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Abstract:  The recent advances and potential applications of nanoparticles and nanofibres for energy, water, food, 
biotechnology, the environment, and medicine have immensely conversed. The present review describes a ‘green’ 
method for the synthesis and stabilization of nanoparticles and ‘green electrospinning’ both using tree gums 
(arabic, tragacanth, karaya and kondagogu). Furthermore, this review focuses on the impending applications of 
both gum stabilized nanoparticles and functionalized membranes in remediation of toxic metals, radioactive 
effluents, and the adsorptive removal of nanoparticulates from aqueous environments as well as from industrial 
effluents. Besides, the antibacterial properties of gum derivatives, gum stabilized nanoparticles, and functionalized 
electrospun nanofibrous membranes will also be highlighted. The functionalities of nanofibrous membranes that 
can be enhanced by various plasma treatments (oxygen and methane, respectively) will also be emphasized. 

Keywords: tree gums, nanoparticles, green electrospinning, environmental remediation, antibacterial membranes, 
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Introduction 

In the past few decades, nanoparticles and nanofibres have demonstrated superior 
performance in numerous applications, including energy, water, the environment, medicine, 
and health care etc. [1-4]. However, many of the materials and processes currently used for 
the synthesis of nanoparticles are dependent on non-renewable resources and also generate 
hazardous wastes. The potential environmental and health impacts of engineered 
nanoparticles have been comprehensively studied and reported in the literature [5-8]. Green 
nanotechnology, the combination of nanotechnology and the principles and practices of 
green chemistry, may hold the key to building an environmentally sustainable society in the 
near future. Nanomaterials also offer applications to prevent pollution by utilizing certain 
catalytic processes to create less waste production, sense pollutants in water and the 
environment, destroy harmful bacteria and viruses and create clean water and a clean 
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environment [8-10]. Green chemistry is a set of principles or practises that encourages the 
design of products and processes that reduce or eliminate the use and generation of 
hazardous substances [11-14]. Current green nanotechnology practices often involve the 
use of natural sources, non-hazardous solvents, biodegradable and biocompatible materials 
and energy-efficient processes in the preparation of nanoparticles [15-17].  

Remarkable applications of the use of electrospun nanofibres have recently been 
reported in many fields such as energy, the environment, water purification, sensor devises, 
tissue engineering scaffolds, wound dressing, drug delivery, etc. [2, 18]. Electrospinning is 
one of the most proficient and sophisticated methods for the fabrication of nanofibres on  
a large scale and with a large surface area to volume ratio, high porosity and stability [19]. 
The electrospinning process parameters such as system and process variable requirements 
have been meticulously reported in the literature [20, 21]. In order to develop ‘green 
electrospinning’ technology it is necessary to use non-toxic, cheap, and environmental 
friendly solvents and materials. Compared to the current electrospinning process, which 
utilises hazardous and corrosive and non-ecological organic solvents, water based solvents 
and polymers are being developed to produce electrospun nanofibres and membranes, 
which make the electrospinning processes a more economical and greener technology for 
environmental protection.  

 

 
Fig. 1. Non-food applications of tree gums and created with them nanoparticles and nanofibers 

In this review, we focus on the green synthesis (fabrication, characterization, and 
application) of nanoparticles and green electrospinning nanofibres based on tree gum 
polysaccharides, we also discuss the various fabrication methods using water soluble 
polymeric blend solutions of gums with polyvinyl alcohol or poly ethylene oxide. 
Furthermore, the various functionalities of electrospun fibrous membranes, surface 
modifications and the enhancement of their properties (water contact angle, 
hydrophobicity/hydrophilicity, fibre diameter, and surface area) before and after various 
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plasma treatments (oxygen and methane) are examined. This current report further focuses 
on our own studies and describes the environmental and antibacterial applications of  
gum-stabilized nanoparticles, functionalized fibres and membranes. Figure 1 shows the 
schematic model of the applications of tree gums and created with them nanoparticles and 
nanofibers. 

Natural and renewable sources of reducing agents for the synthesis  
of nanoparticles 

Nature has created many indispensable materials required for the fabrication of 
nanoparticles. Among them, plant extracts (Salvia officinalis, Lippia citriodora, 
Pelargonium graveolens, and Punica granatum), biopolymers (starch, cellulose, chitosan, 
tree gum polymers), and other natural compounds like vitamins, proteins, peptides  
(e.g. glutathione), and sugars (e.g. glucose, fructose) are such materials, which provide 
suitable reducing and surface agents for the nanoparticle synthesis/stabilization [14-17,  
22-30]. Plant extracts are regarded as one of the most promising natural reducing agents, 
such as metabolities (e.g. sugars, alkaloids, polyphenols, phenolic acids terpenoids), and 
proteins and co-enzymes help to synthesis metal and metal oxide nanoparticles [31-37]. 
These NPs can be used in biomedical applications due to their production advantages via  
a biosynthetic route, which fashions the defined size, morphology and high chemical purity 
of NPs [38]. 

Biopolymers (cellulose and its derivatives, chitosan and its derivatives, alginate, 
dextran, and tree gums) are another family of natural sources used as reducing and 
stabilizing agents for metal and metal oxide nanoparticle synthesis [39-58]. Vitamin B1, 
Vitamin B2 (riboflavin), Vitamin C (ascorbic acid), coffee and tea extracts, beet juice, and 
grape pomace are well-known natural reducing agents or antioxidants used for the synthesis 
of stable nanoparticles and are comprehensively reported [59-65].  

Tree gums - an overview 

Gums are hydrocolloids, which are hydrophilic in nature and are found in almost every 
biosphere on earth; in plants, animals, and many bacteria. They contain a large number of 
hydroxyl groups, usually arranged in a fairly regular manner along the backbone of the 
molecule, which allows for the chelation of mono- and divalent cations, thereby  
cross-linking the hydrocolloid chains together and forming complex macrostructures  
[66-68]. Hydrocolloids are some of the most well-known polysaccharides, having complex 
structures with glycosidic bonding. Most gums are heterogeneous polysaccharides with 
complicated structures and extremely high molecular masses [69-71]. The simplest 
interactions of hydrocolloids are (as the name suggest) with water and it is this interaction 
that is key to their use in foodstuffs. Gum hydrocolloids are effective water adsorbents and 
to a greater or lesser extent may be solubilized by water. Owing to the high number of 
hydroxyl groups, water is held within the molecular structure by hydrogen bonding and also 
within the voids created by the complex molecular configuration [72-76]. The important 
tree exudate gums available on the market are gum arabic (GA), gum karaya (GK), gum 
tragacanth (GT), kondagogu gum (KG), and gum ghatti (GG). Extensive research has been 
carried out on various aspects of these tree gum polysaccharides, which includes their 
availability, molecular weight distribution, chemical structures, and food & non-food 
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applications [77-80]. None of the three gums are produced in developed countries. They 
must be imported from developing countries. The chemical composition of these gums is 
complex and varies depending on the source and its age. Therefore, it is not possible to 
provide defined structural formulas of these biopolymers. Exudate gums are used in  
an overwhelming number of applications, especially in the food industry. However, there 
are also considerable non-food applications [78].  

Gum arabic (GA) is a branched, neutral or slightly acidic, complex polysaccharide 
obtained as a mixed calcium, magnesium, and potassium salt. The backbone consists of 
1→3-linked β-D-galactopyranosyl units. The side chains are composed of two to five  
1→3-linked β-D-galactopyranosyl units, joined to the main chain by 1→6-linkages. Both 
the main and the side chains contain units of α-L-arabinofuranosyl, α-L-rhamnopyranosyl, 
β-D glucuronopyranosyl, and 4-O-methyl-β-D-glucuronopyranosyl units, the latter two 
mostly as end-units [81-83]. It is suggested that the high-molecular-weight fraction of the 
gum consists of large carbohydrate blocks with a molecular mass of approximately  
2.5 · 105 Da attached individually to a polypeptide chain. GA is obtained from the stems 
and branches of Acacia Senegal and Acacia seyal, and being a branched polysaccharide, it 
exhibits unique structural, physical and chemical properties [84-87]. Consequently, it is 
widely used in food and pharmaceutical applications [88-90].  

Gum tragacanth (GT) is a complex, highly branched, heterogeneous polysaccharide, 
naturally occurring as a slightly acidic calcium, magnesium, and potassium salt. It has  
a molecular mass of approximately 8.4 · 105 Da [91, 92]. The composition of the gum 
obtained from different Astragalus species shows considerable variation. This variability is 
not surprising, since the genus Astragalus is the largest within the Leguminosae family. It 
occurs worldwide in tropical regions and contains around 2,000 species, grouped into more 
than 100 sub-divisions [93]. GT consists of two fractions; tragacanthic acid or bassorin is 
insoluble in water, but has the capacity to swell and form a gel, and the other fraction is 
called tragacanthin and is water-soluble. Both fractions contain small amounts of 
proteinaceous material and methoxyl groups, the latter being present in higher amounts in 
the water-soluble fraction [94]. The water-swellable tragacanthic acid fraction has a high 
molecular weight and a rod-like molecular shape. The main chain is formed by 1,4-linked 
D-galactose residues with side chains of D-xylose units attached to the main chain by  
1,3 linkages. The water-soluble tragacanthin is a neutral, highly branched arabino-galactan 
with a spherical molecular shape. Its structure probably consists of a core composed of  
1,6- and 1,3-linked D-galactose with attached chains of 1,2-, 1,3-, and 1,5-linked  
L-arabinose [75, 95]. GT is mainly used in food and pharmaceutical fields.  

Gum karaya (GK) is a complex, partially acetylated polysaccharide obtained as  
a calcium and magnesium salt. It has a branched structure and a high molecular mass of 
approximately 16 · 106 Da [96, 97]. The backbone of the gum consists of α-D-galacturonic 
acid and α-L-rhamnose residues. Side chains are attached by 1,2-linkage of β-D-galactose 
or by 1,3-linkage of β-D-glucuronic acid to the galacturonic acid of the main chain. 
Furthermore, half of the rhamnose residues of the main chain are 1,4-linked to  
β-D-galactose units [92, 98, 99]. The chemical composition of gum samples obtained from 
different Sterculia species and from different places of origin was found to be quite similar 
[96, 100]. Commercial gum karaya contains approximately 13-26% galactose and 15-30% 
rhamnose, which is considerably higher than the rhamnose content of other commercial 
exudates gums [100]. However, the protein content of approximately 1% is lower than that 
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of other exudate gums. Gum karaya contains approximately 40% uronic acid residues and 
8% of acetyl groups [98]. Due to the presence of these acetyl groups; native gum karaya is 
insoluble and only swells in water. Le Cerf et al [97] distinguished three fractions in gum 
karaya, based on their solubility in water. Only 10% of the native gum was solubilized in 
cold water, increasing to 30% in hot water. After deacetylation with dilute ammonia, 90% 
of the native gum dissolves in water. The equivalent weight of the deacetylated-soluble 
fraction was higher than that of the cold-water-soluble fraction. This indicates that only 
lower-molecular-weight molecules are able to dissolve in cold water, while deacetylation 
leads to the solubilisation of material of a higher molecular weight [78, 97].  

 

 
Fig. 2. Specimens of: a) GA, c) KG, and e) GK with their corresponding partial chemical structures  

(b, d, and f, respectively) [79] 
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Gum kondagogu (KG) belongs to the species of Cochlospermum and family Bixaceae. 
Even though gum karaya, also known as Indian tragacanth, and KG are classified in the 
same group, there are considerable differences in their physical and chemical properties 
[101, 102]. Extensive research has been carried out on KG (Cochlospermum gossypium),  
a gum extracted from kondagogu tree, which grows in India, including its morphological, 
physical and chemical, structural, rheological, pharmaceutical emulsifying properties and 
its toxicological evaluation as a food additive [79, 80, 102-107]. Furthermore, this gum can 
also be used as a biosorbent for the removal of toxic metal contaminants from aqueous 
environments and also as an environmental friendly material for the stabilization and  
a reducing agent for the synthesis of metal/metal oxide nanoparticles [108-112]. Structural 
analysis of this biopolymer has shown that it contains sugars such as arabinose, rhamnose, 
glucose, galactose, mannose, glucuronic acid and galacturonic acid. Based on spectroscopic 
characterization, the probable structural feature assigned to KG is (1 → 2) β-D-Gal p,  
(1 → 6) β-D-Gal p, (1 → 4) β-D-Glc p A, 4-0-Me-α-D-Glc p A, (1 → 2) α-L-Rha, and  
(1 → 4) α-D-Gal p A [79, 80].  

Gum ghatti (GG), an Indian gum, is a non-starch polysaccharide, and the main species 
is Anogeissus latifolia (Combretaceae, Myrtales), a large deciduous tree found in dry areas 
[113, 114]. GG is used as an emulsifier and thickener in food industries [115-117]. 
Recently, Deshmukh et al [118] reported a detailed review of the molecular structure, 
properties, and pharmaceutical applications of GG. 

Tree gums as a natural renewable source for the green synthesis  
of nanoparticles  

Tree gums (GA, GK, KG, GT, and GG) have been used as a template for the synthesis 
and stabilization of various metal (Ag, Au, Pt, Pd, Fe, Cu, Se etc.) and metal oxide (Fe3O4, 
CuO, ZnO etc.) nanoparticles [27, 28, 58, 65, 124, 119-139]. 

All of the above-mentioned NPs (Table 1) were characterized using a variety of 
spectroscopic and microscopic analyses, such as UV-visible spectrophotometry, scanning 
electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform 
infrared spectroscopy (FTIR), powder X-ray diffraction (XRD) and energy dispersive 
spectroscopy (EDS). Vinod et al [131] reported that the colloidal NPs with average sizes of 
Ag (5.5 ±2.5 nm), Au (97.8 ±2.3 nm) and Pt (2.4 ±0.7 nm) stabilized with KG were found 
to be stable even after 6 months at room temperature, and the reduction was attributed to 
the various functional groups (–OH, –COO, –C=O, and CH3CO–) present in the gum 
structure. Furthermore, gums have three major parameters for the preparation of NPs and 
follow the cardinal principles of green chemistry; i.e. the environmentally benign solvent 
medium (water and ionic liquid-based green solvents) for the synthesis of NPs; gum acts as 
reducing agent due to the presence of many functional groups in the gum structure (–OH,  
–COO–, –CO, and CH3CO–) and gums are non-toxic and biodegradable materials for the 
stabilization of NPs. However, even today, many studies have reported the use of toxic 
solvents such as organic solvents, and toxic, highly reactive and environmentally and 
biologically risky reducing agents such as hydrazine, sodium borohydride and dimethyl 
formide, and capping agents such as EDTA, triethanolamine and tetraethylammonium 
bromide, which are known to bio-accumulate in the environment and are persistent 
pollutants, which may have ecological or human health risks, used for the synthesis of NPs 
[8-10, 17]. 
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Table 1 
Synthesis of metal and metal oxide NPs interceded by various tree gum polysaccharides 

Tree gums Type of NPs Size, morphology and stability of NPs References 

Gum arabic (GA) Ag 
~ 5 nm; face centred cubic structures with crystalline,  

5 month stability 
[119] 

GA Ag 16.0 ±2.0 n.m; FCC, highly stable [120] 

GA Ag 
2-20 nm; spherical shape, single crystalline, highly 

stable for one month 
[121] 

GA Au 6.52 ±0.66 nm, spherical, stable for 5 weeks [122] 
GA Au 5.5 nm, with spherical particles; crystalline [123] 

GA Au 
26.8 ±5.3 nm, with FCC structures, spherical,  
stable even in the presence of NaCl up to 3 M 

[27] 

GA Au 15-20 nm, spherical [124] 
GA-Fe3O4 Au 2 nm, spherical [65] 

GA Se ∼34.9 nm, with spherical structures [28] 

GA Cu 
~ 3-9 nm, with spherical particles;  

crystalline structure 
[125] 

GA Fe3O4 ~20 nm, with non-spherical morphology [126] 

Gum karaya (GK) Ag 
12.5 ±2.5 nm, spherical particles, crystalline and 

stable for 6 months 
[58] 

GK Ag 4 ±2 nm, FCC with crystalline structure [127] 
GK Ag 7-10 nm, spherical [128] 
GK Au 7.8 ±1.8 nm, spherical, stabile for 6 months [58] 
GK Au 20-25 nm, spherical [129] 
GK Pt 5.0 ±1.2 nm, spherical [58] 
GK CuO 10.5 ±2.4 nm, spherical [130] 
GK Fe3O4 18.5 ±3.5 nm, spherical [58] 

Gum kondagogu 
(KG) 

Ag 
5.5 ±2.5 nm, spherical, FCC, stable for more than  

6 months 
[131] 

KG Ag 3 nm, spherical, highly stable [132] 

KG Au 
7.8 ±2.3 nm, spherical, stable for more than  

6 months 
[131] 

KG Au 12 ±2 nm, nano-crystalline [133] 

KG Pt 
2.4 ±0.7 nm, crystalline, stable for more than  

6 months 
[131] 

KG Fe3O4 
spherical size iron oxide particles with diameters  

in the range of 8-15 nm 
[134] 

Gum tragacanth 
(GT) 

Ag 13.1 ±1.0 nm with spherical nanoparticles [135] 

GT ZnO 
55-80 nm, high crystalline nature and single phase  

of synthesized 
[136] 

Gum ghatti (GG) Ag 5.7 ±0.2 nm, spherical nanoparticles [137] 
GG Pd 4.8 ±1.6 nm, spherical shape [138] 
GG Fe3O4 35 nm [139] 

 
Figures 3 and 4 show the various nanoparticles (Ag, Au, Pt, Fe3O4, CuO) synthesised 

using GK and KG. 
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Fig. 3. Striking colours of NPs (Ag, Au, and Pt) synthesised using KG as reducing and stabilizing agent 

(panel 1); UV-VIS and XRD spectral analysis of NPs (panel 2); and TEM pictures of NPs  
(panel 3) 
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Fig. 4. NPs synthesized using GK; UV-VIS spectral analysis of NPs; showing the formation various 

synthesized NPs (Ag, Au, Pt, Fe3O4, and CuO); and TEM analysis of NPs 
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“Green” electrospinning based on tree gums  

Fibres produced by electrospinning have been known for over ninety years, when the 
Czech-American physicist John Zeleny studied techniques known today as electrospinning 
and electrospraying. When a conductive liquid in a capillary is exposed to an electric field 
in a range of ~10 kV, the liquid shape forms a cone, which emits a jet of liquid. Fibres are 
formed by the solution drying during flight to the opposite electrode (collector). Industrial 
production based on roller electrospinning was developed by Oldrich Jirsak, professor of 
TUL, in the Czech Republic in 2004. Nowadays, sub-micron fibres and nanofibres can be 
formed from solutions and melts, from various chemicals and material mixtures, from 
traditional or “green” materials, in a DC or AC field, and with a core-shell structure of two 
different materials, etc. Similar to the broad spectrum of fibre types, the potential for their 
application is even broader and includes mechanical engineering, optics, electronics, 
medicine and drug production, biotechnologies, environmental protection etc.  

The development of electrospun fibres and membranes based on natural renewable 
materials for energy and environmental applications is still underway. “Green” 
electrospinning technology relies on the development of non-toxic, inexpensive and 
environmentally friendly polymers and solvents (such as water or ionic solvents) for the 
fabrication of electrospun fibres and membranes. Electrospun natural biodegradable 
polymers have shown great applicability in many fields such as the development of 
filtration membranes, catalytic nanofibres, tissue engineering, drug delivery and sensors 
[140, 141]. The application of electrospun nanofibres in the area of biomedicine, drug 
delivery, tissue engineering, wound dressing, water purification, and energy has been 
reported [142-144]. Electrospun nanofibres from natural tree gum based bio-polymers are 
an innovative group of economic and environmentally friendly membranes for the potential 
applications in energy, environmental and biomedical fields. 

Natural biopolymers such as Chiton, chitosan, gum tragacanth, and guar gum blended 
with synthetic biocompatible polymers (PVA or PEO) have been reported to be suitable for 
producing electrospun membranes [145-150]. Very recently, natural tree polymers such as 
GA, GK, and KG have undergone electrospinning and the system and process parameters 
have been standardised to produce smooth and uniform nanofibres [151-155]. Furthermore, 
many combinations of tree gums have been blended with PVA or PEO and the solubility of 
the polymer has been determined to subsequently improve the spinnability, solubility, 
biocompatibility, biodegradability, and mechanical properties of the electrospun 
membranes. In addition, chemical modifications of natural polymers, with DDSA or Ag 
NPs to develop the antibacterial membranes have also been reported [152]. 

Electrospun fibres and membranes of GA, GK, and KG 

As reported by Padil et al [151, 152, 154, 155], aqueous PVA (10-12 wt. %) was 
mixed with GA, GK, and KG solutions (varying from 2 to 5 wt. %) in different weight 
proportions of PVA or PEO with GA, GK, and KG (100/0, 50/50, 60/40, 70/30, 80/20, 
90/10 and 0/100), to determine the good spinnability and uniform size of nanofibres after 
electrospinning. The electrospinning is carried out on a Nanospider electrospinning 
machine (Elmarco, NS IWS500U, Liberec, Czech Republic) with interchangeable electrode 
systems, working with both water or non-water soluble polymers. The details of the 
electrospinning conditions are as follows: spinning electrode width of 500 mm, effective 
nanofibre layer width of 200-500 mm; spinning distance of 130-280 mm, substrate speed of 
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0.015-1.95 m/min, voltage of 0-55 kV and process air flow of 20-150 m3/h. The ratios of 
the best combinations of the blend mixtures of gum were as follows: PVA was found to 
have a 30:70 to 10:90 ratio of gum/PVA in the final electrospinning mixture. The SEM and 
TEM images of GA, GK, and KG with their electrospun fibres and plasma treated fibres are 
presented in Figures 5, 6, and 7, respectively.  

 

 
Fig. 5. SEM photographs of KG showing irregular particle sizes (a); TEM analysis of KG showing 

network molecular structure (b); electrospun fibres of KG (c); plasma treated membranes of KG 
(d); Au NP adsorbed on fibres of KG (e); EDX analysis of Au adsorbed structures of KG (f) 
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Fig. 6. SEM picture of GK showing the irregular particle sizes (a); electrospun fibres of GK (b); plasma 

treated membranes of GK (c); Ag adsorbed membranes of GK (d); EDX analysis of Ag NPs 
adsorbed membrane (e); schematic interpretation of metal ion interaction with GK structure (f) 
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Fig. 7. SEM pictures of GA indicating the different range of particles sizes (a); electrospun membranes 

of GA (b); plasma treated membranes of GA (c); Adsorption of Fe3O4 onto GA electrospun 
membranes (d); EDX analysis showing Fe traces on the GA-Fe3O4 membranes (e); XRD patterns 
of Fe3O4 observed in GA-Fe3O4 membranes (f) 
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Membrane treatments and characteristics 

Plasma treatment 

Plasma-surface modification is an efficient and cost-effective surface treatment 
technique used in biomedical research such as sputtering and etching, implantation, 
deposition, polymerization, spraying, and laser plasma deposition [156]. The unique 
advantage of plasma modification is that the surface properties and biocompatibility can be 
significantly altered, while the bulk qualities of the materials remain unchanged [157]. 
Various gas plasma treatment methods (oxygen, argon, and methane) have been developed 
to modify the surface properties of polymers, such as the balance of 
hydrophilicity/hydrophobicity and surface free energy [158]. Typically, plasma treatment 
modifies the surface by grafting hydroxyl (–OH), carbonyl (–CO), and carboxylate  
(–COOH) groups [159-162]. Through the processes of plasma modification, it is possible to 
influence the change of the wettability and water contact angle either to strongly 
hydrophilic or more hydrophobic, depending upon the nature of the plasma used for the 
modification and the plasma treatment time [162-165]. As it is stated in the literature, the 
treatment of membranes using various gas plasma treatment methods such as oxygen, 
argon, nitrogen has been developed to modify the hydrophilic surface properties of 
polymers [165, 166]. However, methane or sulphur hexafluoride plasma treatment on 
various polymeric membranes is used to enhance the hydrophobicity of the polymer 
surfaces, resulting in higher contact angles [167, 168].  

The GA, GK, and KG fibres were treated with methane plasma to improve their 
hydophobility, stability, water contact angle and surface area [151, 152, 154]. The methane 
plasma treated membrane was prepared in a 13.56 MHz radio frequency (RF) plasma 
reactor (BalTec Maschinenbau AG, Pfaffikon, Switzerland). The plasma chamber was 
thoroughly purged with a continuous flow of the gas used during the treatment to reduce 
trace amounts of air and moisture. During the treatment, the gas flow was adjusted in order 
to keep a constant pressure of 20 Pa inside the chamber. The plasma conditions and process 
parameters were as follows: voltage of 300 V; power 20 W; time of 5 minutes; plasma gas 
purity of 99.997%; electrode area of 48 cm2; inter-electrode distance of 50 mm, and 
chamber volume of 1,000 cm3. 

Cross-linking and stability of electrospun fibres 
Heat and plasma treatments were conducted on the fibres and membranes for their 

application in environmental remediation and antibacterial fields. The GA, GK, and KG 
membranes are heated to 130-150ºC and their stability was tested against an acid, alkaline 
and aqueous solution, and it was determined that all of the heat-treated membranes were 
stable up to 90-95% under all of these tested conditions [151-154]. Subsequently, the water 
contact angle (θ), membrane thickness, porosity, apparent density, BET surface area and 
degree of stability were found to have increased after methane plasma modification  
[151-154]. Figure 5 presents the morphological changes that occurred due to the plasma 
treatments on the tree gums.  
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Applications of electrospun nanofibres  
for environmental bioremediation 

The simplicity of the fabrication scheme, the diversity of materials suitable for use 
with electrospinning, as well as the unique and interesting features associated with 
electrospun nanofibres, all make these techniques and their resultant structures attractive for 
various applications such as filtration, drug delivery, sensor devices, tissue engineering 
scaffolds, would dressing etc.  

Nanotechnology for water remediation will play an increasingly crucial role in water 
security and consequently the food security of the world. Nanoscale filtration techniques, 
the adsorption of pollutants on nanoparticles and the breakdown of contaminants by 
nanoparticle catalysts are the major applications of nanotechnology in the clean-up of 
contaminated water [8-10]. The advantages of electrospun nanofibre membranes are that 
they can offer both adsorption and filtration characteristics. Therefore, nanofibre 
membranes offer an attractive solution of heavy metals removal. In this context, green 
electrospun fibres and membranes are emerging and innovative materials for environmental 
bioremediation application.  

Natural gums for the removal of toxic metal ions  

Heavy metals (Pb, Ni, Cu, Zn, Cr, As, Hg, As, and U) are a serious biological problem 
in aquatic systems. Adsorption and filtration are the commonly used methods for removal 
of these contaminants from the water. In a recent study, gums have been successfully used 
for the removal of various toxic heavy metals and radioactive and industrial effluents  
[108-112, 139, 169, 170-175]. The experimental results showed that sorption,  
ion-exchange, functional group interactions, modified surface properties, and high surface 
areas were the possible mechanisms for the adsorption of toxic metals onto gum structures 
[108-112, 139, 169, 170-175].  

Electrospinning gum nanofibre for the removal of nanoparticles 

There are potential environmental and health impacts of engineered nanomaterials due 
to the increased presence of nanomaterials in commercial products. Currently, most sectors 
of nanotechnology are developing with no guidelines and in an environment ideally suited 
for entrepreneurship. The lack of disposal of such products will lead to potential 
contamination of water and ecosystems [176]. Nanomaterials are emerging contaminants in 
water and show significant toxicity to living systems. Further studies are still in progress on 
the fate, transport, and transformation of nanoparticles and nanocomposite bioavailability 
and exposure of humans and other living species [5, 7, 177]. Electrospinning polymers, 
with various functionalities and combinations of different types of natural and synthetic 
polymeric materials and their potential applications for the removal of toxic heavy metals 
from water, have been comprehensively reported [18]. 

The electropsun membranes of GA, GK, and KG were effectively used for the removal 
of metal and metal oxide nanoparticles from water [58, 151, 155]. The nanofibres were 
treated by methane plasma to improve their physicochemical properties and resulted in high 
adsorption capacities towards nanoparticles (Ag, Au, Pt, CuO, and Fe3O4) in an assessment 
with untreated membranes [58, 151, 155]. The adsorption capacities of the membrane  
for the removal of nanoparticles (NPs) from water diverge in the order  
Pt>Au>Ag>CuO>Fe3O4 [58, 151]. Figures 5 (e and f), 6 (d and e) and 7 (d and e) show the 
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nanoparticles (Au, Ag, and Fe3O4) adsorbed onto electrospun fibres. Various adsorption 
mechanisms such as sorption, functional group interactions, complexation reaction between 
metal/metal oxide nanoparticles with various functional groups present in nanofibre and 
modified surface properties such as the balance of hydrophilicity/hydrophobicity, surface 
free energy, and high surface area of the plasma treated membrane are the possible 
mechanisms of NPs adsorption onto nanofibres [58, 151]. 

Natural gum functionalized nanoparticles and nanofibres  
for anti-bacterial applications 

Many antimicrobial agents, such as metallic/metal oxides (Ag, Au, Cu, and CuO), 
organic agents (quaternary ammonium and DDSA) functionalized with natural polymers 
(chitosan, tree gums (GA, GK, KG, GT, and GG) and cellulose), have been used in textiles 
and membranes for bio-medical and antibacterial applications [26, 30, 57, 118, 124,  
126-130, 132, 133, 135, 137, 138, 146, 152, 153, 172, 177].  

Vinod et al studied the electrospun membranes of GK and KG and both of their 
nanoparticles (Ag and CuO) and DDSA functionalized membranes were tested for their 
anti-bacterial efficiencies [26, 128, 152, 177]. The electrospun membrane was cross-linked 
by heating to 130oC and later by methane plasma treatment in order to improve its 
antibacterial efficiency [152, 128]. The anti-microbial activities of the fibres and 
membranes of natural gums were investigated against Gram-negative Escherichia coli and 
Pseudomonas aeruginosa, and Gram-positive Staphylococcus aureus. It was found that 
plasma modification enhances the antibacterial properties of the membrane in comparison 
to unmodified samples [152]. Figure 8 shows the plasma treated fibres of GA, GK, and 
their antibacterial properties. This study suggests that plasma modified electrospun 
membranes may be used as antimicrobial membranes in food, water and environmental 
applications. Furthermore, natural gum functionalized nanoparticles and DDSA derivatives 
of these gums provide enhanced antibacterial properties and are an attractive approach for 
the fabrication of such nanomembranes via electrospinning for applications in the food, 
pharmaceutical and other industrial fields.  

Conclusion and prospects 

The development of an ecologically viable electrospinning process using tree based 
carbohydrate polymers to produce nanofibres in “green” pathways has been explored. The 
current development in “green” electrospinning technologies provides important clues to 
the potential roles of these electrospun membranes in water purification and antibacterial 
applications. The use of tree based polymers in various applications is relatively rare 
compared to synthetic polymers due to the incompatibility of the choice of the polymer for 
particular applications and in some cases due to poor chemical and mechanical properties. 
Nevertheless, further developments are required to find new functionalized hybrid polymer 
systems based on natural and synthetic polymers, which are suitable for electrospinning 
with improved functionalities for various applications. Based on the current studies, it is in 
no doubt that electrospun nanofibres based on natural hydrocolloids are expected to play  
a significantly vital role in the future in many important applications, such as water 
purification, renewable energy, scaffolds in tissue engineering, food, biotechnology, and 
environmental protection.  
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Fig. 8. Electrospun fibres of GA (a, c, and e) and GK (b, d, and f) with their corresponding methane 

plasma treated membrane showing potential antibacterial efficiencies. A, B (both contain 10 mM 
of Ag/GA), C is the control, and D, E and F contain 1 mM of Ag/GA fibre; f) Ag/GK plasma 
treated membrane containing Ag from 1 to 10 mM 
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