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HYPERSPECTRAL REFLECTANCE MODELS  
FOR SOIL SALT CONTENT BY FILTERING METHODS  

AND WAVEBAND SELECTION  

WYKORZYSTANIE HIPERSPEKTRALNYCH MODELI  
WSPÓŁCZYNNIKA ODBICIA DO OCENY ZASOLENIA GLEBY  

METODAMI FILTROWANIA I SELEKCJI PASMA  

Abstract:  For improving the understanding of interactions between hyperspectral reflectance and soil salinity, in 
situ hyperspectral inversion of soil salt content at a depth of 0-10 cm was conducted in Hetao Irrigation District, 
Inner Mongolia, China. Six filtering methods were used to preprocess soil reflectance data, and waveband 
selection combined by VIP (variable importance in projection) and b-coefficients (regression coefficients of 
model) was also applied to simplify model. Then statistical methods of partial least square regression (PLS) and 
orthogonal projection to latent structures (OPLS) were processed to establish the inversion models. Our findings 
indicate that the selected sensitive wavebands for the 6 filtering methods are different, among which the 
multiplicative signal correction (MSC) and standard normal variate methods (SNV) have some similar sensitive 
wavebands with unfiltered data. Derivatives (DF1 and DF2) could characterize sensitive wavebands along the 
scale of VNIR (350-1100 nm), especially the second derivative (DF2). The sensitive wavebands for  
continuum-removed reflectance method (CR) have protruded many narrow absorption features. For orthogonal 
signal correction method (OSC), the selected wavebands are centralized in the range of 565-1013 nm. The 
calibration and evaluation processes have demonstrated the second order derivate filtering method (DF2) 
combined with waveband selection is superior to other processes, for it has high R2 (larger than 0.7) both in PLS 
and OPLS models for calibration and evaluation, by choosing only 156 wavebands from the whole  
700 wavebands. Meanwhile, OPLS method was considered to be more suitable for the analyzing than PLS in most 
of our situations. 
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Introduction 

Land salinization is a global environmental problem which has received considerable 
attention in recent years because it is increasing progressively worldwide, particularly in 
arid and semi-arid regions. Therefore, real-time monitoring of salinization on the basis of 
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remote sensing is important for detecting both the temporal and spatial variation of topsoil 
(0-10 cm) salt content [1, 2].  

Superior to traditional multispectral data, hyperspectral data contains large amounts of 
high-resolution optical signatures to estimate salt content in saline soils and monitor 
regional salt distribution [3, 4]. All the electronic processes and photon vibrational 
processes of the overtones and combinations contributed by the fundamental modes of the 
minerals, water and carbonate are significant for the analyzing of saline-soil hyperspectral 
data. The spectral signature of saline soils can be a result of the salt itself, which is 
generated by some salt minerals during weathering process in nature, or added during 
agricultural management for soil reclamation [5]. Also, some other chromophores are 
indirectly related to the presence of the salt (eg organic matter, particle size distribution).  

Salinity can be quantitatively identified in the scale from 350-1050 with hyperspectral 
data. For example, Csillag et al [6] find 550-770 nm and 900-1030 nm are efficient 
indicators for salt; Pang et al [7] find 400-900 nm can calibrate quantitative SSC (Soil Salt 
Content) and EC (Electrical Conductivity) models with R2 up to 0.89 and 0.92,  
respectively. The mechanisms of spectral response with salt in the range of 350-1050 nm 
are mainly occupied by several reasons: the electronic processes, which are contributed by 
crystal-field effects (which are possibly deduced by Fe2+ and Fe3+); the charge transfer by 
the migration of electrons; the color centers along with some color materials (halide); or the 
conduction band transition in some periodic lattices [8]. Meanwhile, some vibrational 
processes appear in the wavebands near 1000 nm, owing to the water molecules or 
hydroxyl groups essential to salty mineral structure, such as gypsum or montmorillonite [8]. 
In the meantime, some salt (halite) are spectrally featureless itself but can still be identified 
because the high affinity of salt to water molecules [9]. Besides, hyperspectral data also 
contribute a positive effect on salt signature identification, because subtle spectral changes 
appear in soil salt, which are contributed by the salty effect on the hydrogen bond in water 
molecules [10].  

Hyperspectral data can be difficult to interpret owing to noise and collinearity among 
spectral bands. Preprocessing methods, such as multiplicative signal correction (MSC), 
standard normal variate correction or transformation (SNV), first and second order 
derivative filtering (DF1 and DF2), continuum-removed reflectance (CR), and orthogonal 
signal correction filtering (OSC), can efficiently minimize signal interference (ie, noise) 
and simplify the interpretation processes [11]. More specifically, MSC and the SNV can be 
used to remove solid particle scattering, DF1 and DF2 can reduce the baseline effect, CR is 
useful for comparing with a common baseline, and OSC is suitable for removing invalid 
information for all wavebands. Nevertheless, it remains unclear which of them is most 
efficient for hyperspectral reflectance analyses and salt data retrieval.  

Novel hyperspectral analysis methods are being examined for extracting salinization 
information. The partial least square regression (PLS) has been progressively adopted in the 
fields of remote sensing as it can deal with strongly collinear, noisy data with numerous 
independent (X) variables [12]. Furthermore, combined with OSC, a new method, 
orthogonal projection to latent structures (OPLS), was developed [13, 14]. This method can 
preprocess unfiltered spectra by removing systematic orthogonal variation via OSC and 
integrate it with a regular PLS algorithm to produce spectra-chemical models [15]. 
Meanwhile, auxiliary products, variable importance in projection (VIP) and PLS regression 
coefficient (b-coefficients), are efficient for selecting spectral wavebands and calibrating  
a parsimonious model without sacrificing accuracy. The value of VIP can be regarded as an 
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indicator for the evaluation of the importance of variables, as a variable with higher VIP 
(normally higher than 1) will be more important or worthy of consideration than variables 
with lower VIP [16]. Also, wavebands with larger b-coefficients (normally larger than their 
standard deviation) are more important for incorporating in a model [17]. 

Our spectra-chemical research processes contain several steps: filtering out 
hyperspectral noise, spectra-chemical model establishment, waveband selection, 
simplifying the model, and developing a final model. To achieve this research we have the 
following objectives: (i) exploring the effects of different data pretreatment methods on the 
accuracy of hyperspectral inversion, (ii) analyzing the applicability and stability of PLS and 
OPLS methods in hyperspectral data modeling of salt affected soils, and (iii) developing  
a more accurate waveband selection method which can be used for soil salinity prediction 
by hyperspectral data. 

Materials and methods 

Soil spectral data acquisition and analysis 

FieldSpec HandHeld (Analytical Spectral Devices, Inc. USA) was used for soil 

spectral acquisition. The spectral wavelength ranged from 325 nm to 1075 nm and the 

sampling interval was 1.5 m. The device could reduce the interval to 1 nm by cubic spline 

interpolation. The resolution ratio (FWHM) was 3.5 nm and the internal standard viewing 

angle was 25°. For this study, we chose the wavelength range from 351 to 1050 nm to 

alleviate the effect of noise on the primary wave band. Soil spectral acquisition was 

conducted in Hetao Irrigation District, Inner Mongolia, China. The sampling sites were 

randomly distributed within an area of about 26.7 km
2
 (107°59'33" E and 41°1'21" N). We 

took 89 soil spectral samples in late April (sample set 1) and 101 soil spectral samples in 

late July (sample set 2).  
 

 
Fig. 1. Hyperspectral curves of unfiltered spectra (the solid lines are soil sample set 1 and the dash lines 

are soil sample set 2) 
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A white Spectralon panel by barium sulphate (BaSO4) was used to transfer the relative 
reflectance (which is the quantity actually measured by instrument) to the absolute 
reflectance in post processing by multiplying the reflectance factor spectrum by the actual 
calibrated reflectance spectrum of the reference standard. Each spectral curve was achieved 
by taking the arithmetic mean of five measurements, and all samples were taken between  
10 am to 2 pm (Fig. 1). Furthermore, the pistol grip was fixed in spider and keep the pistol 
grip facing towards the sun. The bubble on the pistol grip is used as an indicator to keep it 
level, and the optical fiber is kept 30 cm above the soil surface during the whole 
measurement. 

Sample sets 1 and 2 (0-10 cm depth) underwent laboratory analysis to determine their 
water and salt contents (Table 1). Soil Water Content (SWC [g/g]) was obtained by oven 
drying at 105°C for 24 h. Soil Electrical Conductivity (EC1:5 [dS/m]) was measured in  
a 1:5 soil: water suspension after 1 hour of end-over-end shaking at 25°C and was 
converted to Soil Salt Content (SSC [%]) according to an convincing empirical formula 
calibrated for local measured data (not presented here) by regression analysis  
(SSC = 0.4EC1:5-0.04). According to Pang et al [7], the results of invert EC are almost 
identical to SSC. As a consequence, retrieve SSC is reasonable. 

 
Table 1 

Statistics for soil samples 

Statistical index 
Salt index/S [%] Water index/θ [g/g] 

S1 lnS1 S2 lnS2 θ1 θ2 
Maximum 16.2 2.8 16.0 2.8 0.675 0.74 
Minimum 0.2 -1.7 0.1 -2.5 0.016 0.01 

Mean 2.2 0.2 3.1 0.4 0.114 0.11 
Standard Deviation 3.3 1.0 4.0 1.3 0.084 0.12 

Kurtosis 6.2 0.2 1.8 -0.6 21.286 15.61 
Skewness 2.6 0.7 1.7 -0.0 3.375 3.43 

Significance 0.0 0.5 0.0 0.7 0.126 0.00 
Decision reject accept reject accept reject reject 

The confidence interval was 95% and p = 0.05. S and θ indicate salt index and water index respectively, subscript 
1 and 2 indicate soil sample 1 and soil sample 2, respectively. One sample in sample 2 lost soil moisture content 

 

Pretreatment of data 

We adopted the Kolmogorov-Smirnov test [18] to demonstrate that the results of 
natural logarithm processing of the soil salt content of sample sets 1 and 2 satisfied the 
normal distribution. Meanwhile, hyperspectral data was standardized by centering and 
scaling to unit variance to reduce the effects of dimensionality, in order to keep variables in 
the same scales. To minimize the impact of soil surface brightness, we applied 6 filtering 
methods: MSC, SNV, DF1, DF2, CR, and OSC to pretreat the data (Fig. 2). 

MSC is a type of preprocessing method that has been used to separate absorption 
features from scattering features. Accordingly, it can calibrate the baseline effect, reduce 
the influence of scattering effects on the obtained spectra and decrease spectral 
discrepancies associated with sample inhomogeneity [19]. The SNV method is a row-
oriented transformation that centers and scales individual spectra and employs an algorithm 
similar to MSC [20]. However, MSC calculates an ideal spectrum from the unfiltered data 
and uses this spectrum to modify the data, whereas the SNV method uses a normalizing 
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method to remove scattering effects. The methods of DF1 and DF2 can be used to find the 
inflection points of the spectral curve, detect subtle differences between changes and 
enhance relationships between spectral data and target parameters [21]. Furthermore, DF2 
can enhance minor convexities and concavities in the reflectance curve to improve the 
elimination of baseline effects. The CR method aims to quantify the absorption of a given 
material at a specific wavelength, based on the assumption that other materials cannot 
affect the absorption features around a specific site. This method is designed to highlight 
departures and recognize absorption features by removing the non-absorbing continuum 
[22]. Finally, the OSC is a filtration method that can extract and remove orthogonal 
variation from independent variables of reflectance, allowing more accurate interpretation 
of the dependent data of SSC [23]. 

 

 
Fig. 2. Hyperspectral reflectance curves of different filter methods: a) multiplicative signal correction 

(MSC), b) standard normal variate (SNV), c) first-order derivate filter (DF1), d) second-order 
derivate filter (DF2), e) continuum - removed (CR), f) orthogonal signal correction (OSC) 

Model calibration and evaluation 

Both PLS and OPLS can be used to calibrate models. The OPLS is a combined 
algorithm incorporating both PLS and OSC, which first conduct preprocessing of the 
unfiltered spectra by removing systematic orthogonal variation just like OSC and then 
apply the PLS algorithm to the models. 
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In the present study, a model was calibrated using the SIMCA software (version 13.0). 
b-coefficients (coefficients of each waveband in PLS and OPLS models) were figured out 
simultaneously. Soil sample set 2 was used for model calibration while set 1 for evaluation. 
For both PLS or OPLS methods, it is important to select the appropriate number of spectral 
bands for the model according to Q2, which is an effective index of determining the 
appropriate number of spectral bands [24]. The Q2 represents the fraction of the total 
variation for dependent variables that can be predicted by a given component, while the Q2 
(cum) denotes the fraction that can be predicted by all components. Coefficients of 
determination, denoted R2, measures how well the regression line approximates the real 
data points, should be as close to 1 as possible for the best model. RMSEE (Root Mean 
Square Error of Estimation) and RMSEP (Root Mean Square Error of Prediction) were used 
to indicate the fitness and predictive power of the models: 

  
 (1) 

  
 (2) 

where Yobs1–Ypred1 (Yobs2–Ypred2) and N (M) refer to the fitted residuals for the measured and 
simulated observations and the number of samples, respectively, in the calibration 
(evaluation) set. The root mean square error from cross-validation (RMSECV) applies to the 
calibration set (ie like RMSEE) but is an indicator of predictive power (ie like RMSEP). We 
calculated it by summarizing the cross-validation residuals of the observations in the 
calibration set. 

To determine the significant wavebands of the established models, we used  
a parameter known as the VIP [25]. For an observed dependent variable Y, the VIP was 
calculated as follows: 
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where VIPk(a) is the importance of the kth predictor variable based on a model with a 
factors, ωak is the corresponding loading weight of the kth variable in the ath PLS or OPLS 
factor, SSYa is the sum of squares of dependent variable explained by a PLS or OPLS model 
with the α factors, SSYt is the total sum of squares of dependent variables, and k is the total 
number of predictor variables. 

Results 

The soil samples collected in the study area had broad range of salinity with minor 
moisture. Specifically, the mean soil salt content are 2.2 and 3.1% for dataset sample 1  
and sample 2 respectively, correspondent with the standard deviation to be 3.3 and 4.0  
(Table 1). These soil samples was suitable for calibrating a representative model to retrieve 
soil salinity owing to the subtle disturbance by moisture, as well as broad range of 
measured salt content.  
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Filtering process 

Hyperspectral data were treated with different filtering methods (Fig. 2) and the mean 
filtered reflectance curves are illustrated in Figure 3. It was clear that the trends of MSC, 
SNV, and the unfiltered spectra were similar. The DF1 curves exhibit considerable 
fluctuation over the range of 351-600 nm, compared to other wavebands. Conversely, the 
curves obtained using DF2 exhibit fluctuations throughout the entire spectrum, particularly 
pronounced around 600 and 780 nm and above 900 nm. The CR produced a spectral curve 
that could be divided approximately into 3 sections: the absorption characteristics were 
more pronounced in the first (351-600 nm) and third (820-1050 nm) sections than in the 
second section (600-820 nm). Meanwhile, there was a distinct peak at 600 nm and heavy 
fluctuations after 900 nm, and all 7 filtered curves had a fluctuation at 600 nm and large 
variations from 400 to 600 nm. 

 

 
Fig. 3. Mean values of hyperspectral reflectance for unfiltered and filtered reflectance (manually 

multiply 2, 1/4, 300, 2000 and 300 for multiplicative signal correction (MSC), standard normal 
variate (SNV), first-order derivate filter (DF1), second-order derivate filter (DF2) and orthogonal 
signal correction (OSC), respectively, in order to compare patterns in the same graph) 

Models established by PLS and OPLS 

Both unfiltered and the 6 filtered spectra were used to calibrate the models according 
to the PLS method. Taking the Unfiltered-PLS model as an example: when the number of 
components reached 6, each component included was able to enhance the model’s ability, 
as Q2 (cum) increased from 0.0735 (not presented) to a maximum of 0.456. The numbers of 
components and other statistical indicators for the application of different filtering methods 
with the PLS model are presented in Table 2. 
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Table 2 
Statistical results for partial least squares regression (PLS) models of unfiltered and filtered data, respectively 

(multiplicative signal correction (MSC), standard normal variate (SNV), first-order derivate filter (DF1),  
second-order derivate filter (DF2), continuum - removed (CR), and orthogonal signal correction (OSC)  

filter methods respectively) 

Model 
Calibration Validation 

NPC Q2(cum) R2 RMSEE RMSECV R2 RMSEP 
Unfiltered-PLS1 6 0.456 0.722 0.718 1.034 0.665 0.604 

MSC-PLS1 6 0.552 0.746 0.686 0.883 0.655 0.615 
SNV-PLS1 6 0.548 0.754 0.674 0.885 0.631 0.641 
DF1-PLS1 5 0.536 0.759 0.664 0.903 0.416 0.836 
DF2-PLS1 3 0.497 0.753 0.666 0.916 0.673 0.597 
CR-PLS1 6 0.533 0.686 0.762 0.926 0.492 0.787 

OSC-PLS1 1 0.787 0.793 0.604 0.605 0.719 0.564 
Unfiltered-PLS2 6 0.547 0.724 0.595 0.781 0.675 0.565 

MSC-PLS2 6 0.534 0.747 0.57 0.773 0.648 0.649 
SNV-PLS2 6 0.538 0.747 0.569 0.761 0.656 0.635 
DF1-PLS2 5 0.417 0.749 0.565 0.841 0.573 0.78 
DF2-PLS2 3 0.55 0.799 0.5 0.784 0.741 0.529 
CR-PLS2 6 0.524 0.755 0.56 0.764 0.684 0.593 

OSC-PLS2 1 0.785 0.789 0.507 0.506 0.775 0.441 

NPC indicates the components number; superscript 1 means original model and superscript 2 means new model 
after wavelength selection. Q2(cum) means the fraction of the total variation of dependent variable (Y) that can be 
predicted by all components. R2 means determination coefficient. RMSEE and RMSEP means root mean square 
error of estimation and prediction respectively. RMSECV means root mean square error from cross validation 

 
Table 3 

Statistical results for orthogonal projection to latent structures (OPLS) models of unfiltered and filtered data, 
respectively (multiplicative signal correction (MSC), standard normal variate (SNV), first-order derivate filter 

(DF1), second-order derivate filter (DF2) and continuum - removed (CR) respectively) 

Model 
Calibration Validation 

NPC Q2(cum) R2 RMSEE RMSECV R2 RMSEP 
Unfiltered-OPLS1 1+5 0.549 0.722 0.718 0.882 0.665 0.604 

MSC-OPLS1 1+6 0.589 0.785 0.635 0.841 0.679 0.593 
SNV-OPLS1 1+6 0.598 0.792 0.624 0.832 0.658 0.616 
DF1-OPLS1 1+5 0.59 0.811 0.592 0.841 0.435 0.831 
DF2-OPLS1 1+3 0.585 0.83 0.555 0.846 0.593 0.68 
CR-OPLS1 1+5 0.53 0.686 0.762 0.9 0.492 0.787 

Unfiltered-OPLS2 1+5 0.55 0.724 0.595 0.733 0.675 0.565 
MSC-OPLS2 1+6 0.552 0.776 0.538 0.732 0.667 0.649 
SNV-OPLS2 1+6 0.551 0.775 0.54 0.732 0.669 0.647 
DF1-OPLS2 1+5 0.523 0.789 0.512 0.755 0.609 0.768 
DF2-OPLS2 1+3 0.591 0.828 0.465 0.699 0.716 0.619 
CR-OPLS2 1+5 0.558 0.755 0.56 0.726 0.684 0.593 

NPC indicates the components number, in which the number before “+” (always 1) represents for predictive 
component and the number after “+” represents for orthogonal components; superscript 1 means original model 

and superscript 2 means new model after wavelength selection. Q2(cum) means the fraction of the total variation 
of dependent variable (Y) that can be predicted by all components. R2 means determination coefficient. RMSEE 
and RMSEP means root mean square error of estimation and prediction respectively. RMSECV means root mean 
square error from cross validation 
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Fig. 4. Stack graphs of b-coefficient values of: a) partial least squares regression (PLS) and  

b) orthogonal projection to latent structures (OPLS) models for the hyperspectral data 

The results of component analysis for the OPLS models were presented in Table 3. 
The OPLS method was able to conduct orthogonal projection filtering contained in 
orthogonal component, which is similar to OSC; therefore, we did not consider OSC in this 
part. Statistical analysis of our OPLS models demonstrated that the SNV-OPLS model 
produced the largest Q2 (cum) and smallest RMSECV (Table 3). The coefficients of each 
waveband in the PLS and OPLS models (b-coefficients) are illustrated in Figure 4. It was 
clear that these coefficients are relatively similar for both the PLS and OPLS models. 

Wavebands selection and new PLS and OPLS establishment 

We calculated the VIP value (Fig. 5) using Eq. (3) and found similar VIP values for the 
OSC-PLS and Unfiltered-OPLS models. Furthermore, the VIP values obtained for  
MSC-PLS (or MSC-OPLS) was similar to SNV-PLS (or SNV-OPLS) model. Apart from 
that, no other obvious similarities are apparent between them.  

VIP values (larger than 1) are commonly used with b-coefficients (larger than its 
standard deviation) together to identify the important variables. This selection theory was 
applied to all the data to select all the important wavebands (Fig. 6) as input variables in the 
new PLS or OPLS models. As a consequence, 94 wavebands for unfiltered data,  
91 wavebands for MSC data, 88 wavebands for SNV data, 103 wavebands for DF1 data, 
156 wavebands for DF2 wavebands, 438 wavebands for OSC data and 102 wavebands for 
CR data were retained, respectively (Fig. 6). 

These were then utilized as variables to build new PLS (n-PLS) and new OPLS  
(n-OPLS) models (Tables 2 and 3). The calibrated new models showed better performance 
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than before (discussed later), which illustrated that the process of waveband selection was 
beneficial for calibrating more concise models without sacrificing accuracy.  

 

 
Fig. 5. Variable Importance in Projection (VIP) values of: a) partial least squares regression (PLS)  

and b) orthogonal projection to latent structures (OPLS) models for the hyperspectral data 

 
Fig. 6. Picture of selected wavebands for unfiltered and filtered reflectance, 94, 91, 88, 103, 156, 438 and 

102 wavebands are selected out for Unfiltered, multiplicative signal correction (MSC), standard 
normal variate (SNV), first-order derivate filter (DF1), second-order derivate filter (DF2) and 
orthogonal signal correction (OSC) and continuum - removed (CR) reflectance, respectively 

Discussion 

Water in the soil pore space and the soil particle water film have a critical influence on 
reflectance spectra in the VNIR and SWIR wavelengths and are also influenced by the 
salinity-water content. According to research by Whiting, the fundamental stretching and 
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bending vibrations of water and hydroxyl bonds of soil in the region of 350 to 2500 nm 
mainly occurred in the SWIR such as 1400, 1900, and 2800 nm, except for a very weak 
absorption strength at VNIR (986 nm) [26]. The soil moisture is very low in samples, thus 
affect little on hyperspectral reflectance. It is interesting to notice that the sensitive 
wavebands selected in our process, especially after 950 nm, are meanwhile the relatively 
high-noise wavebands. This means, although the noise in the reflectance after 950 nm 
caused by the instrument is large, they are more sensitive and should be retained. This 
pattern is also detected by Csillag et al [6] who considered 900 to 1030 nm as indicators of 
soil salinity. 

VIP combined with b-coefficients is a useful method of selecting important bands. For 
example, Elmasry et al [27] used VIP to select effective wavelengths from high spectral 
dimensionality data. In our study, we selected the wavebands with large VIP (greater than 
1) and b-coefficients (larger than standard deviation) as valuable wavebands.  

After waveband selection, different important wavebands were highlighted for 
different filtered data (Fig. 6). The selected bands for MSC (91 bands) were distributed in 
the range of 450-464 nm, 768-775 nm, and sparsely located after 884 nm. SNV had some 
similar selected bands (88 bands) with unfiltered data in the range of 773-774 nm and after  
946 nm of, and some special bands in the range before 562 nm. Ninety-four bands were 
selected in unfiltered data, in which the wavebands of 351-382 nm and 536-562 nm were 
also important. The above wavebands mentioned for each method could be regarded as the 
selected sensitive wavebands (Fig. 6). When derivative data were selected, the former 
fashion of sensitive wavebands were changed to scattered distributed. Meanwhile, the DF2 
data tended to be more decentralize than DF1 data (103 bands) and 156 bands are selected 
for DF2 data. It might be contributed by fact that DF2 derivative could characterize subtle, 
consistent variations caused by curvatures along the whole scale (Fig. 6), as a result, DF2 
should be relative insensitive to variation caused by adverse effects such as sun angle and 
cloud cover, and thus contribute to a more precise model (Tables 2 and 3). Of all six 
selection processes, OSC selected the most number of the unfiltered wavebands of the  
700 wavebands, reaching 438 wavebands. Moreover, they are centralized from 565 nm to 
1013 nm [28]. CR reflectance spectra characterizes up to 102 bands, which indicated the 
absorption features well. In our study, the selected wavebands are located in the range of 
354-363 nm, 371-382 nm, 591-617 nm, 630-639 nm, 739-746 nm, 777-778 nm,  
936-1049 nm, which indicate the sensitive wavebands and absorption features located in the 
range of VNIR. This is similar to what Csillag et al [6] identified in a study in Hungary, 
where he characterized key spectral ranges in the visible (550-770 nm) and near infrared 
(900-1030 nm). All the selections for the seven hyperspectral data sets (Fig. 6) show the 
wavebands near 1000 nm are always retained for model calibration, possibly because the 
heavy vibrational, or sharp band transition process [8]. Meanwhile, the filtering methods 
significantly impacted the effect of sensitive bands, because the signature implied within  
a specific band can only be extracted out by some specific filtering algorithm. The 
complicated electronic processes, which is mainly constituted by crystal-field effects, 
charge-transfer, color centers and conduction band transitions, along with vibrational 
processes contributed by water, hydroxyl, carbonate or phosphate, are the reasons that 
produce differences among the waveband selection [8].  

Our study shows that the predictive ability of PLS is similar with OPLS, evidenced by 
the similarities in b-coefficients (Fig. 4), extracted components and statistics (Tables 2 and 
3). However, there were some disagreements about the advantages and disadvantages of 
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their applicability. Lin et al [29] demonstrated the OPLS methods are simpler, easier to 
interpret, and more accurate than the PLS method, while Tapp and Kemsley [30] opposed 
this. In our study, models established by OPLS were marginally more accurate than the 
PLS models when MSC, SNV, DF1 or DF2 pre-processing were applied. Of the indexes 
obtained, Q2 (cum) were almost always higher for the OPLS method than for the PLS 
method (except for CR). This indicated that the OPLS method had a larger effect on 
detecting cross-validated components and a greater ability to interpret the models. 
Furthermore, OPLS extracted only one predictive component, which was an index 
reflecting salt content, that enhanced the model interpretation (Table 3). Model calibration 
showed most of the filtered reflectance data were better than unfiltered in the inversion 
process, showing the benefits of filtering. 

After the wavebands selection, the new PLS or OPLS models had better results for 
most of the models. For PLS models, although only four of seven new calibration 
processes, which were Unfiltered, MSC, DF2 and CR, were better than old models, six new 
evaluation processes beyond MSC exhibited better performance than olds. The 
enhancement in evaluation for new models encourages us more. For example, the PLS 
models calibrated by selected DF2 data have higher R2 values than unselected DF2 model 
(Table 2 - 0.799 versus 0.753), and the evaluation pattern is more obvious (0.741 versus 
0.673). Besides, the validated PLS model by CR data improved the accuracy greatest when 
the selected wavebands were used (0.492 versus 0.684) [31]. In OPLS models, this 
phenomenon in evaluation processes is more clearly, which could be obviously observed in 
DF1, DF2 and CR data, with R2 were 0.609, 0.716, and 0.684 for selected ones versus 
0.435, 0.593, and 0.492 for previous ones respectively. As a consequence, the new models 
with less bands are potential for calibrating more representative and applicable models with 
better evaluation results. 

Conclusions 

Taking all into consideration, four models display great performance with R2 values 
higher than 0.7 both in calibration and evaluation. The four models are the new PLS models 
of DF2 and OSC, the new OPLS model of DF2 and the old PLS model of OSC (without 
waveband selection). Among all the models, DF2 just selected one third of the wavebands 
compared to the OSC model. As a results, the DF2 filtering method and waveband selection 
are recommended in quantitative retrieval of salt content in arid lands. Overall, our study 
have successfully retrieved the salt content in saline soils by combining various filtering 
techniques and wavebands selection methods. This will be useful for the detection of soil 
salt content using the hyperspectral apparatus in the field and develop models for airborne 
and future satellite hyperspectral sensors such as AVIRIS and HYSPIRI. 
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