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Abstract – The current measurement is becoming a challenging 
task in power converters operating at high switching frequencies, 
moreover traditional control system requires two control loops – 
first (slow) regulates DC-link voltage, second (fast) controls the 
shape of current, that all together results in complicated transfer 
function and long transition periods. The current sensorless 
control (CSC) allows neglecting the mentioned problems. This 
research for the first time presents the solution of CSC 
implementation in single-phase three-level neutral point clamped 
inverter. Mathematical equations were defined for inductor 
current peaks and transistor conduction time during 
discontinuous and continuous conduction modes, as well as major 
problem of current fitting between different voltage levels 
(consequently with different current peak-to-peak values) was 
solved, providing two solutions – pre-fitting and post-fitting 
trajectories. The verification of our theoretical assumptions and 
analytical equations was confirmed by the simulation analysis. 
Challenges of real experiments are discussed in the conclusion. 

 
Keywords – Sensorless control; Current control; Pulse width 

modulation inverters. 

I. INTRODUCTION 

New technologies of power electronic switches allow 
designing switched mode power supplies (SMPS) operating at 
higher switching frequencies that leads to minimization of 
reactive components and increase of power density of power 
converters. However, current measurement becomes new 
challenge when operates at frequencies above 100 kHz. For 
instance, galvanically isolated current sensors inherit signal’s 
propagation delay as well as limited bandwidth. The use of 
shunt resistor eliminates the mentioned problems, but on the 
other hand leads to additional conduction losses that 
negatively influence the efficiency of the converter. Thus, 
elimination of instantaneous current measurement would 
allow overcoming of the mentioned problems as well as 
reducing the cost and size of the control system, as it has been 
mentioned in multiple articles [1]–[4].  

Moreover, traditional control system usually consists of two 
control loops – the first one (slow) controls the capacitor 
voltages on the DC link, while the second one (fast) controls 
the shape of current. This results in complicated transfer 
function, as well as in long transient responses, while current 
sensorless control (CSC) excludes current control loop, that 
leads to simpler control system of the converter [5], [6]. 

The CSC method was mostly applied to power factor 
correction circuit based diode rectifier and boost converter 
[5]–[7]. Recent publication demonstrated good performance of 
CSC applied to bidirectional AC/DC converter based on full-
bridge converter [8]. All of the mentioned research made their 

investigation with inductor’s continuous conduction mode 
(CCM) selecting only either bulky inductor or higher 
switching frequency. Authors’ previous publications [9], [10] 
described the CSC use with half-bridge converter, where 
among other, the attention is focused also on current control  
during DCM. Contrary to previous topologies, the inductor in 
half-bridge converter experiences higher voltage, as a result, 
current slopes have more impetuous rising and falling edges 
that leads to longer discontinuous conduction mode (DCM) 
period, that should not be neglected. The comparison of the 
mentioned research papers is made in Table I. 

For some decades three-level neutral point clamped (NPC) 
topology has been used in electrical drive applications [11]–
[13], but since the increase of renewable energy applications, 
NPC has also found its use here [14], [15]. The application of 
CSC with NPC converters seems relevant, as on one hand 
inductor is exposed to smaller voltage stresses that provides 
earlier CCM than, for instance, in full-bridge topology and, as 
a result, simple CSC calculations. On the other hand, due to 
switching between different voltage levels, the inductor’s 
current peak-to-peak value changes, which should be specially 
considered, ensuring that average inductor’s current value will 
track the reference signal. Overviewing the different control 
techniques of NPC converters [16]–[21], none of them 
delivers CSC. It is interesting that the sensorless current 
control discussed in [22], having utilized the sinusoidal 
carrier-based PWM and having assumed multiple 
simplifications, has no sense to real CSC. 

This paper is organized as follows: the second section 
introduces the main theory of CSC. The third section 
demonstrates the simulation results. The last section discusses 
the results and points out the challenges for real experiments. 

TABLE I 

COMPARISON OF DIFFERENT CSC PROJECTS 

 [5] [7] [6] [8] [9] 

Topology Boost Boost Boost 
Full-

bridge 
Half-
bridge 

Immunity from non-
sinusoidal voltage 

– – √ √ √ 

Current control 
 DCM – – – – √ 

 CCM √ √ √ √ √ 

Switching frequency [kHz] 25 160 50 40 25 

Inductance [mH] 4.65 1.2 4.56 4.6 2 

Capacitance [mF] 0.56 2.2 0.47 1.4 (2x) 1 

Power (W) 500 400 500 500 1000 

AC voltage (RMS) 110 55 110 110 220 

DC voltage  300 100 300 200 750 

doi: 10.1515/ecce-2014-0020 
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II. THEORY OF CSC APPLIED FOR MLC 

The main idea of CSC is to hold proper Volts-second 
balance on inductor, in order to keep average current value to 
track reference signal. Contrary to full-bridge or half-bridge 
converters, where either full DC-link voltage or freewheeling 
state is applied to inductor, the MLC has its superior feature of 
selecting the voltage level (1 VDC, ½ VDC, ⅓ VDC, ¼ VDC 

depending on the number of levels) that is applied to inductor. 
In this research single-phase three-level neutral-point-clamped 

(NPC) inverter is studied. Taking into account, that current 
can be boosted to the grid, when voltage applied to inductor is 
higher than that of the grid, three combinations of commutated 
switches have been defined that can be seen in Table II. It 
demonstrates commutated current paths and corresponding 
voltage applied to inductor in respect to different input voltage 
ranges during positive half-period of input voltage. Table III 
summarizes all switching combinations during the whole 
period of input voltage. 

TABLE II 

COMMUTATED CURRENT PATHS IN AND CORRESPONDING INDUCTOR VOLTAGE DURING POSITIVE INPUT HALF-PERIOD 

 Boosting energy (d = 1) Freewheeling (d = 0) 
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TABLE III 

SUMMARY OF SWITCHING SIGNAL COMBINATION AND CORRESPONDING INDUCTOR VOLTAGE 

Input voltage 
polarity 

Input voltage level 
Current path 
d(t) 

S11 S12 S13 S14 S21 S22 S23 S24 Inductor’s voltage 

P
os

it
iv

e 

VAC < 0.8 VC1 
1 1 1 – – – – 1 – VL = VC1 − VAC 

0 – 1 – – – – 1 – VL = −VAC 

0.8 VC1 < VAC < 1.2 VC1 
1 1 1 – – – – 1 1 VL = VC1 + VC2 − VAC 

0 – 1 – – – – 1 – VL = −VAC 

VAC > 1.2 VC1 
1 1 1 – – – – 1 1 VL = VC1 + VC2 − VAC 

0 1 1 – – – – 1 – VL = VC1 − VAC 

N
eg

at
iv

e 

−VAC < 0.8 VC2 
1 – – 1 1 – 1 – – VL = VC2 + VAC 

0 – – 1 – – 1 – – VL = VAC 

0.8 VC2 < −VAC < 1.2 VC2 
1 – – 1 1 1 1 – – VL = VC1 + VC2 + VAC 

0 – – 1 – – 1 – – VL = VAC 

−VAC > 1.2 VC2 
1 – – 1 1 1 1 – – VL = VC1 + VC2 + VAC 

0 – – 1 1 – 1 – – VL = VC2 + VAC 

 
 
In order to track the changes of polarity of different 

variables in digital control system, simple Boolean function is 
defined as follows 

 
0, 0

( )
1, 0

if x
pos x

if x


  

. (1) 

Now it is possible to write versatile inductor’s voltage 
equations that combine all variation from Table III as follows 

    
   
   

     

2 1

1 2

1 2 1 2
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, (2) 

 
    

   1 1 2 2

0 2 1

1.2 1.2

L AC AC

AC C C AC C C

v d pos V V

pos V V V pos V V V

   

    
. (3) 

Fig. 1 demonstrates discontinuous and continuous current 
modes for input inductor that also has certain influence on 
average current calculation equations. 
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(a) DCM (b) CCM 

 
Fig. 1. Inductor’s discontinuous and continuous current modes. 

The peak value of inductors current can be described with 
two formulas as follows 

 
 ,

_ max, 1,

1L k
DCM k k

V d
i t

L


 , (4) 

 
   ,

_ max, 2, 1,

0L k
DCM k k k

V d
i t t

L


   , (5) 

where from t2,k is defined as 

 
   

 
, ,

2,
,

0 1

0
L k L k

k
L k

V d V d
t

V d

  



. (6) 

The average current can be calculated as simple area of 
triangle divided by period as follows 

 
_ max, 2,

, , 2
DCM k k

ref k avg k
sw

i t
i i

T
  . (7) 

Substituting the t2,k in (7) by the definition in (6) and 
extracting transistor’s conduction time, the following control 
law is defined 

 
 

      
, ,

1,

, , ,

2 0

1 0 1
avg k sw L k

k

L k L k L k

i L T V d
t

V d V d V d




   
. (8) 

The CCM control law can be extracted from the equation of 
volt-second balance during single switching period, which is 
defined as 

 
     , ,

, 1, 1,

1 0L k L k
ref k k sw k

V d V d
i t T t

L L

 
    . (9) 

So, the transistor’s conduction time in CCM is defined as 

 
 

   
, ,

1,
, ,

0

1 0
ref k L k sw

k
L k L k

i L V d T
t

V d V d

  


  
. (10) 

Fig. 2 demonstrates analytical waveforms of DCM and 
CCM control laws for rectifier and inverter mode. The final 
commutation signal is selected as minimum value of DCM 
and CCM signals. 
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(a) IM = 0.5 A 

(b) IM = 5 A 
Fig. 2. Analytical waveforms of duty cycle for half-period of input voltage 
(index k represents switching cycle serial number, fAC = 50 Hz, fSW = 25 kHz, 
VAC_M = 311 V, VC1(t = 0) = VC2 (t = 0) = 200 V, L = 1 mH). 

Additional attention should be focused on the transition 
between the different voltage levels during CCM, as peak-to-
peak current value is also changing. It means that special volt-
second balance should be applied during the transition 
between different voltage levels switching, in order to keep 
inductor’s average current value to track reference signal. 
Fig. 3 demonstrates two possible trajectories for current fitting 
at transition between different voltage levels. 

I [A]

t [s]t1,k
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iav g,k

iref(t) iL(t)
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Pre-fitting 
trajetory

Post-fitting 
trajetory Δ tpost

Δ tpre

Fig. 3. Options for current fitting at transition between different voltage levels. 

Both pre- and post-fitting duty-cycle corrections are 
calculated by (10), where besides Δiref,k the differences 
between current peak-to-peak values (of falling edges) at 
different voltage levels should be taken into account as 
follows (equation for post-fitting) 

 
 

   

, , 1
, 1 , 1

1, 1
, 1 , 1

0
2

1 0

fal k fal k
ref k L k sw

k
L k L k

i i
i L V d T
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, (11) 

where ifal,k is calculated similarly as in (5), substituting t2,k with 
commutation period TSW as follows 

 
  , 1,

,

0L k SW k

fal k

V d T t
i

L

 
 . (12) 

III. SIMULATION RESULTS 

The PSIM simulation software was used to study the 
proposed CSC algorithm, which was coded in “Simplified C 
Block”. The open loop control was assembled fast evaluation, 
as well as voltage sources were used instead of capacitors. The 
overall schematic is seen in Fig. 4. 

 

 
Fig. 4. Power part of the simulation model (ideal elements are utilized). 
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(a) Reference current amplitude  IM = 0.5 A (b) Reference current amplitude  IM = 5 A 

Fig. 5. Simulation results of CSC applied to NPC inverter during (a) DCM and (b) CCM operation (top graphs (I_L, AVGX(I_L,40u), Iref) consist of inductor’s 
current, average inductor current, reference current values; middle graphs (G24, G11+1.1) contain actively commutated switching signals; bottom graphs 
represent) calculated DCM and CCM duty cycle values. 

Fig. 5 demonstrates the simulation results of NPC inverter 
operation under CSC algorithm, where duty cycle is calculated 
by using (8) and (10) and no current control loop is utilized in 
the control system. As it can be seen from Fig. 5(a) top graph 
the average value of inductor’s current (blue) perfectly 
matches the reference signal (green). The same can be 
concluded from Fig. 5(b) top graph, where average inductor’s 
current (blue) matches the reference signal (green), except the 
switching periods, when transition between different voltage 
levels occurs. The post-fitting current trajectory has been 
applied that have provided satisfying results. 

IV. CONCLUSION 

The CSC allows eliminating of instantaneous current 
measurements in SMPS that can be useful for converters 
operating at high switching frequency and to minimize the 
cost and size of control system.  

Previously this technique was used only with two level 
SMPS (diode bridge with boost DC/DC converter, half-bridge, 
full-bridge), while hereby the theoretical model of CSC has 

been developed for a three-level NPC multilevel inverter, 
where special attention was focused on proper volt-second 
balance during the transition between different voltage levels. 
Two options were defined in this context – pre-fitting and 
post-fitting current trajectories.  

The simulation results confirmed the theoretical model, 
consequently, ability of shaping current by using CSC was 
successfully simulated for DCM and CCM, as well as post-
fitting current matching technique was successfully applied 
during the transition between different voltage levels of 
single-phase three-level NPC converter. 

The real experiment would require the improvement of CSC 
by including conduction loses of real switching and reactive 
elements. Additionally, post- or pre-fitting techniques should 
be dynamically selected in order to have fluent change of duty 
cycle value. 
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