RF) plasma
reactor (BalTec Maschinenbau AG, Pfaffikon, Swil@ed). The plasma chamber was
thoroughly purged with a continuous flow of the ge®d during the treatment to reduce
trace amounts of air and moisture. During the ineait, the gas flow was adjusted in order
to keep a constant pressure of 20 Pa inside thaldra The plasma conditions and process
parameters were as follows: voltage of 300 V; poR@WV; time of 5 minutes; plasma gas
purity of 99.997%:; electrode area of 48 “crinter-electrode distance of 50 mm, and
chamber volume of 1,000 ém

Cross-linking and stability of electrospun fibres

Heat and plasma treatments were conducted on lhesfiand membranes for their
application in environmental remediation and artibdal fields. The GA, GK, and KG
membranes are heated to 130-150°C and their syabvéis tested against an acid, alkaline
and aqueous solution, and it was determined thaifdhe heat-treated membranes were
stable up to 90-95% under all of these tested tiomdi [151-154]. Subsequently, the water
contact anglef(), membrane thickness, porosity, apparent denBiy] surface area and
degree of stability were found to have increasemrafmethane plasma modification
[151-154]. Figure 5 presents the morphological gesnthat occurred due to the plasma
treatments on the tree gums.
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Applications of electrospun nanofibres
for environmental bioremediation

The simplicity of the fabrication scheme, the dsigr of materials suitable for use
with electrospinning, as well as the unique anderiggting features associated with
electrospun nanofibres, all make these technignédteeir resultant structures attractive for
various applications such as filtration, drug defiy sensor devices, tissue engineering
scaffolds, would dressing etc.

Nanotechnology for water remediation will play awreasingly crucial role in water
security and consequently the food security ofwloeld. Nanoscale filtration techniques,
the adsorption of pollutants on nanoparticles ahnel breakdown of contaminants by
nanoparticle catalysts are the major applicatiohsianotechnology in the clean-up of
contaminated water [8-10]. The advantages of alseptin nanofibre membranes are that
they can offer both adsorption and filtration cleéeaistics. Therefore, nanofibre
membranes offer an attractive solution of heavyafsetemoval. In this context, green
electrospun fibres and membranes are emergingnaodative materials for environmental
bioremediation application.

Natural gums for the removal of toxic metal ions

Heavy metals (Pb, Ni, Cu, Zn, Cr, As, Hg, As, anjdakk a serious biological problem
in agquatic systems. Adsorption and filtration dre tommonly used methods for removal
of these contaminants from the water. In a recemtys gums have been successfully used
for the removal of various toxic heavy metals aadisactive and industrial effluents
[108-112, 139, 169, 170-175]. The experimental ltesishowed that sorption,
ion-exchange, functional group interactions, medifsurface properties, and high surface
areas were the possible mechanisms for the adsorptitoxic metals onto gum structures
[108-112, 139, 169, 170-175].

Electrospinning gum nanofibre for the removal of nanoparticles

There are potential environmental and health ingpatengineered nanomaterials due
to the increased presence of nanomaterials in coamh@roducts. Currently, most sectors
of nanotechnology are developing with no guideliagd in an environment ideally suited
for entrepreneurship. The lack of disposal of symbducts will lead to potential
contamination of water and ecosystems [176]. Naterads are emerging contaminants in
water and show significant toxicity to living systs. Further studies are still in progress on
the fate, transport, and transformation of nandgest and nanocomposite bioavailability
and exposure of humans and other living specie¥ [3,77]. Electrospinning polymers,
with various functionalities and combinations offelient types of natural and synthetic
polymeric materials and their potential applicasidar the removal of toxic heavy metals
from water, have been comprehensively reported [18]

The electropsun membranes of GA, GK, and KG weiect¥ely used for the removal
of metal and metal oxide nanoparticles from waf#8, [151, 155]. The nanofibres were
treated by methane plasma to improve their phykieatcal properties and resulted in high
adsorption capacities towards nanoparticles (Ag, AuCuO, and R®,) in an assessment
with untreated membranes [58, 151, 155]. The adisorpcapacities of the membrane
for the removal of nanoparticles (NPs) from watetivethe in the order
Pt>Au>Ag>CuO>Fg0, [58, 151]. Figures 5 (e and f), 6 (d and e) ar{d @&nd e) show the
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nanoparticles (Au, Ag, and ®,) adsorbed onto electrospun fibres. Various adsmrpt
mechanisms such as sorption, functional groupactams, complexation reaction between
metal/metal oxide nanoparticles with various fumaesl groups present in nanofibre and
modified surface properties such as the balandeydfophilicity/hydrophobicity, surface
free energy, and high surface area of the plasmated membrane are the possible
mechanisms of NPs adsorption onto nanofibres [58].1

Natural gum functionalized nanoparticles and nanofibres
for anti-bacterial applications

Many antimicrobial agents, such as metallic/metdates (Ag, Au, Cu,and CuO),
organic agents (quaternary ammonium and DDSA) fanatized with natural polymers
(chitosan, tree gums (GA, GK, KG, GT, and GG) aeliutose), have been used in textiles
and membranes for bio-medical and antibacterialligatpons [26, 30, 57, 118, 124,
126-130, 132, 133, 135, 137, 138, 146, 152, 153, 177].

Vinod et al studied the electrospun membranes of &8 KG and both of their
nanoparticles (Ag and CuO) and DDSA functionalizadmbranes were tested for their
anti-bacterial efficiencies [26, 128, 152, 177]eTdlectrospun membrane was cross-linked
by heating to 13 and later by methane plasma treatment in ordeimprove its
antibacterial efficiency [152, 128]. The anti-mibial activities of the fibres and
membranes of natural gums were investigated ag@iren-negativeescherichia coli and
Pseudomonas aeruginosa, and Gram-positivetaphylococcus aureus. It was found that
plasma modification enhances the antibacterial gntggs of the membrane in comparison
to unmodified samples [152]. Figure 8 shows thesmla treated fibres of GA, GK, and
their antibacterial properties. This study suggetstat plasma modified electrospun
membranes may be used as antimicrobial membrané&sod) water and environmental
applications. Furthermoraatural gum functionalized nanoparticles and DD ®fidtives
of these gums provide enhanced antibacterial ptiegeaind are an attractive approach for
the fabrication of such nanomembranes via eledmogmy for applications in the food,
pharmaceutical and other industrial fields.

Conclusion and prospects

The development of an ecologically viable electmosimg process using tree based
carbohydrate polymers to produce nanofibres inégteathways has been explored. The
current development in “green” electrospinning teslbgies provides important clues to
the potential roles of these electrospun membramegter purification and antibacterial
applications. The use of tree based polymers ifowarapplications is relatively rare
compared to synthetic polymers due to the incorbpiyi of the choice of the polymer for
particular applications and in some cases due tw pbemical and mechanical properties.
Nevertheless, further developments are requirdthdonew functionalized hybrid polymer
systems based on natural and synthetic polymerghwdre suitable for electrospinning
with improved functionalities for various applicatis. Based on the current studies, it is in
no doubt that electrospun nanofibres based on alatydrocolloids are expected to play
a significantly vital role in the future in many portant applications, such as water
purification, renewable energy, scaffolds in tissmgineering, food, biotechnology, and
environmental protection.
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b)

Fig. 8. Electrospun fibres of GA (a, ¢, and e) &id (b, d, and f) with their corresponding methane
plasma treated membrane showing potential antibakc#dficiencies. A, B (both contain 10 mM
of Ag/GA), C is the control, and D, E and F contairmM of Ag/GA fibre; f) Ag/GK plasma
treated membrane containing Ag from 1 to 10 mM
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