Numerical Study on Thermal Environment in Mine Gob Under Coal Oxidation Condition

Open access


The most feared of hazards in underground mines are those of fires and explosions. This study focuses on the temperature-rising process of residual coal under spontaneous combustion condition in coal mine gob. A numerical model has been established considering the chemical reaction, heat transfer and components seepage flow. The temperature distributions and maximum values for different positrons at various times have been calculated by using the coupled model. An experimental model has been also developed for model calibration. The validation indicates the numerical model is accurate and suitable for solving the temperature-rising problem in coalmines. The simulation results show that high temperature zone appears at the air intake roadway side in the gob and enlarging the ventilation flux increases the risk of self-ignition of coal. The research results can be used to predict the temperature-rising of coal spontaneous combustion and coal resources prevention.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Stracher GB Taylor TP. Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. Int J Coal Geol. 2004;59(1-2):7-17. DOI:10.1016/j.coal.2003.03.002.

  • [2] Nolter MA Vice DH. Looking back at the Centralia coal fire: a synopsis of its present status. Int J Coal Geol. 2004;59(1-2):99-106. DOI: 10.1016/j.coal.2003.12.008.

  • [3] Whitehouse AE Mulyana AAS. Coal fires in Indonesia. Int J Coal Geol. 2004;59(1-2):91-97. DOI: 10.1016/j.coal.2003.08.010.

  • [4] Heffem EL Coates DA. Geologic history of natural coal-bed fires Powder River basin USA. Int J Coal Geol. 2004;59(1-2):25-47. DOI: 10.1016/j.coal.2003.07.002.

  • [5] Hower JC Henke KR O'Keefe JMK Engle MA Blake DR Stracher GB. The Tiptop coal mine fire Kentucky: preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents. Int J Coal Geol. 2009;80(1):63-67. DOI: 10.1016/j.coal.2009.08.005.

  • [6] Kuenzer C Zhang J Tetzlaff A Voigt S Van Dijk P Wagner W Mehl H. Uncontrolled coal fires and their environmental impacts: investigating two arid mining environments in north-central China. Appl Geogr. 2007;27:42-62.

  • [7] Rosema A Guan H Veld H. Simulation of spontaneous combustion to study the causes of coal fires in the Rujigou basin. Fuel. 2001;80:7-16. DOI: 10.1016/S0016-2361(00)00065-X.

  • [8] Jones JC Newman SC. Non-Arrhenius behavior in the oxidation of two carbonaceous substrates. J Loss Prevent Proc. 2003;16:223-225. DOI: 10.1016/S0950-4230(02)00115-8.

  • [9] Beamish BB Blazak DG. Relationship between ash content and R70 self-heating rate of Callide coal. Int J Coal Geol. 2005;64:126-132.

  • [10] Beamish BB Hamilton GR. Effect of moisture content on the R70 self-heating rate of Callide coal. Int J Coal Geol. 2005;64:133-138. DOI: 10.1016/j.coal.2005.03.011.

  • [11] Ozbas KE Kök MV Hicyilmaz C. DSC study of the combustion properties of Turkish coals. J Therm Anal Calorim. 2003;71:849-856. DOI: 10.1023/A:1023378226686.

  • [12] Carras JN Day SJ Saghafi A Williams DJ. Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. Int J Coal Geol. 2009;78(2):161-168. DOI: 10.1016/j.coal.2008.12.001.

  • [13] Yip K Ng E Li CZ Hayashi JI Wu HW. A mechanistic study on kinetic compensation effect during low-temperature oxidation of coal chars. P Combust Inst. 2011;33(2):1755-1762. DOI: 10.1016/j.proci.2010.07.073.

  • [14] Taraba B Peter R Slovák V. Calorimetric investigation of chemical additives affecting oxidation of coal at low temperatures. Fuel Process Technol. 2011;92(3):712-715. DOI: 10.1016/j.fuproc.2010.12.003.

  • [15] Biswas S Choudhury N Sarkar P Mukherjee A Sahu SG Boral P Choudhury A. Studies on the combustion behavior of blends of Indian coals by TGA and Drop Tube Furnace. Fuel Process Technol. 2006;87:191-199. DOI: 10.1016/j.fuproc.2005.05.002.

  • [16] Li X Matuschek G Herrera M Wang H Kettrup A. A study on combustion of Chinese coals by TA/MS. J Anal Appl Pyrolysis. 2003;67:393-406. DOI: 10.1016/S0165-2370(02)00077-3.

  • [17] Gil MV Casal D Pevida C Pis JJ Rubiera F. Thermal behavior and kinetics of coal/biomass blends during co-combustion. Bioresour Technol. 2010;101:5601-5608.

  • [18] Porada S. The influence of elevated pressure on the kinetics of evolution of selected gaseous products during coal pyrolysis. Fuel. 2004;83:1071-1078. DOI: 10.1016/j.fuel.2003.11.004.

  • [19] Porada S. The reactions of formation of selected gas products during coal pyrolysis. Fuel. 2004;83(9):1191-1196. DOI: 10.1016/j.fuel.2003.11.007.

  • [20] Duan L Zhao C Zhou W Qu C Chen X. O2/CO2 coal combustion characteristics in a 50 kWth circulating fluidized bed. Int J Greehouse Gas Control. 2011;5(4):770-776.

  • [21] Tan YW Croiset E Douglas MA Thambimuthua KV. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel. 2006;85:507-512. DOI: 10.1016/j.fuel.2005.08.010.

  • [22] Long S Cao F Wang S Sun L Pang J Sun Y. Combustion characteristics of polyethylene and coal powder at high temperature. Int J Iron Steel Res. 2008;15(1):6-9.

  • [23] Yuan LM Smith AC. Numerical study on effects of coal properties on spontaneous heating in longwall gob areas. Fuel. 2008;87(15-16):3409-3419. DOI: 10.1016/j.fuel.2008.05.015.

  • [24] Huang JJ Bruining J Wolf KHAA. Modeling of gas flow and temperature fields in underground coal fires. Fire Saf J. 2001;36(5):477-489. DOI: 10.1016/S0379-7112(01)00003-0.

  • [25] Wolf KHAA Bruining J. Modeling the interaction between underground coal fires and their roof rocks. Fuel. 2007;86(17-18):2761-2777. DOI: 10.1016/j.fuel.2007.03.009.

  • [26] Wessling S Kuenzer C Kessels W Wuttkea MW. Numerical modeling for analyzing thermal surface anomalies induced by underground coal fires. Int J Coal Geol. 2008;7(3-4):175-184. DOI: 10.1016/j.coal.2007.12.005.

  • [27] Singh RN Shonhardt JA Terezopoulos NA. A new dimension to studies of spontaneous combustion of coal. Miner Resour Eng. 2002;11(2):147-163. DOI: 10.1142/S0950609802000938.

  • [28] Xie KC Liu SY. Application of pyrolysis/Fourier transform infrared spectroscopy to study the reaction of pyrolysis. Chinese J Anal Chem. 2003;31(4):501-504.

  • [29] Tan HP Xia XL Liu LH Ruan LM. Numerical Calculation of Infrared Radiation Properties and Transfer. Harbin: Harbin Institute of Technology Press; 2006.

  • [30] Tan HP Liu LH Yi HL Zhao JM Qi H Tan JY. Recent progress in computational thermal radiative transfer. Chinese Sci Bull. 2009;54(22):4135-4147. DOI: 10.1007/s11434-009-0625-1.

  • [31] Yi HL Tan HP. Transient radiative heat transfer in an inhomogeneous participating medium with Fennel’s surfaces. Sci China Ser E. 2008;51(8):1110-1124. DOI: 10.1007/s11431-008-0169-7.

  • [32] Liu B Yuan Y Yi HL Dong SK Tan HP. Radiative heat transfer in a multilayer semitransparent scattering medium using the p-n-approximation method. Heat Transf. Res. 2012;43(7):591-614. DOI: 10.1615/HeatTransRes.2012005899.

  • [33] Yuan Y Xie F Yi HL Dong SK Tan HP. P-N-approximation method for infrared transmission characteristics in nonlinear anisotropic scattering medium. J Infrared Millim W. 2011;30(5):439-445.

  • [34] Shuai Y Dong SK Tan HP. Simulation of the infrared radiation characteristics of high temperature exhaust plume including particles using the backward Monte Carlo method. J Quant Spectrosc Ra. 2005;95(2):231-240. DOI: 10.1016/j.jqsrt.2004.11.001.

  • [35] Shuai Y Xia XL Tan HP. Numerical study of radiation characteristics in a dish solar collector system. J Sol Energ-T ASME. 2008;130(2):021001. DOI: 10.1115/1.2840570.

  • [36] Shuai Y Zhang HC Tan HP. Radiation symmetry test and uncertainty analysis of Monte Carlo method based on radiative exchange factor. J Quant Spectrosc Ra. 2008;109(7):1281-1296. DOI: 10.1016/j.jqsrt.2007. 10 .001.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 203 113 2
PDF Downloads 108 82 6