Specifics of pesticides effects on the phytopathogenic bacteria

Open access

Abstract

The data concerning the effects of pesticides of different nature on the phytopathogenic bacteria was examined and summarized. Without extensive research on the mechanisms of interaction between pathogenic bacteria and pesticides in the literature review a similar message about microorganisms of soil and phyllosphere are included. The bacteria can be suppressed permanently by pesticides with a mechanism of action that universally affects biological processes in living systems. Long-term storage, ease of use and fast visible effect are the advantages of synthetic pesticides remedies. But chemical pollution, shifts in the balance of ecosystems, unpredictable effects of chemical pesticides on non-target objects are the drawbacks. Stimulation of resistance response in plants is unifying factor for all types of biopesticides. This is realized through localization of the pathogen during infection, blocking its further penetration, distribution and reproduction. The results of the study of effects of plant protection products on the phytopathogenic bacteria of main crops are described. Among all tested pesticides, thiocarbamate fungicides demonstrated significant inhibitory action on phytopathogens, but their effect may be neutralized by other constituents of multicomponent preparations. Triazole fungicides affect the causative agents of bacterioses of crops at a dose of more than 1% of the active substance in the nutrient medium. Insecticides and herbicides have little or no effect on phytopathogenic bacteria; however they can enhance morphological dissociations of some Pseudomonas strains, thereby increasing their ability to survive. The disadvantage of many biopesticides against phytopathogenic microorganisms is the difference between their efficacy in vitro and in vivo that is why the desired result is not achieved in field condition. In addition, biological pesticides often lose their activity causing the problem of constant search for new active antagonists. The fact that the sensitivity of phytopathogenic bacteria to pesticides is strain-dependent should be considered in practice, particularly, assessment of the antibacterial action of various preparations should not be limited to a single bacterial strain.

[1] Łozowicka B, Hrynko I, Kaczyński P. Occurrence of pesticide residues in fruit from Podlasie (Poland) in 2012. J Plant Protection Res. 2015;55(2):142-150. DOI: 10.1515/jppr-2015-0018

[2] Matyjaszczyk E. Active substances used in plant protection in Poland after the European Union accession. J Plant Protection Res. 2011;51(3):217-224. DOI: 10.2478/v10045-011-0037-5.

[4] Likun G, Zhihui B, Bo J, Qing H, Huili W, Guoqiang Z, Hongxun Z. Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere. J Environ Sci. 2010;22(1):134-141. DOI: 10.1016/S1001-0742(09)60084-X.

[5] Wachowska U, Stasiulewicz-Paluch AD, Głowacka K, Mikołajczyk W, Kucharska K. Response of epiphytes and endophytes isolated from winter wheat. Grain to biotechnological and fungicidal treatments. Pol J Environ Stud. 2013;22(1):267-273. http://www.pjoes.com/pdf/22.1/Pol.J.Environ.Stud.Vol.22.No.1.267-273.pdf.

[6] Bebber DP, Holmes T, Gurr SJ. The global spread of crop pests and pathogens. J Global Ecol Biogeog. 2014;23:1398-1407. DOI: 10.1111/geb.1221.

[7] Patyka W, Gnatiuk T, Zhytkevych N, Kalinichenko A, Frączek K. Occurence of the pathogenic bacteria Pantoea agglomerans in soybean cultivation. J Progress Plant Protection /Postępy w Ochronie Roślin. 2015;55(3):280-285. DOI: 10.14199/ppp-2015-049.

[8] Trindade RS, Rodrigues R, Teixeira A, Gonsalves LS. Critical disease components of common bacteria blight to effectively evaluate resistant genotypes of snap bean. J Plant Pathol. 2012;78(3):201-206. DOI: 10.1007/s10327-012-0374-x.

[9] Rukayadi Y, Suwanto A, Tjahjono B, Harling R. Survival and epiphytic ness of a mutant of Xanthomonas campestris pv. glycines. Appl Environ Microbiol. 2000;66(3):1183-1189. DOI: 10.1128/aem.66.3.1183-1189.2000.

[10] Stockwell VO, Duffy B. Use of antibiotics in plant agriculture. Antibiotic resistance in animal and public health. Rev Sci Tech Off Int Epiz. 2012;31(1):199-210. http://ir.library.oregonstate.edu/xmlui/handle/1957/39357.

[11] Fischer SE, Jofré EC, Cordero PV, Gutiérrez Mañero FJ, Mori GB. Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi. Antonie van Leeuwenhoek, Int J General Mol Microbiol. 2010;97(3):241-251. DOI: 10.1007/s10482-009-9405-9.

[12] Imfeld G, Vuilleumier S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur J Soil Biol. 2012;49:22-30. DOI: 10.1016/j.ejsobi.2011.11.010.

[13] Khudhur AM, Askar KA. Effect of some pesticides on growth, nitrogen fixation and nifgenes in Azotobacter chroococcum and Azotobacter vinelandii isolated from soil. J Toxicol Environ Health Sci. 2013;5(9):166-171. DOI: 10.5897/JTEHS12.029.

[14] Jastrzebska E. The effect of Chloropyriphos and Teflubenzuron on the enzymatic activities of soil. Pol J Environ Stress. 2011;20:903-910. http://www.pjoes.com/pdf/20.4/Pol.J.Environ.Stud.Vol.20.No.4.903-910.pdf.

[15] Jacobsen CS, Hjelmsø MH. Agricultural soils, pesticides and microbial diversity. J Current Opinion Biotechnol. 2014;27:15-20. DOI: 10.1016/j.copbio.2013.09.003.

[16] Lew S, Lew M, Szarek J, Mieszczyński T. Effect of pesticides on soil and aquatic environmental microorganisms - a short review. PSP Fresenius Environ Bull. 2009;18(8):1390-1395. https://www.researchgate.net/publication/236236009_Effect_of_pesticides_on_soil_and_aquatic_environmental_microorganisms_-_A_short_review.

[17] Boldt TS, Jacobsen CS. Different toxic effects of the sulfonylurea herbicides metsulfuron methyl, chlorsulfuron and thifensulfuron methyl on fluorescent pseudomonads isolated from an agricultural soil. Federation Eur Microbiol Soc Microbiol Lett. 1998;161:29-35. DOI: 10.1111/j.1574-6968.1998.tb12925.x.

[18] Mousumi G., Niladri P, Suprakash P, Kumar P, Murari PH, Debatosh M. Pesticides jiggling microbial transformation of phosphorus in soil. African J Microbiol Res. 2014;8(7):637-643. DOI: 10.5897/AJMR2013.6342.

[19] Kumar A, Nayak AK, Shukla AK, Panda BB, Raja R, Shahid M. et al. Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition. Bull Environ Contam Toxic. 2012;88:538-542. DOI: 10.1007/s00128-013-1182-5.

[20] Kang JW, Khan Z, Doty SL. Biodegradation of trichloroethylene by an endophyte of Hybride poplar. J Appl Environ Microbiol. 2012;78(9):3504-3507. DOI: 10.1128/AEM.06852-11.

[21] Doty SL. Enhancing phytoremediation through the use of transgenics and endophytes. J New Phytologist. 2008;179(2):318-333. DOI: 10.1111/j.1469-8137.2008.02446.x.

[22] Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D. Horizontal gene transfer to endogenous endophytic bacteria from Poplar improves phytoremediation of toluene. J Appl Environ Microbiol. 2005;71:8500-8505. DOI: 10.1128/AEM.71.12.8500-8505.2005.

[23] Lakshmi KB, Madhuri T, Indrani V, Suvarnalatha DP. Effect of triazophos-an organophosphate insecticide onmicrobial population in paddy soils. Int J Cur Res Rev. 2015;7(4):64-67. http://www.scopemed.org/?mno=180863.

[24] Cycon M, Markowicz A, Borymski S, Wójcik M, Piotrowska-Seget Z. Imidacloprid induces changes in the structure, genetic diversity and catabolic activity of soil microbial communities. J Environ Manage. 2013;131:55-65. DOI: 10.1016/j.jenvman.2013.09.041.

[25] Maya K, Singh RS, Upadhyay SN, Dubey SK. Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite. J TCP Process Biochem. 2011;46:2130-2136. DOI: 10.1016/j.procbio.2011.08.012.

[26] Tago K, Okubo T, Itoh H, Kikuchi Y, Hori T, Sato Y et al. Insecticide-degrading Burkholderia symbionts of the Stinkbug naturally occupy various environments of sugarcane fields in a southeast island of Japan. J Microbes Environ. 2015;30(1):29-36. DOI: 10.1264/jsme2.ME14124.

[27] Baoguo Z, Bai Z, Hoefel D, Tang L, Wang X, Li B. et al. The impacts of cypermethrin pesticide application on the non-target microbial community of the pepper plant phyllosphere. J Sci Total Environ. 2009;407(6,1):1915-1922. DOI: 10.1016/j.scitotenv.2008.11.049.

[28] Cycon M, Zmijowska A, Wójcik M, Piotrowska-Seget Z. Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. J Environ Manage. 2013;117:7-16. DOI: 10.1016/j.jenvman.2012.12.031.

[29] Navarini L, Balardin RS. Foliar diseases and control by fungicides on yield and quality of wheat grains. J Summa Phytopathologica. 2012;38(4):294-299. DOI: 10.1590/S0100-54052012000400004.

[30] Feng CT, Su HJ, Chen CT, Ho WC, Tsou YR, Chern LL. Inhibitory effects of Chinese medicinal herbs on plant-pathogenic bacteria and identification of the active components from gallnuts of Chinese sumac. J Plant Dis. 2012;96:1193-1197. DOI: 10.1094/PDIS-08-11-0673-RE.

[31] Youcer-Ali M, Kacem-Chaouche N, Dehimat L, Bataiche I, Kara Ali M, Cawoy H. et al. Antifungal activity and bioactive compounds produced by Bacillus mojavensis and Bacillus subtilis. Afr J Microbiol Res. 2014;8(6):476-484. DOI: 10.5897/AJMR2013.6327.

[32] Beric T, Kojic M, Stankovic S, Topisirovic L, Degrassi G, Myers M. et al. Antimicrobial activity of Bacillus sp. natural isolates and their potentialuse in the biocontrol of phytopathogenic bacteria. J Food Technol Biotechnol. 2012;50(1):25-31. DOI: 10.1007/978-1-4614-8830-9_5.

[33] Rodríguez IF, Sayago JE, Torres S, Zampini IC, Isla MI, Ordóñez RM. Control of citrus pathogens by protein extracts from Solanum tuberosum tubers. Eur J Plant Pathol. 2015;141(3):585-595. DOI: 10.1007/s10658-014-0566-7.

[34] Janek T, Lukaszewicz M, Krasowska A. Antiadhesive and antimicrobial activities of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. J BMC Microbiol. 2012;13(1):108-115. DOI: 10.1186/1471-2180-12-24.

[35] Kalyanasundaram D, Kavitha S. Effect of butachlor on the microbial population of direct sown rice. J World Acad Sci. Eng Technol. 2012;69:853-855. scholar.waset.org/1999.0/14368.

[36] Byrne ST, Gu P, Zhou J, Denkin SM, Chong C, Sullivan D. Pyrrolidine dithiocarbamate and diethyldithiocarbamate are active against growing and nongrowing persister Mycobacterium tuberculosis. J Antimicrobial Agents Chemotherapy. 2007;51:4495-4497. DOI: 10.1128/AAC.00753-07.

[37] Whitehorn PR, Connor SO, Wackers FL, Goulson D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. J Sci. 2012;336:351-352. DOI: 10.1126/science.1215025.

[38] Litvishko VS. Reducing toxicity chemicals plant protection products. Eur Sci Rev. Vienna: “East West”. 2014;5-6:112-114. https://ew-a.org/upload/iblock/3d6/ESR_5-6_2014.pdf.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information


IMPACT FACTOR 2017: 0.7
5-year IMPACT FACTOR: 0.815

CiteScore 2017: 0.79

SCImago Journal Rank (SJR) 2017: 0.227
Source Normalized Impact per Paper (SNIP) 2017: 0.535

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 336 328 18
PDF Downloads 153 152 11