Simulation Model of Contamination Threat Assessment in Water Network Using the Epanet Software

Open access

Abstract

The aim of this study is to assess the risk of failure of group water network in case of raw water contamination. The analysis was based on qualitative simulation performed in hydraulic water network model developed in the EPANET software. It was focused on the quantitative description of the consequences of chemically contaminated water. The methodology of risk assessment relies in determining the consequences of the supply water containing contamination threatening the health and lives of water consumers. The research methodology is as follows: development of a hydraulic model of the water pipeline and it’s hydraulic verification, computer simulations of contamination propagation, calculating the dose delivered to the i-th section of the water supply system supplying water to Ni recipients and the mass of a substance that enters the body li. The simulation results indicate the spread of contamination that after 24 h covered most of the area supplied with water. The load delivered to the resident obtaining water from the i-th section of the water supply network, Li/Ni, was up to 18 g·d-1, at least 15 g·d-1 was received by 34.9% of the population, 10-15 g·d-1 by 12.5% of the residents, 5-10 g·d-1 by 10.7% of the residents, 0-5 g·d-1 by 41.7% of the residents and uncontaminated water was delivered to only 13.3% of the consumers. The dose taken by the statistical consumer (calculated as for adults) l is up to 0.8 g for Li/Ni = 18 g·d-1 and is proportional to Li/Ni.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Deng Y Jiang W Sadiq R. Expert Syst Appl. 2011;38:571-578. DOI: 10.1016/j.eswa.2010.07.004.

  • [2] Abokifa AA Yang YJ Lo CS Biswas P. Water Res. 2016;89:107-117. DOI: 10.1016/j.watres.2015.11.025.

  • [3] Hua P Vasyukova E. Uhl W. Water Res. 2015;75:109-112. DOI: 10.1016/j.watres.2015.01.037.

  • [4] Kolasa-Wiecek A. Ecol Chem Eng S. 2010;17:363-371. http://tchie.uni.opole.pl/freeECE/S_17_3/KolasaWiecek_17%28S3%29.pdf.

  • [5] Zimoch I Lobos E. Environ Prot Eng. 2010;36:105-115. http://epe.pwr.wroc.pl/2010/zimoch_4-2010.pdf.

  • [6] Liua J Chenb H Yaob L Weib Z Loub L Shanc Y et al. J Hazard Mater. 2016;317:27-35. DOI: 10.1016/j.jhazmat.2016.05.048.

  • [7] Valis D Zak L Pokora O. P I Mech Eng O-J Ris. 2015;229:36-45. DOI: 10.1177/ 1748006X14547789.

  • [8] Diadovski I Atanassova M Simeonov V. Ecol Chem Eng S. 2011;18:319-332. http://tchie.uni.opole.pl/freeECE/S_18_3/DiadovskiAtanassova_18%28S3%29.pdf.

  • [9] Vaabel J Koppel T Sarv L Annus I. Procedia Eng. 2014;89:679-684. DOI: 10.1016/j.proeng.2014.11.494.

  • [10] Palleti VR Narasimhan S Rengaswamy R. Comput Aided Chem Eng. 2014;33:1447-1452. DOI: 10.1016/B978-0-444-63455-9.50076-3.

  • [11] Eliades DG Lambrou TP Panayiotou CG Polycarpou MM. Procedia Eng. 2014;89:1089-1096. DOI: 10.1016/j.proeng.2014.11.229.

  • [12] Furnass WR Mounce SR Boxall JB. Environ Model Softw. 2013;40:78-87. DOI: 10.1016/j.envsoft.2012.07.012.

  • [13] Eliades DG Stavrou D Vrachimis SG Panayiotou CG Polycarpou MM. Procedia Eng. 2015;119:1429-1438. DOI: 10.1016/j.proeng.2015.08.1003.

  • [14] Oliker N Ohar Z Ostfeld A. Environ Model Softw. 2016;77:71-80. DOI: 10.1016/j.envsoft.2015.11.013.

  • [15] Sunela MI Puust R. Procedia Eng. 2015;119:744-752. DOI: 10.1016/j.proeng.2015.08.928.

  • [16] Soldi D Candelieri A Archetti F. Procedia Eng. 2015;119:1259-1268. DOI: 10.1016/j.proeng.2015.08.990.

  • [17] Schwartz R Lahav O Ostfeld A. Water Res. 2014;63:271-284. DOI: 10.1016/j.watres.2014.06.030.

  • [18] Shuang Q Zhang M Yuan Y. Reliab Eng Syst Safe. 2014;124:132-141. DOI: 10.1016/j.ress.2013.12.002.

  • [19] Gheisi A Naser G. Procedia Eng. 2014;89:326-332. DOI: 10.1016/j.proeng.2014.11.195.

  • [20] Rezaei H Ryan B Stoianov I. Procedia Eng. 2015;119:253-262. DOI: 10.1016/j.proeng.2015.08.883.

  • [21] Li XX Wang HB Hu XX Hu C Liao LF. Eng Fail Anal. 2016;60:166-175. DOI: 10.1016/j.engfailanal.2015.11.048.

  • [22] Pietrucha-Urbanik K. Eng Fail Anal 2015;57:137-142. DOI: 10.1016/j.engfailanal.2015.07.036.

  • [23] Craun GF Calderon RL. Waterborne disease outbreaks caused by distribution systems deficiencies. J Am Water Works Ass. 2001;93:64-75. http://www.awwa.org/publications/journal-awwa/abstract/articleid/14423/issueid/33533924.aspx?getfile=\\pers75apppcr\personify\serverfiles\dcdfiles\14423\waternet.0054682.pdf.

  • [24] Blokker M Smeets P Medema G. Procedia Eng. 2014;89:151-159. DOI: 10.1016/j.proeng.2014.11.171.

  • [25] Xin K Tao T Wang Y Liu S. Front Environment Sci Eng. 2012;6:839-848. DOI: 10.1007/s11783-012-0409-8.

  • [26] Aminravan F Sadiq R Hoorfar M Rodriguez MJ Najjaran H. Expert Syst Appl. 2015;42:3813-3831. DOI: 10.1016/j.eswa.2014.11.014.

  • [27] Ondrejka Harbulakova V Purcz P Estokova A Luptakova A Repka M. Chem Eng Trans. 2015;43:2221-2226. DOI: 10.3303/CET1543371.

  • [28] Rasekh A Brumbelow K. Environ Model Software. 2014;51:12-25. DOI: 10.1016/j.envsoft.2013.09.019.

  • [29] Rak JR. Environ Prot Eng. 2009;2:23-28. http://epe.pwr.wroc.pl/2009/Rak_2-2009b.pdf.

  • [30] Besner MC Prévost M Regli S. Water Res. 2011;45:961-979. DOI: 10.1016/j.watres.2010.10.035.

  • [31] Davis MJ Janke R Magnuson ML. Risk Anal. 2014;34:498-513. DOI: 10.1111/risa.12107.

  • [32] Liu S Che H Smith K Chang T. J Environ Manage. 2015;154:13-21. DOI: 10.1016/j.jenvman.2015.02.023.

  • [33] Tchórzewska-Cieślak B Pietrucha-Urbanik K Urbanik M. Eksploat Niezawodn. 2016;18:254-259. DOI: 10.17531/ein.2016.2.13.

  • [34] Nowacka A Wlodarczyk-Makula M Tchorzewska-Cieslak B Rak J. Desalin Water Treat. 2016;57:1297-1309. DOI: 10.1080/19443994.2015.1030108.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 131 2
PDF Downloads 123 82 0