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LONG-TERM STATISTICAL ASSESSMENT  
OF THE WATER QUALITY OF TUNDJA RIVER  

DŁUGOOKRESOWA OCENA JAKO ŚCI WODY  
RZEKI TUNDJI  

Abstract:  Two major environmetric methods (Cluster analysis (CA) and Principal components analysis (PCA)) 
were applied for statistical assessment of the water quality of trans-border river Tundja. The study used long-term 
monitoring data from 26 sampling sites characterized by 12 physicochemical parameters. Clustering of chemical 
indicators results in 3 major clusters: the first one shows the impact of anthropogenic sources, the second - the 
impact of agriculture and farming activities and the last one describes the role of the physical parameters on the 
water quality and also the impact of urban wastes. For better assessment of the monitoring data, PCA was 
implemented, which identified four latent factors. Two of them - “urban wastes” factor and “agriculture” factor 
correspond almost entirely to clusters 3 and 2 from the previous statistical analysis. The third one, named 
“industrial wastes” factor, reveals a specific seasonal behavior of the river system. The last latent factor describes 
the active reaction of the water body and is determined as “acidity” factor. The linkage of the sampling sites along 
the river flow by CA formed two clusters with the spatial “upstream-downstream” separation. The apportionment 
model of the pollution determined the contribution of each one of identified pollution factors to the total 
concentration of each one of the water quality parameters. 
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Introduction 

The assessment of the river water quality is usually based on the comparison of 
measured monitoring values of particular physicochemical parameters with the allowable 
threshold values defined in national or international directives. A much more sound and 
reliable approach seems to be the application of chemometric methods for classification and 
data interpretation of Bulgarian river water monitoring results since they consider the 
environmental system as a multivariate one and treat it respectively [1-15]. 

Usually, the studies performed try to assess the river water quality or to optimize the 
monitoring procedure by classifying the sampling locations, by revealing links between the 
water quality parameters, by identifying possible sources of pollution, by modeling the 
contribution of the identified sources to the formation of the total concentration of the 
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monitored chemical tracers. The goal of the present study is to classify, model and interpret 
monitoring data from Tundja River catchment in Bulgaria collected in a long-time period 
using multivariate statistics in order to assess in a reliable way the river water quality.  

Experimental 

Monitoring data collection 

The Tundja River is part of the Maritza sub-basin, including Arda and Ergene 
tributaries, and one of the major river systems located in the eastern Balkans. It has a length 
of 350 km and the catchment area is 7884 km2 in Bulgaria. Main cities along the catchment 
on Bulgarian territory are Kazanlak, Sliven and Yambol. The river then crosses into Turkey 
as Tunca (200 km2) before flowing into Maritza river at the Greek-Turkish border near to 
the city of Edirne (Turkey). 

The River Tundja springs out in the Kalofer part of the Stara Planina Mountain. In its 
upper reaches the river flows southwards and upon passing Kalofer turns towards the east to 
flow across the Kazanlak, Sliven, and Straldja lowlands. Near the village of Zavoi, the river 
turns southward to flow across the Yambol - Elhovo valley. 

The River Tundja forms its runoff from the Central part of Eastern Stara Planina and 
from the Northern slopes of the Sredna Gora Mountain. The mid and downstream sections 
of the river cross the Kazanlushka valley, as well as several fields and low lands located in 
the eastern part of Southern Bulgaria. 

In the Tundja river basin there are 252 settlements, and total population is 520,900 
people. Population of principal cities or towns is: Sliven (111,301), Yambol (78,302), 
Kazanlak (60,764), Karnobat (19,315), Elhovo (10,846), Pavel Bania (3074).  

The Tundja River has 44 tributaries with a total length of 393.9 km. The main 
tributaries are Mochuritca River (catchment area ca 1278 km2), Asenovska River 
(catchment area ca 89.7 km2), Marash River (catchment area ca 74.5 km2) and Eninska 
River (catchment area ca 45.2 km2). 

A very complex water resource system is created consisting of four big reservoirs - 
“Koprinka“, “Zrebchevo”, “Asenovets”, “Malko Sharkovo”, three smaller ones -  
“Ts. Tserkovski”, “Kirilovo” and “Dva Chouchoura”, five hydroelectric power plants, four 
large-scale irrigation systems, many irrigation fields, pumping stations, water supply groups, 
numerous small reservoirs, water intakes, many pits, river fisheries.  

The main land uses include park land and protected fauna/flora areas, skiing, forestry, 
grazing, dry and irrigated agriculture, hydroelectricity, urban and scattered industry, fish 
farming and ponds and coastal tourism. Industrial emitters in Tundja River basin are 
distributed as follows: production and processing of metals - 20%; chemical industry - 60%; 
and intensive livestock production - 20%. 

Monitoring of surface water is part of a National Environmental Monitoring System 
(NEMS) and includes programs for control and operational monitoring. The system is 
managed by the Minister of Environment and Water through the Executive Environment 
Agency (EEA). All measurements and observations are carried out by the structures of the 
EEA in common, unified methods for sampling and analysis in accordance with the 
procedures ensuring the quality of measurements and data. All EEA laboratories are 
accredited under the BS EN ISO/IEC 17025-(General requirements for competence in 
testing and calibration from EA BAS). 
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The data set used for the aims of the present study is part of NESM and involved 26 
sampling sites characterized by 12 parameters - active reaction (pH), water temperature (T) 
[ºC], dissolved oxygen (O2) [mg/dm3], oxygen saturation [%], conductivity [mS/cm],  
non-dissolved matter [mg/dm3], ammonia nitrogen (NH4-N) [mg/dm3], nitrate(V) nitrogen 
(NO3-N) [mg/dm3], orthophosphates (PO4) [mg/dm3], nitrate(III) nitrogen (NO2-N) 
[mg/dm3], biological oxygen demand (BOD) [mg/dm3], chemical oxygen demand (COD) 
[mg/dm3]. The analytical determination of the water indicators was performed according to 
the respective local and international standard methods. 

All water samples were collected in the period between 2004 and 2009.  
The catchment of Tundja River and the monitoring net of the river are presented in 

Figure 1. 
 

 
Fig. 1. The Tundja River catchment and monitoring net 

Environmetric methods 

In the data treatment two major environmetrics approaches were used: cluster analysis 
and principal components analysis.  

Cluster analysis [16] is a well-known and widely used classification approach. In order 
to cluster objects characterized by a set of variables one has to determine their similarity.  
A preliminary step of data scaling is necessary, where normalized dimensionless numbers 
replaces the real data values in order to eliminate dimension differences. Then, the 
similarity (or the distance) between the objects in the variable space can be determined. 
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Very often the Euclidean distance is used for clustering purposes. Thus, from the input 
matrix (raw data) a similarity matrix is calculated. There is a wide variability of hierarchical 
algorithms but the typical ones include the single linkage, the complete linkage and the 
average linkage methods. The representation of the results of the cluster analysis is usually 
performed by a tree-like scheme called dendrogram comprising a hierarchical structure 
(large groups are divided into small ones). 

Principal components analysis (PCA) [17] is a typical display method, which allows 
estimating the internal relations in the data set. There are different variants of PCA but 
basically, their common feature is that they produce linear combination of the original 
columns in the data matrix (data set) responsible for the description of the variables 
characterizing the objects of observation. These linear combinations represent a type of 
abstract measurements (factors, principal components) being better descriptors of the data 
structure (data pattern) than the original (chemical or physical) measurements. Usually, the 
new abstract variables are called latent factors and they differ from the original ones named 
manifest variables. It is a common finding that just a few of the latent variables account for 
a large part of the data set variation. Thus, the data structure in a reduced space can be 
observed and studied. The new coordinates are called factor scores and the regression 
coefficients from the linear combination of the old variables - factor loadings. 

In case of many studies related to natural ecosystems PCA and other multivariate 
statistical techniques are used to determine possible natural or anthropogenic influences in 
the formation of the determinants total mass. However, PCA does not provide a direct 
balancing and apportionment. After the pollution sources identification by the application of 
PCA, the next calculation step in modeling and balancing of pollution impacts is the 
apportioning itself. It is performed mostly by absolute principal components analysis 
(APCA). The procedure introduced by Thurston and Spengler [18] is well developed and 
often applied for apportionment purposes, mainly in apportionment of airborne particulate 
matter. However, recent applications of the approach proved its effectiveness in 
apportionment monitoring studies for other environmental compartments like surface water, 
soils, sediments, and biota.  

The first step in the source apportionment methodology of Thurston and Spengler is 
performing of principal components analysis. The PCA assumes that the total concentration 
of each element is made up of the sum of elemental contributions from each of f pollution 
source components. Hence 

Zik = ∑ Wij Pjk   (for j = 1…p) 

where: Pjk is the jth component’s value for observation k; j = 1…p is the number of 
pollution sources influencing the data and Wij is the coefficient matrix of the components.  

The first step in the derivation of source impacts is to calculate component scores for 
each sample (object). Rotated PC coefficients, B*, are calculated by applying the rotation 
transformation matrix [T] to [B] 

nxnpxnpxn TBB ][][][ * =  

Rotated PC scores are computed using the transformed [B] matrix 

nxmpxnpxm ZBP ][][][ ** =  
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These PC scores are correlated with their respective pollution source impacting the site 

(ie a higher component score *jkP  implies a higher pollution impact by the pollution source j 

during observation k). However, because they are computed from the normalized elemental 
concentrations Zik, they too are normalized. Each component indicates deviations from the 
mean source impacts; they are not proportional to these pollution impacts. 

It has been shown that the regression of a dependent variable Yk on the daily scores of 
components Pjk could be presented by the formula 

Yk = Ya +∑ζj Pjk    (for j = 1…p) 

where Ya equals the mean of Yk. If the dependent variable Yk is the total mass (for air 
particulate matter, in [µg m–3]), then ζj are the conversion coefficients of the non-
dimensional PC score deviations into mass deviations from the mean source impact. Since 
the components are not scored as deviations from zero, but instead as deviations from the 
mean, this results in the presence of Ya in the equation.  

As the factor scores obtained from PCA are normalized, with mean zero and standard 
deviation equal to unity, the true zero for each factor score is calculated by introducing an 
artificial sample with concentration equal to zero for all variables. 
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where: Ci - arithmetic mean concentration of analyte i (understood as feature), si - standard 
deviation of variable i. 

Then the rotated absolute zero PC scores, *
0P  for each of p components are calculated 

Ipip ZBP )( 0
**

0 ∑=   (for i = 1…n) 

These estimates of the PC scores for each component at absolute zero are then used to 
estimate Absolute PC Scores [APCS] for each component on each sampling day as follows: 

*
0

** ][][][ pxjpxjpxj PPAPCS −=  

where the j columns of [P0]*  are all identically equal to the values calculated for *
0pP . It can 

be proved in a straight forward manner that the calculation for [APCS]* gives the exact 
score which would be achieved had the original scoring been executed using unnormalized 
data. 

Regressing (multiple linear regression) the monitoring results on these APCS give 
estimates of the coefficients which convert the APCS into pollutant source mass 
contributions (in [µg m–3]) from each source for each sample. 

The source contributions to Ci can be calculated by mentioned above linear regression 
procedure according to the following: 

npbAPCSbC pipii ,...,2,1,)( 0 =⋅+= ∑  

where: (b0)i - constant term of multiple regression for variable i, bpi -  the coefficient of 
multiple regression of the source p for variable i, APCSp - scaled value of the rotated factor 
p for the considered sample, APCSp·bpi represents the contribution of source p to Ci.  
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The mean of the product APCSp·bpi on all samples represents the average contribution 
of the sources. The method estimates source profiles and contributions but its serious 
disadvantage is error propagation in centering and uncentering of data. This balancing 
approach accepts that all sources have been identified by the principal components analysis 
and all of them participate in the source contribution procedure. 

All statistical calculations were performed by the use of the software package 
STATISTICA 7.0. 

Results and discussion 

The monitoring data set involved 26 sampling sites characterized by 12 parameters 
(water temperature T; active reaction or pH marked as AR; dissolved oxygen DO; oxygen 
saturation OSat; conductivity COND; non-dissolved matter NDMat ; ammoniac nitrogen 
NH4-N; nitrate(V) nitrogen NO3-N; orthophosphates P; nitrate(III) nitrogen  NO2-N; 
biological oxygen demand BOD; chemical oxygen demand COD). The sampling period 
was between 2004 and 2009 but due to lack of data for some sampling sites and sampling 
periods the whole data matrix size finally was [555x12]. The data quality was proved by 
checking of the all aspects of the analytical procedures used - uncertainty of sampling and 
measurement, detection limit determination for each parameter, using of standard materials 
for method calibration. There were no missing data in the final data set.  

The basic statistics of the data is presented in Table 1. 
 

Table 1 
Basic statistics of the data set (N = 555) 

Parameter Mean Median Minimum Maximum SD 
T 14.28 14.5 1.0 28.3 6.46 

AR 7.89 7.9 6.66 9.52 0.42 
DO 7.14 7.07 0.7 14.64 2.41 

OSat 70.85 72.0 8.0 131.0 21.35 
COND 533.91 508.0 34.0 2700.0 286.8 
NMat 20.95 16.0 2.0 190.0 18.8 
NH4-N 0.63 0.105 0.001 11.2 1.57 
NO3-N 2.74 1.34 0.01 113.0 8.65 

P 3.31 0.238 0.006 549.0 28.09 
NO2-N 0.07 0.040 0.001 0.83 0.094 
COD 23.24 23.0 0.073 125.0 17.21 
BOD 3.53 2.73 0.0001 47.8 3.42 

 
If cluster analysis (standardized data set, squared Euclidean distance as similarity 

measure, Ward’s method of linkage) of the variables is performed using all data three major 
clusters are formed (Fig. 2). 

Cluster 1 includes the indicators OSat, DO and AR and forms a pattern showing the 
impact of anthropogenic sources (eg industrial wastes) causing the oxidation properties of 
the water body. Cluster 2 contains another three parameters (P, NO3 and NH4) which 
probably get into one group of similarity due to their common origin, eg agricultural and 
farming activities along the river catchment being the reason for enrichment with phosphate 
and nitrogen - containing substances. The last identified cluster 3 unites the rest of the water 
quality parameters. It could be conditionally divided into two sub-clusters: (BOD, COD, 
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NDMat) and (NO2, COND, T). This clustering resembles the role of the physical 
parameters on the water quality (temperature, conductivity) and, thus, the formation of 
possible seasonal patterns. Additionally, the biological impact of urban wastes 
(characterized by the correlation between BOD, COD and non-dissolved matter) contributes 
to the complete assessment of the river water quality and the creation of the respective water 
quality pattern.  

 

 
Fig. 2. Hierarchical dendrogram for linkage of 12 water parameters 

In order to better explain the formation of different water quality pattern formation and, 
respectively, to identify the sources responsible for the data set structure in this case, 
principle components analysis was performed using the standardized data set and Varimax 
mode of presenting the results. In Table 2 the factor loadings are presented. 

In principle, factor loadings higher than 0.7 are considered as statistically significant 
(they are marked by bold in the Table). Additionally, a second level of significance (bold + 
italics) is marked for better interpretation. Four latent factors explain over 65% of the total 
variance of the system and confirm the results obtained by cluster analysis. The first latent 
factor PC1 explains almost 20% of the total variance and indicates the strong impact of 
biological pollution parameters. It could be conditionally named “urban wastes” factor. The 
high factor loadings for BOD, COD, ND Mat, NO2-N and COND correspond to the 
grouping of the water quality parameters in cluster 3 from the previous statistical analysis. 

A second specific source in the river catchment is strongly related to those parameters 
which are linked to the concentration of the nutritional components in the water body - 
nitrogen containing species and phosphates. As conditional name “agricultural”  factor 
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seems suitable since it resembles the role of this type of parameter correlation in describing 
the river catchment water quality. PC2 fits quite well to cluster 2. 

 
Table 2 

Factor loadings table 

Variables PC1 PC2 PC3 PC4 
T –0.10 –0.01 0.70 0.17 

AR 0.026 –0.01 –0.10 0.92 
DO –0.21 –0.03 –0.92 0.24 

OSat –0.30 –0.05 –0.77 0.34 
COND 0.52 0.02 0.37 0.26 
NDMat 0.62 –0.06 –0.04 –0.10 
NH4-N 0.27 0.75 0.11 –0.03 
NO3-N –0.06 0.92 –0.05 0.01 

P –0.11 0.90 –0.01 –0.01 
NO2-N 0.46 0.02 0.21 –0.29 
COD 0.80 0.03 0.03 0.09 
BOD 0.78 0.09 0.12 0.01 

Expl. Var. [%] 19.6 18.5 17.9 10.1 

 
A slight difference between the results of clustering and principal components analysis 

is in the explanation of the next two latent factors and cluster 1. The third principal 
component PC3 involves high factor loadings for dissolved oxygen (DO) and saturation 
with oxygen (OSat) along with the temperature parameter. However, T is reversely 
correlated to the other two indicators. Thus, the conditionally named “industrial wastes” 
factor (explanation of nearly 18% of the total variance) reveals a specific seasonal behavior 
of the river system - the oxidation ability of the water body is definitively different in the 
winter and in the summer season. Using only cluster analysis one cannot find out this 
property in assessing the water quality. The active reaction (AR) of the water body is 
separated in PC4 (explanation of 10.1% of the total variance) and does not correlated with 
any other water quality indicator. This specific latent factor is probably related to the natural 
water acidity and since no pH values are available in the data set we could determine it as 
“acidity” factor. 

The linkage of the sampling locations (26, for each one various number of observation 
is registered; in total 552 separate cases are clustered) is performed using the same methods 
as in variables linkage (standardized data set, squared Euclidean distance as similarity 
measure and Ward’s method of linkage). The hierarchical diagram is presented in Figure 3. 

Two major clusters are formed but the detailed interpretation is difficult since the 
number of observation for each one of the monitoring sampling sites (in total 26) is very 
different. For some locations over 100 results are given (long-time complete monitoring) 
since other sites are included only by two to thirteen cases (limited monitoring results). 
Nevertheless, the formation of the two clusters is obvious and the careful checking indicated 
that the separation is due to geographical reasons - the right cluster consists dominantly of 
observations made from sites upstream and the left one includes dominantly downstream 
sites. No specific seasonal patterns were detected, probably due to the fact that the data set 
was not evenly populated for all sampling locations. 

Next step in the statistical analysis was the clustering of the averages for the sampling 
sites. Thus, in total 26 objects were grouped. The results are shown in Figure 4.  
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Fig. 3. Hierarchical dendrogram for linkage of 552 observations (cases) 

 
Fig. 4. Hierarchical dendrogram for linkage of 26 locations (cases) 
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In this situation the division between the sampling sites into two major clusters is quite 
clear and it is easier to interpret the cluster population. Cluster 1 (left side) includes sites 
with conditional numbers 2, 3, 4, 5, 6, all of them upstream sites and cluster 2 (right side of 
the dendrogram) - the rest of the sites (most of them located downstream). Again, the spatial 
separation “upstream - downstream” is proved. It is interesting to note that similar pattern of 
spatial separation is observed for other river systems [19, 20]. 

In Table 3 the factors responsible for the water quality around each sampling site are 
thoroughly discussed. 

 
Table 3 

Factors affecting the river water quality 

Number of 
sampling sites 

Conditional 
site number 

Name and situation 
of sampling site 

Municipality 
Impact factors or sources  

of pollution 

1.  2 
River Tundja before 

town Kalofer 
Kalofer 

2.  3 
River Tundja after 

town Kalofer 
Kalofer 

- lack of sewerage system 
- livestock production 
- illegal dumps  
- no WWTP 

3.  4 

River Tundja in the 
end of damp 

Koprinka 
 

Kazanlak 
- livestock production 
- illegal dumps 
- agriculture  

4.  5 
River Tundja before 
Kazanlak after dam 

Koprinka 
Kazanlak 

- livestock production 
- illegal dumps 
- agriculture 

5.  24 
River Kranska - 
tributary after 

Kazanlak 
Kazanlak 

- textile industry  
- production and processing of 

metals 
- livestock production 

6.  6 
River Eninska - 

tributary before influx 
in river Tundja 

Kazanlak 
- livestock production 
- illegal dumps 
- agriculture 

7.  7 
River Tundja after 

influx of River 
Eninska 

Kazanlak 

- chemical industry  
- livestock production 
- illegal dumps  
- agriculture 

8.  8 
River Tundja, village 

Iagoda 
Maglizh 

- lack of sewerage system 
- chemical industry  
- livestock production 
- illegal dumps  
- agriculture 
- no WWTP 

9.  9 
River Tundja in the 

end of dam Jrebchevo 
Nikolaevo 

- lack of sewerage system 
- livestock production 
- illegal dumps  
- agriculture 
- no WWTP 

10.  10 
River Tundja - bridge 

village Bania 
Nova Zagora 

- illegal dumps  
- agriculture 
- dairy industry 
- meat processing industry 
- no WWTP 

11.  11 
River Belenska before 
influx in river Tundja 

- tributary 
Sliven 

- livestock production 
- illegal dumps  
- agriculture 
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Number of 
sampling sites 

Conditional 
site number 

Name and situation 
of sampling site 

Municipality 
Impact factors or sources  

of pollution 

12.  12 
River Asenovska 

before influx in river 
Tundja - tributary 

Sliven 
- livestock production 
- illegal dumps  
- agriculture 

13.  13 
River Tundja near 
village Samuilovo 

after River Asenovska 
Sliven 

- livestock production 
- illegal dumps  
- agriculture 

14.  23 
River Tundja near 
village Gavrailovo 

Sliven 
- textile industry 
 

15.  25 
River Sotiria near 
village Kamen - 

tributary 
Sliven 

- textile industry  
- livestock production 
- illegal dumps  
- agriculture 

16.  15 

River Mochuritza 
near village 

Vodenichane - 
tributary 

Straldja 

- livestock production 
- illegal dumps  
- agriculture 
- no WWTP 

17.  16 
River Mochuritza 

after town Karnobat - 
tributary 

Karnobat 

- lack of sewerage system 
- livestock production 
- illegal dumps  
- agriculture 
- no WWTP 

18.  17 
River Mochuritza 

before  influx in river 
Tundja - tributary 

Yambol 
- livestock production 
- illegal dumps  
- agriculture 

19.  14 
River Tundja before 

influx of river 
Mochuritza 

Yambol 

- chemical industry  
- cocking oil production 
- dairy production 
- textile industry 

20.  1 
River Mochuritza 

near village Mokren - 
tributary 

Kotel 

- lack of sewerage system 
- livestock production 
- illegal dumps  
- no WWTP 

21.  18 
River Tundja near 

village Hanovo 
Tundja 

- lack of sewerage system 
- livestock production  
- meat processing industry 
- no WWTP 

22.  19 
River Tundja before 

town Elhovo 
Elhovo 

- lack of sewerage system 
- livestock production 
- illegal dumps  
- no WWTP 

23.  20 
River Tundja near the 

bridge of town 
Elhovo 

Elhovo 
- lack of sewerage system 
- livestock production 
- no WWTP 

24.  26 
River Dereorman - 

tributary 
Elhovo - food industry 

25.  21 
River Popovska 

before influx in river 
Tundja - tributary 

Boliarovo 

- lack of sewerage system 
- livestock production  
- meat processing industry 
- no WWTP 

26.  22 
River Tundja near the 
bridge of village Srem 

Topolovgrad 

- livestock production 
- agriculture 
- illegal dumps  
- no WWTP 

Note: WWTP means waste water treatment plant 
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Cluster 1 (left) includes mainly sites from the municipalities Kalofer and Kazanlak 
where the anthropogenic impact is due to inlet of domestic wastes (Kalofer municipality), 
agricultural and farming activity, dump sites, chemical industry (both upstream 
municipalities). Two parameters could be used as tracers (specific indicators) for the water 
quality assessment in this part of the river catchment. These are oxygen indicators since 
enhanced concentrations of dissolved oxygen and oxygen saturation are observed for the 
sites included in cluster 1. Obviously, in the upper stream of the river the pollution level is 
still relatively low. Additionally, no significant inlets contribute to the total anthropogenic 
impact of the river catchment.  

For the bigger part of sampling locations belonging to cluster 2 there are no specific 
tracers. All of them are characterized by higher concentrations of all other water quality 
parameters measured (except for DO and OSat). This is an important indication for the 
higher level of pollution downstream. The careful check of the information included in 
Table 3 proves this statement. The sampling locations with higher numbers than 6 reveal the 
anthropogenic impact due to the lack of purification facilities, industrial and domestic 
wastewater inlets, illegal dumping sites, higher industrial density (chemical enterprises, 
textile factories, diaries, pig farms etc.). Additional important indicator for the specific 
formation of cluster 2 is the high number of river inlets (Asenovska River, Kranska River, 
Mochuritsa River etc.) contributing significantly for the higher pollution level downstream 
of the major Tundja River.  

The identification of the four latent factors responsible for the monitoring data set 
structure and explaining in detail the pollution patterns along the river catchment made it 
possible to apply an additional statistical analysis of monitoring results - apportionment 
model of the pollution. The main goal is to determine the contribution of each one of the 
identified sources (with conditional names “urban wastes” factor, “agricultural”  factor, 
“ industrial wastes” factor and “acidity” factor) to the formation of the total concentration of 
each one of the water quality parameters. This type of analysis known also as principal 
components regression was carried out according to the approach of Thurston and Spengler 
[18] described in the experimental part. The results are presented in Table 4. 

 
Table 4 

Apportionment model results in [%] 

Variable Intercept Urban wastes Agricultural 
Industrial 

wastes 
Acidity R 2 

AR 9.8 - - - 90. 2 0.85 
DO - 5.7 - 89.4 4.9 0.88 

OSat 2.9 8.4 - 81.1 7.6 0.79 
COND 21.3 55.5 - 12.3 10.9 0.81 
NDMat 22.3 77.7 - - - 0.77 
NH4-N 10.6 29.8 60.6 - - 0.89 
NO3-N 7.8 - 92.2 - - 0.81 

P 5.5 5.1 89.4 - - 0.78 
NO2-N 29.9 42.3 - 12.9 14.9 0.74 
COD 9.5 85.3 - 5.2 - 0.80 
BOD 6.6 90.1 - 3.3 - 0.81 

 
In Table 4 the contribution of each latent factor to the total species concentration is 

indicated. The first column of the table shows the unexplained by the model concentration 
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(intercept of the regression equation) and the last column shows the value of the multiple 
correlation coefficient r2 being an indication for the model validity (comparison between the 
experimentally measured and calculated by the model concentration levels).  

As seen in Table 4 the apportionment regression models show good adequateness and 
explain in a reliable way the contribution of each one of the identified factors to the 
formation of the total concentration of any of the water quality parameters involved. Thus, 
an overall description of the pollution events along the Tundja River stream for the period 
of monitoring is obtained. The dominant role of the urban wastes and agricultural activity is 
obvious in accordance with the comments of the “hot spots” in the river catchment.  

Conclusions 

In the presented study by the environmetric methods is carried out assessment of large 
environmental data of physicochemical parameters, characterized the river water quality. 
Created models of variables (parameters) describe the links between water quality 
indicators, identify the latent factors, which reveal possible sources of water pollution and 
determine the contribution of each one of identified pollution factors to concentration of 
each one water quality parameters. The results identify dominant role of the urban wastes 
and agricultural activities in water pollution.  

CA of sampling sites shows tendency to spatial “upstream - downstream” separation 
regarding the level of pollution of the Tundja River. Similar pattern of spatial separation is 
observed for other river systems like Struma River, Saale River, Elba River. 
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DŁUGOOKRESOWA OCENA JAKO ŚCI WODY  
RZEKI TUNDJI 

Abstrakt:  Dwie główne metody analizy danych środowiskowych (analiza skupień (CA) i analiza składowych 
głównych (PCA)) zastosowano do statystycznej oceny jakości wód transgranicznej rzeki Tundja. W badaniach 
wykorzystano dane otrzymane z monitoringu długookresowego. Próbki pobrano w 26 miejscach  
i scharakteryzowano za pomocą 12 parametrów fizykochemicznych. Pogrupowanie tych parametrów ze względu 
na 3 wskaźniki chemiczne pozwoliło na zbudowanie 3 głównych klastrów: pierwszy z nich pokazuje wpływ 
źródeł antropogennych, drugi - wpływ rolnictwa i działalności rolniczej, a trzeci opisuje rolę parametrów 
fizycznych i zanieczyszczeń środowiska miejskiego na jakość wody. W celu lepszej oceny danych 
monitoringowych zastosowano PCA, co pozwoliło na identyfikację czterech ukrytych czynników. Dwa z nich - 
czynnik „miejskie odpady” i czynnik „rolnictwo” - odpowiadają niemal w całości klastrom 3 i 2 z poprzedniej 
analizy statystycznej. Trzeci czynnik, nazwany „odpadami przemysłowymi”, ukazuje specyficzne zmiany 
sezonowe w systemie rzecznym. Ostatni czynnik opisuje reakcję wody i jest określany jako czynnik „kwasowość”. 
Powiązania pomiędzy miejscami pobierania próbek wzdłuż przepływu oceniono za pomocą CA. Wskazano 
istnienie dwóch klastrów z separacją przestrzenną „upstream-downstream”. Model podziału zanieczyszczeń 
określał wkład każdego ze zidentyfikowanych czynników zanieczyszczeń w całkowitym stężeniu każdego  
z parametrów jakościowych wody. 

Słowa kluczowe: monitoring, wody rzeczne, obróbka danych, analiza skupień, analiza składowych głównych 


