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Abstract: For improving the understanding of interactionsaleen hyperspectral reflectance and soil salimity,
situ hyperspectral inversion of soil salt contena aepth of 0-10 cm was conducted in Hetao IriogaDistrict,
Inner Mongolia, China. Six filtering methods wereed to preprocess soil reflectance data, and wadeba
selection combined by VIP (variable importance nojgction) and b-coefficients (regression coefiitge of
model) was also applied to simplify model. Thertisti@al methods of partial least square regres§RirS) and
orthogonal projection to latent structures (OPL®yavprocessed to establish the inversion modelsfigdings
indicate that the selected sensitive wavebandsttfer 6 filtering methods are different, among whitie
multiplicative signal correction (MSC) and standa@mal variate methods (SNV) have some similasiten
wavebands with unfiltered data. Derivatives (DFH @¥2) could characterize sensitive wavebands atbeg
scale of VNIR (350-1100 nm), especially the secatetivative (DF2). The sensitive wavebands for
continuum-removed reflectance method (CR) haverydetd many narrow absorption features. For orthagon
signal correction method (OSC), the selected wawébaare centralized in the range of 565-1013 nne Th
calibration and evaluation processes have demdedtrtne second order derivate filtering method (DF2
combined with waveband selection is superior t@ofitocesses, for it has hig (larger than 0.7) both in PLS
and OPLS models for calibration and evaluation, dhyosing only 156 wavebands from the whole
700 wavebands. Meanwhile, OPLS method was consideree more suitable for the analyzing than PL8ast

of our situations.
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Introduction

Land salinization is a global environmental probletmich has received considerable
attention in recent years because it is increapnogressively worldwide, particularly in
arid and semi-arid regions. Therefore, real-timenitaving of salinization on the basis of
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remote sensing is important for detecting bothtémeporal and spatial variation of topsoil
(0-10 cm) salt content [1, 2].

Superior to traditional multispectral data, hypergpal data contains large amounts of
high-resolution optical signatures to estimate salhtent in saline soils and monitor
regional salt distribution [3, 4]. All the electionprocesses and photon vibrational
processes of the overtones and combinations catedboy the fundamental modes of the
minerals, water and carbonate are significant lieranalyzing of saline-soil hyperspectral
data. The spectral signature of saline soils camlresult of the salt itself, which is
generated by some salt minerals during weathernogegs in nature, or added during
agricultural management for soil reclamation [5]s@ some other chromophores are
indirectly related to the presence of the saitqrganic matter, particle size distribution).

Salinity can be quantitatively identified in theate from 350-1050 with hyperspectral
data. For example, Csillag et al [6] find 550-776 mnd 900-1030 nm are efficient
indicators for salt; Pang et al [7] find 400-900 nemn calibrate quantitative SSC (Soil Salt
Content) and EC (Electrical Conductivity) modelsttwiR® up to 0.89 and 0.92,
respectively. The mechanisms of spectral resporitesalt in the range of 350-1050 nm
are mainly occupied by several reasons: the elictfrocesses, which are contributed by
crystal-field effects (which are possibly deducgdFe’* and F&"); the charge transfer by
the migration of electrons; the color centers alaith some color materials (halide); or the
conduction band transition in some periodic lagid8]. Meanwhile, some vibrational
processes appear in the wavebands near 1000 nmg dwithe water molecules or
hydroxyl groups essential to salty mineral strugtsuch as gypsum or montmorillonite [8].
In the meantime, some salt (halite) are spectfaliyureless itself but can still be identified
because the high affinity of salt to water molesul@]. Besides, hyperspectral data also
contribute a positive effect on salt signature tifieation, because subtle spectral changes
appear in soil salt, which are contributed by thityseffect on the hydrogen bond in water
molecules [10].

Hyperspectral data can be difficult to interpretimyvto noise and collinearity among
spectral bands. Preprocessing methods, such aglinative signal correction (MSC),
standard normal variate correction or transfornmati{®&NV), first and second order
derivative filtering (DF1 and DF2), continuum-rengalvreflectance (CR), and orthogonal
signal correction filtering (OSC), can efficientlginimize signal interferenceg noise)
and simplify the interpretation processes [11]. #epecifically, MSC and the SNV can be
used to remove solid particle scattering, DF1 aR@ Pan reduce the baseline effect, CR is
useful for comparing with a common baseline, andCO$ suitable for removing invalid
information for all wavebands. Nevertheless, it agm unclear which of them is most
efficient for hyperspectral reflectance analyses sait data retrieval.

Novel hyperspectral analysis methods are being ewainfor extracting salinization
information. The partial least square regressidtSjFhas been progressively adopted in the
fields of remote sensing as it can deal with stiprgllinear, noisy data with numerous
independent (X) variables [12]. Furthermore, corabinwith OSC, a new method,
orthogonal projection to latent structures (OPLM&s developed [13, 14]. This method can
preprocess unfiltered spectra by removing systemathogonal variation via OSC and
integrate it with a regular PLS algorithm to produspectra-chemical models [15].
Meanwhile, auxiliary products, variable importariegorojection (VIP) and PLS regression
coefficient (b-coefficients), are efficient for seting spectral wavebands and calibrating
a parsimonious model without sacrificing accurdidye value of VIP can be regarded as an
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indicator for the evaluation of the importance afiables, as a variable with higher VIP
(normally higher than 1) will be more importantworthy of consideration than variables
with lower VIP [16]. Also, wavebands with largercbefficients (normally larger than their
standard deviation) are more important for incoagiog in a model [17].

Our spectra-chemical research processes contaireraewsteps: filtering out
hyperspectral noise, spectra-chemical model estahknt, waveband selection,
simplifying the model, and developing a final madeb achieve this research we have the
following objectives: (i) exploring the effects different data pretreatment methods on the
accuracy of hyperspectral inversion, (ii) analyzihg applicability and stability of PLS and
OPLS methods in hyperspectral data modeling of afédicted soils, and (iii) developing
a more accurate waveband selection method whiclbearsed for soil salinity prediction
by hyperspectral data.

Materials and methods

Soil spectral data acquisition and analysis

FieldSpec HandHeld (Analytical Spectral Devices, Inc. USA) was used for soil
spectral acquisition. The spectral wavelength ranged from 325 nm to 1075 nm and the
sampling interval was 1.5 m. The device could reduce the interval to 1 nm by cubic spline
interpolation. The resolution ratio (FWHM) was 3.5 nm and the internal standard viewing
angle was 25°. For this study, we chose the wavelength range from 351 to 1050 nm to
alleviate the effect of noise on the primary wave band. Soil spectral acquisition was
conducted in Hetao Irrigation District, Inner Mongolia, China. The sampling sites were
randomly distributed within an area of about 26.7 km® (107°59'33" E and 41°1'21" N). We
took 89 soil spectral samples in late April (sample set 1) and 101 soil spectral samples in
late July (sample set 2).
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Fig. 1. Hyperspectral curves of unfiltered spe¢tihe solid lines are soil sample set 1 and the tiash
are soil sample set 2)
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A white Spectralon panel by barium sulphate (BgS@s used to transfer the relative
reflectance (which is the quantity actually meadul®y instrument) to the absolute
reflectance in post processing by multiplying teflectance factor spectrum by the actual
calibrated reflectance spectrum of the referermedstrd. Each spectral curve was achieved
by taking the arithmetic mean of five measuremeatsl all samples were taken between
10 am to 2 pm (Fig. 1). Furthermore, the pistop grias fixed in spider and keep the pistol
grip facing towards the sun. The bubble on theoptip is used as an indicator to keep it
level, and the optical fiber is kept 30 cm above #pil surface during the whole
measurement.

Sample sets 1 and 2 (0-10 cm depth) underwentdsdirgr analysis to determine their
water and salt contents (Table 1). Soil Water Q@nt8WC [g/g]) was obtained by oven
drying at 105°C for 24 h. Soil Electrical Condudiv(EC,5 [dS/m]) was measured in
a 1.5 soil: water suspension after 1 hour of engi-@nd shaking at 25°C and was
converted to Soil Salt Content (SSC [%]) accordiogan convincing empirical formula
calibrated for local measured data (not presentesle)h by regression analysis
(SSC = 0.4E¢5-0.04). According to Pang et al [7], the resultsirofert EC are almost
identical to SSC. As a consequence, retrieve S$€asonable.

Table 1
Statistics for soil samples
e Salt index/S [%)] Water index® [g/g]
Statistical index S, InS, S, ns, 0, 0,
Maximum 16.2 2.8 16.0 2.8 0.675 0.74
Minimum 0.2 -1.7 0.1 -2.5 0.016 0.01
Mean 2.2 0.2 3.1 0.4 0.114 0.11
Standard Deviation 3.3 1.0 4.0 1.3 0.084 0.1p
Kurtosis 6.2 0.2 1.8 -0.6 21.286) 15.61
Skewness 2.6 0.7 1.7 -0.0 3.375 3.4
Significance 0.0 0.5 0.0 0.7 0.126 0.00
Decision reject| accep| rejegt  accept reject reject

The confidence interval was 95% agme 0.05. S and indicate salt index and water index respectiveljgscript
1 and 2 indicate soil sample 1 and soil sampleshectively. One sample in sample 2 lost soil moéstontent

Pretreatment of data

We adopted the Kolmogorov-Smirnov test [18] to dastmte that the results of
natural logarithm processing of the soil salt cahtef sample sets 1 and 2 satisfied the
normal distribution. Meanwhile, hyperspectral datas standardized by centering and
scaling to unit variance to reduce the effectsiofethsionality, in order to keep variables in
the same scales. To minimize the impact of soilaser brightness, we applied 6 filtering
methods: MSC, SNV, DF1, DF2, CR, and OSC to pretreadata (Fig. 2).

MSC is a type of preprocessing method that has lused to separate absorption
features from scattering features. Accordinglyah calibrate the baseline effect, reduce
the influence of scattering effects on the obtairguectra and decrease spectral
discrepancies associated with sample inhomogerigyy The SNV method is a row-
oriented transformation that centers and scaldsithdal spectra and employs an algorithm
similar to MSC [20]. However, MSC calculates analdspectrum from the unfiltered data
and uses this spectrum to modify the data, whetteasSNV method uses a normalizing
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method to remove scattering effects. The method3rdf and DF2 can be used to find the
inflection points of the spectral curve, detect tuldifferences between changes and
enhance relationships between spectral data agdttparameters [21]. Furthermore, DF2
can enhance minor convexities and concavities @nrtflectance curve to improve the
elimination of baseline effects. The CR method aimguantify the absorption of a given

material at a specific wavelength, based on th@rnagsSon that other materials cannot
affect the absorption features around a specife 3ihis method is designed to highlight
departures and recognize absorption features byvieg the non-absorbing continuum

[22]. Finally, the OSC is a filtration method the&n extract and remove orthogonal
variation from independent variables of reflectared®owing more accurate interpretation
of the dependent data of SSC [23].
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Fig. 2. Hyperspectral reflectance curves of différBlter methods: a) multiplicative signal corriect
(MSC), b) standard normal variate (SNV), c) firstker derivate filter (DF1), d) second-order
derivate filter (DF2), e) continuum - removed (CR)prthogonal signal correction (OSC)

Model calibration and evaluation

Both PLS and OPLS can be used to calibrate modéis. OPLS is a combined
algorithm incorporating both PLS and OSC, whictstficonduct preprocessing of the
unfiltered spectra by removing systematic orthofjoraiation just like OSC and then
apply the PLS algorithm to the models.
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In the present study, a model was calibrated ugiadSIMCA software (version 13.0).
b-coefficients (coefficients of each waveband irSPAind OPLS models) were figured out
simultaneously. Soil sample set 2 was used for tnmadibration while set 1 for evaluation.
For both PLS or OPLS methods, it is important tecethe appropriate number of spectral
bands for the model according to’,Qvhich is an effective index of determining the
appropriate number of spectral bands [24]. THerépresents the fraction of the total
variation for dependent variables that can be ptediby a given component, while thé Q
(cum) denotes the fraction that can be predictedalbycomponents. Coefficients of
determination, denoted?Rmeasures how well the regression line approxisnttie real
data points, should be as close to 1 as possibléhéobest modelRMSEE (Root Mean
Square Error of Estimation) amMSEP (Root Mean Square Error of Prediction) were used
to indicate the fithess and predictive power ofrtredels:

RMSEE = Z(T\Tsl - ‘X‘“) (1)
_ 2
RM SEP = \/Z (YobSZM Ypred 2) (2)

where Yooa—Yprear (Yobsr—Yprea) @aNdN (M) refer to the fitted residuals for the measured an
simulated observations and the number of samplespectively, in the calibration
(evaluation) set. The root mean square error froyasevalidation RMSECV) applies to the
calibration setig like RMSEE) but is an indicator of predictive powee (ike RMSEP). We
calculated it by summarizing the cross-validati@siduals of the observations in the
calibration set.

To determine the significant wavebands of the distadd models, we used
a parameter known as tM&P [25]. For an observed dependent variable Y, \the was

calculated as follows:
VIR (a kaZ ( ] 3)

where VIP(a) is the importance of th&" predictor variable based on a model with
factors,wq is the corresponding loading weight of #fevariable in thea™ PLS or OPLS
factor,SSY, is the sum of squares of dependent variable exgdidby a PLS or OPLS model
with the o factors,SSY; is the total sum of squares of dependent variahles Kk is the total
number of predictor variables.

Results

The soil samples collected in the study area haddrange of salinity with minor
moisture. Specifically, the mean soil salt contarg 2.2 and 3.1% for dataset sample 1
and sample 2 respectively, correspondent with thadsrd deviation to be 3.3 and 4.0
(Table 1). These soil samples was suitable fobratiing a representative model to retrieve
soil salinity owing to the subtle disturbance by isture, as well as broad range of
measured salt content.
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Filtering process

Hyperspectral data were treated with differenefiig methods (Fig. 2) and the mean
filtered reflectance curves are illustrated in Feg3. It was clear that the trends of MSC,
SNV, and the unfiltered spectra were similar. ThElDcurves exhibit considerable
fluctuation over the range of 351-600 nm, compacedther wavebands. Conversely, the
curves obtained using DF2 exhibit fluctuations tlyloout the entire spectrum, particularly
pronounced around 600 and 780 nm and above 900 hnenCR produced a spectral curve
that could be divided approximately into 3 sectiotie absorption characteristics were
more pronounced in the first (351-600 nm) and ti{820-1050 nm) sections than in the
second section (600-820 nm). Meanwhile, there wesstinct peak at 600 nm and heavy
fluctuations after 900 nm, and all 7 filtered cuwead a fluctuation at 600 nm and large
variations from 400 to 600 nm.
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Fig. 3. Mean values of hyperspectral reflectance dafiltered and filtered reflectance (manually
multiply 2, 1/4, 300, 2000 and 300 for multiplicatisignal correction (MSC), standard normal

variate (SNV), first-order derivate filter (DF1)econd-order derivate filter (DF2) and orthogonal
signal correction (OSC), respectively, in ordecémnpare patterns in the same graph)

Models established by PLS and OPLS

Both unfiltered and the 6 filtered spectra weredusecalibrate the models according
to the PLS method. Taking the Unfiltered-PLS maakelan example: when the number of
components reached 6, each component included blag@enhance the model’'s ability,
as @ (cum) increased from 0.0735 (not presented) t@simum of 0.456. The numbers of
components and other statistical indicators forapplication of different filtering methods
with the PLS model are presented in Table 2.
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Table 2
Statistical results for partial least squares regjom (PLS) models of unfiltered and filtered datgpectively
(multiplicative signal correction (MSC), standammal variate (SNV), first-order derivate filter D),
second-order derivate filter (DF2), continuum - eed (CR), and orthogonal signal correction (OSC)
filter methods respectively)

Model Calibration Validation
NPC Q(cum) R? RMSEE RMSECV R? RMSEP
Unfiltered-PLS 6 0.456 0.722 0.718 1.034 0.665 0.604
MSC-PLS 6 0.552 0.746 0.686 0.883 0.655 0.614
SNV-PLS 6 0.548 0.754 0.674 0.885 0.631 0.641
DF1-PLS 5 0.536 0.759 0.664 0.903 0.416 0.83¢
DF2-PLS 3 0.497 0.753 0.666 0.916 0.673 0.597
CR-PLS 6 0.533 0.686 0.762 0.926 0.492 0.787
OSC-PLS 1 0.787 0.793 0.604 0.605 0.719 0.564
Unfiltered-PLS 6 0.547 0.724 0.595 0.781 0.675 0.564
MSC-PLS 6 0.534 0.747 0.57 0.773 0.648 0.644
SNV-PLS 6 0.538 0.747 0.569 0.761 0.656 0.634
DF1-PLS 5 0.417 0.749 0.565 0.841 0.573 0.78]
DF2-PLS 3 0.55 0.799 0.5 0.784 0.741 0.529
CR-PLS 6 0.524 0.755 0.56 0.764 0.684 0.593
OSC-PLS 1 0.785 0.789 0.507 0.506 0.775 0.441

NPC indicates the components number; superscript 1 means original model and superscript 2 means new model
after wavelength selection@um) means the fraction of the total variatiordependent variable (Y) that can be
predicted by all component®2 means determination coefficient. RMSEE and RMSERns root mean square
error of estimation and prediction respectively. BEBCV means root mean square error from cross valida

Table 3
Statistical results for orthogonal projection ttef structures (OPLS) models of unfiltered arnteridd data,
respectively (multiplicative signal correction (MEGtandard normal variate (SNV), first-order date/filter
(DF1), second-order derivate filter (DF2) and coatim - removed (CR) respectively)

Model Calibration Validation
NPC Q*(cum) R? RMSEE RMSECV R’ RMSEP
Unfiltered-OPLS 1+5 0.549 0.722 0.718 0.882 0.665 0.604
MSC-OPLS 1+6 0.589 0.785 0.635 0.841 0.679 0.598
SNV-OPLS 1+6 0.598 0.792 0.624 0.832 0.658 0.616
DF1-OPLS 1+5 0.59 0.811 0.592 0.841 0.435 0.831
DF2-OPLS 1+3 0.585 0.83 0.555 0.846 0.593 0.68
CR-OPLS 1+5 0.53 0.686 0.762 0.9 0.49p 0.787
Unfiltered-OPLS 145 0.55 0.724 0.595 0.733 0.675 0.565
MSC-OPLS 1+6 0.552 0.776 0.538 0.732 0.647 0.649
SNV-OPLS 1+6 0.551 0.775 0.54 0.732 0.669 0.647
DF1-OPLS 145 0.523 0.789 0.512 0.755 0.609 0.768
DF2-OPLS 1+3 0.591 0.828 0.465 0.699 0.716 0.619
CR-OPLS 145 0.558 0.755 0.56 0.726 0.684 0.598

NPC indicates the components number, in which timaber before “+” (always 1) represents for predeti
component and the number after “+” represents for orthogonal components; superscript 1 means original model
and superscript 2 means new model after wavelesejdttion. &cum) means the fraction of the total variation
of dependent variable (Y) that can be predictedibgomponentsR? means determination coefficient. RMSEE
and RMSEP means root mean square error of estimatid prediction respectively. RMSECV means rocamme
square error from cross validation
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Fig. 4. Stack graphs of b-coefficient values of: partial least squares regression (PLS) and
b) orthogonal projection to latent structures (OPir®dels for the hyperspectral data

The results of component analysis for the OPLS risodere presented in Table 3.
The OPLS method was able to conduct orthogonaleptigin filtering contained in
orthogonal component, which is similar to OSC; ¢fiere, we did not consider OSC in this
part. Statistical analysis of our OPLS models destrated that the SNV-OPLS model
produced the largest?@cum) and smalles®RMSECV (Table 3). The coefficients of each
waveband in the PLS and OPLS models (b-coefficjeats illustrated in Figure 4. It was
clear that these coefficients are relatively simida both the PLS and OPLS models.

Wavebands selection and new PLS and OPLS establiskmt

We calculated the VIP value (Fig. 5) using Eq.gB8) found similar VIP values for the
OSC-PLS and Unfiltered-OPLS models. Furthermoree WP values obtained for
MSC-PLS (or MSC-OPLS) was similar to SNV-PLS (or\GRPLS) model. Apart from
that, no other obvious similarities are apparemwben them.

VIP values (larger than 1) are commonly used witbobfficients (larger than its
standard deviation) together to identify the impottvariables. This selection theory was
applied to all the data to select all the importaatebands (Fig. 6) as input variables in the
new PLS or OPLS models. As a consequence, 94 watsebfor unfiltered data,
91 wavebands for MSC data, 88 wavebands for SN¥, d&d3 wavebands for DF1 data,
156 wavebands for DF2 wavebands, 438 waveband33&@ data and 102 wavebands for
CR data were retained, respectively (Fig. 6).

These were then utilized as variables to build rfews (n-PLS) and new OPLS
(n-OPLS) models (Tables 2 and 3). The calibrated m@dels showed better performance
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than before (discussed later), which illustrateat the process of waveband selection was
beneficial for calibrating more concise models withsacrificing accuracy.
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Fig. 5. Variable Importance in Projection (VIP) was of: a) partial least squares regression (PLS)
and b) orthogonal projection to latent structu@BI(S) models for the hyperspectral data
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Fig. 6. Picture of selected wavebands for unfillexad filtered reflectance, 94, 91, 88, 103, 138 dnd
102 wavebands are selected out for Unfiltered, iplidative signal correction (MSC), standard
normal variate (SNV), first-order derivate filteDF1), second-order derivate filter (DF2) and
orthogonal signal correction (OSC) and continuuemoved (CR) reflectance, respectively

Discussion

Water in the soil pore space and the soil particdeer film have a critical influence on
reflectance spectra in the VNIR and SWIR wavelesigthd are also influenced by the
salinity-water content. According to research byitkp, the fundamental stretching and
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bending vibrations of water and hydroxyl bonds of & the region of 350 to 2500 nm

mainly occurred in the SWIR such as 1400, 1900, 28@0 nm, except for a very weak
absorption strength at VNIR (986 nm) [26]. The sodisture is very low in samples, thus
affect little on hyperspectral reflectance. It igeresting to notice that the sensitive
wavebands selected in our process, especially @&@rnm, are meanwhile the relatively
high-noise wavebands. This means, although theeninisthe reflectance after 950 nm
caused by the instrument is large, they are monsitsee and should be retained. This
pattern is also detected by Csillag et al [6] wbasidered 900 to 1030 nm as indicators of
soil salinity.

VIP combined with b-coefficients is a useful methafdselecting important bands. For
example, Elmasry et al [27] used VIP to selectatiffe wavelengths from high spectral
dimensionality data. In our study, we selectedwhaeebands with large VIP (greater than
1) and b-coefficients (larger than standard desgtas valuable wavebands.

After waveband selection, different important waaedls were highlighted for
different filtered data (Fig. 6). The selected bafor MSC (91 bands) were distributed in
the range of 450-464 nm, 768-775 nm, and sparseBtéd after 884 nm. SNV had some
similar selected bands (88 bands) with unfilterathdn the range of 773-774 nm and after
946 nm of, and some special bands in the rangeé&®2 nm. Ninety-four bands were
selected in unfiltered data, in which the wavebanid851-382 nm and 536-562 nm were
also important. The above wavebands mentionedddn enethod could be regarded as the
selected sensitive wavebands (Fig. 6). When dévivadata were selected, the former
fashion of sensitive wavebands were changed teesedtdistributed. Meanwhile, the DF2
data tended to be more decentralize than DF1 d&taljands) and 156 bands are selected
for DF2 data. It might be contributed by fact tB#2 derivative could characterize subtle,
consistent variations caused by curvatures aloagmtole scale (Fig. 6), as a result, DF2
should be relative insensitive to variation causgddverse effects such as sun angle and
cloud cover, and thus contribute to a more preamelel (Tables 2 and 3). Of all six
selection processes, OSC selected the most nunibtiie aunfiltered wavebands of the
700 wavebands, reaching 438 wavebands. Moreowey,ake centralized from 565 nm to
1013 nm [28]. CR reflectance spectra charactengeso 102 bands, which indicated the
absorption features well. In our study, the sektat@avebands are located in the range of
354-363 nm, 371-382 nm, 591-617 nm, 630-639 nm,-74D nm, 777-778 nm,
936-1049 nm, which indicate the sensitive wavebamisabsorption features located in the
range of VNIR. This is similar to what Csillag dt[6] identified in a study in Hungary,
where he characterized key spectral ranges in ifieles (550-770 nm) and near infrared
(900-1030 nm). All the selections for the sevendrgpectral data sets (Fig. 6) show the
wavebands near 1000 nm are always retained for Inwadibration, possibly because the
heavy vibrational, or sharp band transition prod8$sMeanwhile, the filtering methods
significantly impacted the effect of sensitive banecause the signature implied within
a specific band can only be extracted out by sopecific filtering algorithm. The
complicated electronic processes, which is mairdystituted by crystal-field effects,
charge-transfer, color centers and conduction btadsitions, along with vibrational
processes contributed by water, hydroxyl, carbomatehosphate, are the reasons that
produce differences among the waveband selection [8

Our study shows that the predictive ability of FkSimilar with OPLS, evidenced by
the similarities in b-coefficients (Fig. 4), exttad components and statistics (Tables 2 and
3). However, there were some disagreements abeuadkiantages and disadvantages of
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their applicability. Lin et al [29] demonstratedetfOPLS methods are simpler, easier to
interpret, and more accurate than the PLS methbde Wapp and Kemsley [30] opposed
this. In our study, models established by OPLS weegginally more accurate than the
PLS models when MSC, SNV, DF1 or DF2 pre-processipge applied. Of the indexes
obtained, @ (cum) were almost always higher for the OPLS meéthman for the PLS
method (except for CR). This indicated that the GPiethod had a larger effect on
detecting cross-validated components and a grealbdity to interpret the models.
Furthermore, OPLS extracted only one predictive poment, which was an index
reflecting salt content, that enhanced the modefpmetation (Table 3). Model calibration
showed most of the filtered reflectance data westteb than unfiltered in the inversion
process, showing the benefits of filtering.

After the wavebands selection, the new PLS or ORId8lels had better results for
most of the models. For PLS models, although omlyr fof seven new calibration
processes, which were Unfiltered, MSC, DF2 and W&g better than old models, six new
evaluation processes beyond MSC exhibited betterfoppeance than olds. The
enhancement in evaluation for new models encouragesiore. For example, the PLS
models calibrated by selected DF2 data have highemlues than unselected DF2 model
(Table 2 - 0.799 versus 0.753), and the evalugtimttern is more obvious (0.741 versus
0.673). Besides, the validated PLS model by CR whapaioved the accuracy greatest when
the selected wavebands were used (0.492 versug)0[B&]. In OPLS models, this
phenomenon in evaluation processes is more cleahligh could be obviously observed in
DF1, DF2 and CR data, witR® were 0.609, 0.716, and 0.684 for selected onesuser
0.435, 0.593, and 0.492 for previous ones respegtihs a consequence, the new models
with less bands are potential for calibrating me@resentative and applicable models with
better evaluation results.

Conclusions

Taking all into consideration, four models displgneat performance with “Rralues
higher than 0.7 both in calibration and evaluatibime four models are the new PLS models
of DF2 and OSC, the new OPLS model of DF2 and tbdeP&S model of OSC (without
waveband selection). Among all the models, DF2 gaedtcted one third of the wavebands
compared to the OSC model. As a results, the Of2ifig method and waveband selection
are recommended in quantitative retrieval of salitent in arid lands. Overall, our study
have successfully retrieved the salt content imsadoils by combining various filtering
techniques and wavebands selection methods. THidevuseful for the detection of soil
salt content using the hyperspectral apparatukerfield and develop models for airborne
and future satellite hyperspectral sensors su&V4RIS and HYSPIRI.
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