Utilization of Ends From Pvc Production With Application of Fe-Cr Catalyst - Dioxins Hazard / Utylizacja Odpadu Z Produkcji Pcw Z Udziałem Katalizatora Fe-Cr W Aspekcie Zagrożenia Dioksynami

Open access

Abstract

The subject of the investigation was the model solution containing 50 g/dm³ waste light ends from PVC production, dissolved in the ethanol-water (1:1) mixture. The main components of light ends were as follows: trichloromethane, tetrachloromethane, and chloroderivatives of ethane. Granular ferric-chromic catalyst (TZC 3/1) was used in the investigation. The temperature range applied in experiments was 400-600ºC and the contact time was 0.27 s. Gaseous products of the reaction were analysed in order to determine among others concentration of chlorine, formaldehyde, oxygen, carbon monoxide and dioxins. The content of total organic carbon (TOC), chloride ions and formaldehyde was determined in a condensate. Oxidation of the mixture proceeded in the all temperature range with high efficiency in regard to initial TOC value of the solution. The concentration of dioxins in the combustion gases obtained in the process carried out in temperature 450ºC amounted to 0.021-0.027 ng TEQ/m3, and was significantly lower than the admissible value of 0.1 ng TEQ/m3. Congeners of polychlorinated dibenzofuranes (PCDFs) predominated in the combustion gases. Tested catalyst did not undergo deactivation during 150 h substrate oxidation.

[1] Kettrup AAF. Chlorinated hydrocarbons in the environment - monitoring and effect monitoring. Ecol Chem Eng. 2005;12(7):653-675.

[2] Dyke PH, Amendola G. Dioxin releases from US chemical industry sites manufacturing or using chlorine. Chemosphere. 2007;67:125-134. DOI: 10.1016/j.chemosphere.2006.05.140.

[3] Downarowicz D, Nastaj J. Wybrane problemy oczyszczania gazów odlotowych z par związków chloroorganicznych na przykładzie tetrachlorku węgla. Przem Chem. 2003;82(11):1440-1445.

[4] Przondo J, Rogala J. Przemysłowa instalacja spalania ciekłych odpadów chloroorganicznych w Z. Ch. „Rokita” S.A. Przem Chem. 1996;75(3):98-101.

[5] Milchert E, Kotas A. Spalanie odpadowych chloropochodnych organicznych. Chemik. 1995;11:320-322.

[6] Lewandowski G, Milchert E, Doroczyński A. Spalanie odpadowych chloropochodnych organicznych z odzyskiem chlorowodoru. Przem Chem. 2005;84(7):516-519.

[7] Spivey JJ, Butt JB. Deactivation of catalysts in the oxidation of volatile organic compounds. Catal Today. 1992;11:465-500.

[8] Nowicki B, Hetper J. Badanie aktywności katalizatorów w reakcji spalania chlorku winylu w powietrzu.Chem Inż Ekol. 1995;2:423-429.

[9] Lester GR. Catalytic destruction of hazardous halogenated organic chemicals. Catal Today 1999;53:407-418. DOI: http://dx.doi.org/10.1016/S0920-5861(99)00134-0.

[10] Musialik-Piotrowska A, Mendyka B. Catalytic oxidation of chlorinated hydrocarbons in two-component mixtures with selected VOCs. Catal Today. 2004;90:139-144. DOI: 10.1010/j.cattod.2004.04.019.

[11] Żarczyński A, Kaźmierczak M, Gorzka Z, Zaborowski M. Dioksyny w procesie utleniania 1,1,2,2-tetrachloroetanu w obecności wybranych katalizatorów. Chem Inż Ekol. 2005;12(S1):113-122.

[12] Paryjczak T, Lewicki A. Kataliza w zielonej chemii. Przem Chem. 2006;85(2):85-95.

[13] Pitkäaho S, Matejova L, Ojala S, Gaalova J, Keiski RL. Oxidation of perchloroethylene - activity and selectivity of Pt, Pd, Rh, and V2O5 catalysts supported on Al2O3, Al2O3-TiO2 and Al2O3-CeO2. Appl Catal B: Environ. 2012;113- 114:150-159. DOI: 10.1016/j.apcatb.2011.11.032.

[14] Żarczyński A, Gorzka Z, Zaborowski M, Kaźmierczak M, Ciesielski R. Utlenianie mieszaniny aceton-woda (1:5) zawierającej kwas 2,4-dichlorofenoxyoctowy z udziałem katalizatora monolitycznego platynowo-rodowego. Ecol Chem Eng S. 2009;16(1):107-113.

[15] Makles Z, Świątkowski A, Grybowska S. Niebezpieczne dioksyny. Warszawa: Arkady; 2001.

[16] Dudzińska MR. Polichlorowane dibenzo-p-dioksyny (PCDDs) i dibenzofurany (PCDFs) w ściekach bytowo-gospodarczych i osadach pościekowych. Chem Inż Ekol. 2002;9(8):841-852.

[17] Dudzińska MR. Posibilities of PCDD/Fs release from different methods of waste utilization. Księga Konferencyjna/Proceedings ECOpole’04. Wacławek M, Wacławek W, editors. Opole: 2004;23-27.

[18] Wielgosiński G. Emission of dioxins from solid waste incineration. Ecol Chem Eng. 2005;12(9):919-936.

[19] Finocchio E, Busca G, Notaro M. A review of catalytic processes for the destruction of PCDD and PCDF from waste gases. Appl Catal B: Environ. 2006;62:12-20. DOI: 10.1016/j.apcatb.2005.06.010.

[20] Kraitr M, Richtr V, Sirotek V. Unieszkodliwianie dioksyn (PCDDs/PCDFs) ze starych obciążeń środowiska za pomocą technologii zasadowego rozkładu katalitycznego (BCD). Chem Dydakt Ekol Metrol. 2006;11(1-2):35-40.

[21] Tejima H, Nishigaki M, Fujita Y, Matsumoto A, Takeda N, Takaoka M. Characteristics of dioxin emissions at startup and shutdown of MSW incinerators. Chemosphere. 2007;66:1123-1130. DOI: 10.1016/j.chemosphere.2006.06.01.

[22] Mari M, Borrajo MA, Schuhmacher M, Domingo JL. Monitoring PCDD/Fs and other organic substances in workers of a hazardous waste incinerator: A case study. Chemosphere. 2007;67:574-58. DOI: 10.1016/j.chemosphere.2006.09.069.

[23] Hart RJ. Verification of dioxin formation in a catalytic oxidizer. Chemosphere. 2008;72:75-78. DOI 10.1016/j.chemosphere.2008.01.058.

[24] Rozporządzenie Ministra Środowiska z dn. 22 kwietnia 2011 r. w sprawie standardów emisyjnych z instalacji. DzU 2011, Nr 95, poz. 558.

[25] Żarczyński A, Zaborowski M, Gorzka Z, Kaźmierczak M. Utilization of light ends of chloroorganic waste from PCV production with application of ferric-chromic catalyst. Proc ECOpole. 2012;6(1):129-134.

[26] European Standard EN-1948, ICS 13.040.40: Stationary source emissions. Determination of the mass concentration of PCDD/Fs. Part 1. Sampling, Part 2. Extraction and clean-up, Part 3. Identification and Quantification.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information


IMPACT FACTOR 2017: 0.7
5-year IMPACT FACTOR: 0.815

CiteScore 2017: 0.79

SCImago Journal Rank (SJR) 2017: 0.227
Source Normalized Impact per Paper (SNIP) 2017: 0.535

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 194 194 10
PDF Downloads 37 37 3