Chemical Degradation of PCDD/F in Contaminated Sediment

Open access

Abstract

Due to the extreme toxicity of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F), the remediation of PCDD/F aquifer source zones is greatly needed; however, it is very difficult due to their persistence and recalcitrance. The potential degradability of PCDD/F bound to a real matrix was studied in five systems: iron in a high oxidation state (ferrate), zero-valent iron nanoparticles (nZVI), palladium nanopowder (Pd), a combination of nZVI and Pd, and persulfate (PSF). The results were expressed by comparing the total toxicity of treated and untreated samples. This was done by weighting the concentrations of congeners (determined using a standardized GC/HRMS technique) by their defined toxicity equivalent factors (TEF). The results indicated that only PSF was able to significantly degrade PCDD/F. Toxicity in the system decreased by 65% after PSF treatment. Thus, we conclude that PSF may be a potential solution for in-situ remediation of soil and groundwater at PCDD/F contaminated sites.

[1] Stockholm Convention on Persistent Organic Pollutants. http://chm.pops.int.

[2] Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, et al. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci. 2006;93(2):223-241. DOI: 10.1093/toxsci/kfl055.

[3] International Agency for Research on Cancer. http://monographs.iarc.fr/ENG/Monographs/vol100F/100F-22-Index-tables.php.

[4] EPA Method 4435, Method for Toxic Equivalents (TEQS) Determinations for Dioxin-Like Chemical Activity with the CALUX® Bioassay. http://www.xenco.com/content/pdf/tech/SW846/SW846-4000series/SW846-4435.pdf.

[5] Kukučka P, Audy O, Kohoutek J, Holt E, Kalábová T, Holoubek I, et al. Source identification, spatiotemporal distribution and ecological risk of persistent organic pollutants in sediments from the upper Danube catchment. Chemosphere. 2015;138:777-783. DOI: 10.1016/j.chemosphere.2015.08.001.

[6] Lee WJ, Shih SI, Chang CY, Lai YC, Wang LC, Chang-Chien GP. Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans from contaminated soils. J Hazard Mater. 2008;160(1):220-227. DOI: 10.1016/j.jhazmat.2008.02.113.

[7] Kasai E, Harjanto S, Terui T, Nakamura T, Waseda Y. Thermal remediation of PCDD/Fs contaminated soil by zone combustion process. Chemosphere. 2000;41(6):857-864. DOI: 10.1016/S0045-6535(99)00535-4.

[8] Reynier N, Blais JF, Mercier G, Besner S. Decontamination of metals, pentachlorophenol, and polychlorined dibenzo-p-dioxins and dibenzofurans polluted soil in alkaline conditions using an amphoteric biosurfactant. Environ Technol. 35(1-4):177-186. DOI: 10.1080/09593330.2013.822005.

[9] Kim Y, Lee D. Solubility enhancement of PCDD/F in the presence of dissolved humic matter. J Hazard Mater. 2002;91(1):113-127. DOI: 10.1016/S0304-3894(01)00364-8.

[10] Kulkarni PS, Crespo JG, Afonso CAM. Dioxins sources and current remediation technologies - A review. Environ Int. 2008;34(1):139-153. DOI: 10.1016/j.envint.2007.07.009.

[11] Jiang JQ. Research progress in the use of ferrate(VI) for the environmental remediation. J Hazard Mater. 2007;146(3):617-623. DOI: 10.1016/j.jhazmat.2007.04.075.

[12] Tiwari D, Lee SM. Ferrate(VI) in the Treatment of Wastewaters: A New Generation Green Chemical. In: Waste Water - Treatment and Reutilization. InTech; 2011. DOI: 10.5772/15500.

[13] Jiang JQ. Advances in the development and application of ferrate(VI) for water and wastewater treatment. J Chem Technol Biotechnol. 2014;89(2):165-177. DOI: 10.1002/jctb.4214.

[14] Tosco T, Petrangeli Papini M, Cruz Viggi C, Sethi R. Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod. 2014;77:10-21. DOI: 10.1016/j.jclepro.2013.12.026.

[15] Fu F, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J Hazard Mater. 2014;267:194-205. DOI: 10.1016/j.jhazmat.2013.12.062.

[16] Grittini C, Malcomson M, Fernando Q, Korte N. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environ Sci Technol. 1995;29(11):2898-2900. DOI: 10.1021/es00011a029.

[17] Zhou HY, Xu XH, Wang DH. Catalytic dechlorination of chlorobenzene in water by Pd/Fe bimetallic system. J Environ Sci (China). 2003;15(5):647-651. http://www.ncbi.nlm.nih.gov/pubmed/14562926.

[18] Kim JH, Tratnyek PG, Chang YS. Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environ Sci Technol. 2008;42(11):4106-4112. DOI: 10.1021/es702560k.

[19] Wang Z, Huang W, Peng P, Fennell DE. Rapid transformation of 1,2,3,4-TCDD by Pd/Fe catalysts. Chemosphere. 2010;78(2):147-151. DOI: 10.1016/j.chemosphere.2009.09.066.

[20] Tsitonaki A, Petri B, Crimi M, Mosbæk H, Siegrist Rl, Bjerg Pl. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Crit Rev Environ Sci Technol. 2010;40(1):55-91. DOI: 10.1080/10643380802039303.

[21] Certified Reference Material BCT-529. https://ec.europa.eu/jrc/sites/default/files/rm/BCR-529_cert.pdf.

[22] Antunes P, Viana P, Vinhas T, Capelo JL, Rivera J, Gaspar EMSM. Optimization of pressurized liquid extraction (PLE) of dioxin-furans and dioxin-like PCBs from environmental samples. Talanta. 2008;75(4):916-925. DOI: 10.1016/j.talanta.2007.12.042.

[23] Hong B, Garabrant D, Hedgeman E, Demond A, Gillespie B, Chen Q, et al. Impact of WHO 2005 revised toxic equivalency factors for dioxins on the TEQs in serum, household dust and soil. Chemosphere. 2009;76(6):727-733. DOI: 10.1016/j.chemosphere.2009.05.034.

[24] ČSN EN 1948-2 (834745) - Technické normy ČSN - Stanovení hmotnostní koncentrace PCDD/PCDF - Část 2: Extrakce a čištění. (Technical standards CSN - Determination of mass concentration of PCDD / PCDF - Part 2: Extraction and purification). http://www.technicke-normy-csn.cz/inc/nahled_normy.php?norma=834745-csn-en-1948-2&kat=77746.

[25] ČSN EN 1948-3 (834745) - Technické normy ČSN - Stanovení hmotnostní koncentrace PCDD/PCDF - Část 3: Identifikace a kvantitativní stanovení. (Technical standards CSN - Determination of mass concentration of PCDD / PCDF - Part 3: Identification and quantification). http://www.technicke-normy-csn.cz/inc/nahled_normy.php?norma=834745-csn-en-1948-3&kat=77749.

[26] Theron J, Walker JA, Cloete TE. Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol. 2008;34(1):43-69. DOI: 10.1080/10408410701710442.

[27] Rickman KA, Mezyk SP. Kinetics and mechanisms of sulfate radical oxidation of β-lactam antibiotics in water. Chemosphere. 2010;81(3):359-365. DOI: 10.1016/j.chemosphere.2010.07.015.

[28] Wojnárovits L, Takács E. Rate coefficients of hydroxyl radical reactions with pesticide molecules and related compounds: A review. Radiat Phys Chem. 2014;96:120-134. DOI: 10.1016/j.radphyschem.2013.09.003.

[29] Kim JH, Lee JM, Lee HS, Kim JH, Lee JW, Chang YS, et al. Degradation of Polychlorinated Dibenzo-p-Dioxins/Furans Using Heat-Activated Persulfate. Proc Sixth Int Conf Remediation of Chlorinated and Recalcitrant Compounds. Monterey. CA: 2008. http://www.ebs.ieh.ohsu.edu/tratnyek/resources/docs/KimChangNurmiTratnyek08-PCDDs.pdf.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information


IMPACT FACTOR 2017: 0.7
5-year IMPACT FACTOR: 0.815

CiteScore 2017: 0.79

SCImago Journal Rank (SJR) 2017: 0.227
Source Normalized Impact per Paper (SNIP) 2017: 0.535

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 146 9
PDF Downloads 80 79 6