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Abstract – Because of the exponential increase of 

computational resource requirement for numerical field 
simulations of more and more complex physical phenomena and 
more and more complex large problems in science and 
engineering practice, parallel processing appears to be an 
essential tool to handle the resulting large-scale numerical 
problems.  One way of parallelization of sequential (single-
processor) finite element simulations is the use of domain 
decomposition methods. Domain decomposition methods (DDMs) 
for parallel solution of linear systems of equations are based on 
the partitioning of the analyzed domain into sub-domains which 
are calculated in parallel while doing appropriate data exchange 
between those sub-domains. In this case, the non-overlapping 
domain decomposition method is the Lagrange multiplier based 
Finite Element Tearing and Interconnecting (FETI) method. This 
paper describes one direct solver and two parallel solution 
algorithms of FETI method. Finally, comparative numerical tests 
demonstrate the differences in the parallel running performance 
of the solvers of FETI method. We use a single-phase 
transformer and a three-phase induction motor as two-
dimensional static magnetic field test problems to compare the 
solvers. 
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I. INTRODUCTION 

The finite element method [1]-[2] is an important technique 
for the solution of a wide range of problems in science and 
engineering. In electromagnetic computation, it is based on the 
weak formulation of the partial differential equations, which 
can be obtained by Maxwell’s equations and the weighted 
residual method [1]. The most time consuming part of finite 
element computations is the solution of the large sparse 
system of equations. Therefore, the solution of a large system 
of equations must be parallelized in order to speedup the 
numerical computations [3]-[5]. 

Different applications of domain decomposition method 
[3]-[4] have a long history in computational science. The 
reason for employing the sub-structuring technique was the 
small memory of computers. To solve large scale problems, 
domain has been divided into sub-domains that fit into the 
computer memory. Despite grow of computer memory, the 
demand for solution of large real life problems is always 
ahead of computer capabilities. The large scale computations 
and simulations performed with finite element method (FEM) 
[1]-[2] often require very long computation time. While 
  

 
Fig. 1. The geometry based distributed computation. 

limited progress can be reached with improvement of 
numerical algorithms, a radical time reduction can be made 
with multiprocessor computation. In order to perform finite 
element analysis by means of a computer with parallel 
processors, computations should be distributed across the 
processors (see in Fig 1.). 

The Finite Element Tearing and Interconnecting (FETI) 
method [3]-[6] was introduced by Farhat and Roux in 
Reference [4]. In the last decade, the FETI method [3]-[6] has 
seemed as one of the most powerful and the most popular 
solvers for numerical computation. The FETI requires fewer 
interprocessor communications, than traditional domain 
decomposition algorithm, as Schur or Schwarz method [3], 
while it still offers the same amount of parallelism. The best 
solvers for FETI method are iterative solvers. The conjugate 
gradient (CG) based iterative methods [7]-[8] have emerged as 
a widely used method. However, the direct solver sometimes 
is faster, more efficient and tends to be more robust than the 
iterative solver [6]. 

The parallel finite element based numerical analysis on 
supercomputers or on clusters of PCs (Personal Computers) 
needs the efficient partitioning of the finite element mesh. 
This is the first and the most important step of parallelization 
with the use of domain decomposition methods [9].  

Many domain decomposition or graph-partitioning 
algorithms can be found in the literature [10]. Gmsh [11] 
combined with METIS algorithm [10] has been used for the 
discretization of the domain of problem and for the mesh 
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Fig. 2. Partitioned two-dimensional problem. 

partitioning. The parallel finite element program has been 
implemented in the Matlab environment [12]. 

The paper presents a parallel approach to the solution of 
two-dimensional static magnetic field problems by parallel 
finite element method. These problems are case studies to 
show the steps of the Finite Element Tearing and 
Interconnecting method with finite element technique. The 
comparison focused on the time, speedup and numerical 
behavior of solvers of FETI method. 

II. FINITE ELEMENT TEARING AND INTERCONNECTING METHOD 

AND ITS ALGORITHMS 

The main idea of the domain decomposition method is to 
divide the domain Ω into several sub-domains in which the 
unknown potentials could be calculated simultaneously, i.e. in 
parallel. 

The general form of a linear algebraic problem arising from 
the discretization of a static field problem defined on the 
domain Ω can be written as [7]-[8] 

 bKa  , (1) 
where nnR K  is the symmetric positive definite matrix, 

nRb  on the right hand side of the equations represents the 
excitation, and nRa  contains the unknown nodal potentials. 
Here n is the number of unknowns. 

If domain Ω is partitioned into a set of NS disconnected sub-
domains (Fig. 2), the FETI method consists of replacing 
equation (1) with the equivalent system of sub-structure 
equations (where j = 1, …, NS) [3]-[6] 

 λBbaK T
jjjj  , (2) 

with the compatibility of the magnetic vector potentials at the 
sub-domain interface [3]-[6] 

 



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where Kj is the jth sub-domain mass matrix, bj is the jth vectors 
of right-hand side, λ is a vector of Lagrange multipliers [3]-[4] 
introduced for enforcing the constraint (3) on the sub-domain 
interface boundary Γj, and Bj is a signed (±) Boolean mapping 
matrix [5], which is used to express the compatibility 

condition at sub-domain interface Γj. The superscript T 
denotes the transpose. 

Usually, the partitioned problem may contain Nf ≤ NS 
floating sub-domain, where matrices Kj from being singular 
[9]. The floating sub-domain is a sub-domain without enough 
Dirichlet boundary conditions [6]. In Fig. 2, the Sub-domain 5 
is a floating sub-domain, because the outer boundary is not 
Dirichlet boundary condition (ΓD), but Neumann boundary 
condition (ΓN). In this case Nf of local Neumann problems are 
singular. To guarantee the solvability of these sub-problems, 
we require that [4]-[5] 

    jjj KλBb KerT  , (4) 

and compute the solution of equation in (2) as [3]-[6] 

   jjjjjj αRλBbKa   T , (5) 

where Kj
+ is a pseudo-inverse of Kj, Rj=Ker(Kj) is the kernel 

or null space [7] of Kj, and αj is the set of amplitudes that 
specifies the contribution of the null space Rj to the solution 
aj. Instead of a pseudo-inverse of matrix, the Moore-Penrose 
matrix inverse [7] or generalized inverse have been used here. 
The introduction of the αj is compensated by the additional 
equations resulting from (4) [3],[5] 

   0λBbR  TT
jjj . (6) 

Substituting equation (5) into the equation (3) and 
exploiting the solvability condition (6), after some algebraic 
manipulations leads to the following FETI interface problem 
[3]-[6] 
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where [4]-[6] 
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In order to solve equation (7) for the Lagrange multiplier 
vector λ, the following splitting of λ is performed [4]-[6] 

  λQPλλ  0 . (8) 

where   eQGGQGλ
1T

0


 III , which is a particular solution 
of eλG T

I , and P(Q) is a projection operator [3], [5], which 
is for any matrix Q, usually the unit matrix,   0QPG T

I  by 
    T1T

IIII GQGGQGIQP


 . 

A. Direct Solver 

If dFλ  I in (8) and  IFQ  [6], [13], and after some 
algebraic manipulations equation (8) leads to the following 
equation [6], [13] 
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  αGdFλ II   , (9) 

where    edFGGFGα  
IIIII

T1T  [6], [13]. After 
obtaining λ and α, the results can be calculated by (5).  

This direct solver is handling the singularity of floating sub-
domain. 

B. Modified Conjugate Gradient Method 

The conjugate gradient method is the most commonly used 
algorithm to solve systems of linear equations [8]. However, 
the coarse problem is not positive definite and therefore the 
classical conjugate gradient cannot be used [3]. The modified 
conjugated gradient method [4]-[5], [14]-[15] is used for the 
solution of the reduced system (7). 

The solution to the system of equations (7) is identical to 
the problem of minimizing the quadratic form [3], [7]-[8] 

 dλFλλ TT

2

1
 . (10) 

with the additional condition eλG T
I [3]. Therefore a 

modification which is based on the application of the 
additional condition must be included. Additional condition 
must always be satisfied during the iteration process [9]. 

The algorithm of the modified conjugate gradient method 
(MCG) can be written as [3]-[5], [14] 

1. Initialize 
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2. Iteration k = 0, 1, … until convergence 

 

 
 

 
 
 

. 

, 

, 

, 

, 

, 

11

T
1

T
1

11

1

1

T

T

kkkk

kk

kk
k

kk

kIkkk

kkkk

kIk

kk
k

sws

ww

ww

rQPw

sFrr

sλλ

sFs

ww
































 

  
The drawback of this algorithm is that it cannot handle the 

singularity of floating sub-domain. This problem can be 
solved by a suitable preconditioner. 

C. Preconditioned Modified Conjugate Gradient Algorithm 

With the preconditioned modified conjugate gradient 
algorithm (PMCG) [3], [9], [15] the sub-domain problems 
with invertible matrices are solved in the initialize step and 
related sub-domain with singular matrices are solved in the 
iteration steps. 

In this paper, the so called lumped preconditioner L
IF  [3], 

[16] has been used. In this case, each sub-domain matrix is 
partitioned as [3], [5] 
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where the superscript i and Γ designate the sub-domain 
interior and interface boundary DoF, respectively. The lumped 
preconditioner is given by [3], [16] 
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The algorithm of the preconditioned modified conjugate 
gradient method (PMCG) can be summarized as [3], [9] 

1. Initialize 
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2. Iteration k = 0, 1, … until convergence 

 

 
 

 
 

 
  . 

, 

, 

, 

, 

, 

0
T

T
1

11

1
L

1

1
T

1

1

1

T

T

j

k

j jIj

jIk
kk

kIk

kk

kIkkk

kkkk

kIk

kk
k

s
sFs

sFh
hs

wFQPh

rQPw

sFrr

sλλ

sFs

sh
































  

 
Fig. 3. The partitioned finite element mesh of the test problems. 

 
Fig. 4. The magnetic vector potential and equipotential lines of the 
transformer and the magnetic flux density distribution of the induction motor. 
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III. TEST PROBLEMS 

Two test problems have been used for the comparison. The 
first benchmark is a single-phase transformer [17], and the 
second one is a three-phase induction motor. Fig. 3 shows the 
partitioned finite element mesh of the problems. The solution 
of these problems can be seen in Fig. 4. The chosen test 
problems are static magnetic field problems, where the partial 
differential equations are of elliptic type [1]. The problems are 
discretized by triangle elements and linear nodal shape 
functions [1]-[2] have been used for the test problems. 

IV. RESULTS AND DISCUSSION 

In order to compare the iteration counts and speedup of the 
methods, we have run a number of test cases using a research 
code that has been developed for that purpose on the Matlab 
computing environment. This code simulates the state of the 
art techniques used to implement the discussed DDMs in 
lower level programming languages (e.g. Fortran, C, C++) for 
high performance application. 

The computations have been carried out on a massively 
parallel computer (SUN Fire X2250). This computer works 
with a shared memory topology with two Quad-Core Intel® 
Xeon® processors. The parallel programs have been 
implemented under the operating system Linux. 

Three problems have been used to compare the time and the 
speedup of the function of the number of the applied 
processors. The 55933 number of unknowns (DoF) problem is 
the single-phase transformer problem. The 107828 DoF 
problem is the induction motor problem. The 71655 DoF 
problem is a quarter of the transformer, because in this case 
the problem contains floating sub-domain. 

In order to use the same stop criterion for the iterative 
solvers, 910 . The speedup has been calculated by the 
following formula, Speedup = Time1 / Timen [18], where Time1 
is the running time of the sequential algorithm or the running 
time with least processor number, and Timen is the running 
time of the parallel algorithm executed on n processor [18]. 

The next figures (Fig. 5. to Fig. 10.) show the speedup and 
time of the function of the number of the applied processor 
cores. The number of processor cores is equal to the number 
of sub-domains during all simulations.  

The parallel performance results of the solvers of the FETI 
method for the full transformer problem are summarized in 
Fig.  5 and Fig.  6. The speedups are computed using the wall 
clock time of sequential calculation as the reference point. 
Fig. 6 shows the time of the solvers is nearly same but the 
speedup of the solvers (see in Fig. 5.) clearly shows that the 
direct solver is faster than the iterative solvers. 

The running performances of the solvers of FETI method 
for the three-phase induction motor problem are summarized 
in Fig. 7. and Fig. 8., when the number of processor cores is 
varied between 4 and 8. The speedups are computed using 
NP=4 as the reference point. The direct solver also achieves 
good speedup, and the modified conjugate gradient solver 
achieves reasonable one. However, when the problem is the 
largest (4 processors with 26837 DoF) the PMCG is the 
fastest. 

 
Fig. 5. The speedup of 55933 DoF problem. 

 
Fig. 6. The time test of 55933 DoF problem. 

 
Fig. 7. The speedup of 107828 DoF problem. 
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Fig. 8. The time test of 107828 DoF problem. 

 
Fig. 9. The speedup of 71655 DoF problem. 

 
Fig. 10. The time test of 71655 DoF problem. 

For 5 ≤ NP ≤ 8, the performance results of the solvers of 
FETI method are reported in Fig. 9 and Fig. 10 for the quarter 
of the transformer problem, i.e. when the problem contains 
floating sub-domain. In this case the preconditioned modified 
conjugate gradient method seems to be much better for this 
type of problem, than the direct solver. 

Table I, Table II and Table III demonstrate the convergence 
properties of the iterative algorithms of FETI method for static 
field problems. These tables summarize: the number of 
processors, NP; the number of unknowns on each sub-domains 
NDoF; and the number of interface unknowns on each sub-
domains NIDoF. The number of iterations of solvers is 
increased, when the number of interface unknowns also is 
increased. Because, the number of Lagrange multipliers, i.e. 
the unknowns of (7) depends on the number of NIDoF.  

It seems to be that the modified conjugate gradient solver 
solved the problem faster, than the preconditioned modified 
conjugate gradient method. However, the number of iterations 
reported in Table I and Table II show that the PMCG solver of 
FETI method has faster convergence rate than the MCG solver 
of FETI method. The preconditioned FETI solver is shown to 
converge four times (Table I) and two times (Table II) faster 
than the modified conjugate gradient. 

TABLE I 

PERFORMANCE COMPARISON OF ITERATIVE ALGORITHMS AT 55933 DOF – 

TRANSFORMER PROBLEM. 

NP NDoF NIDoF 
MCG 

N. of Iter. 
PMCG 

N. of Iter. 
2 27812 282 265 53 
3 18586 406 379 78 
4 13973 502 388 72 
5 11205 632 576 95 
6 9354 747 637 193 
7 8033 811 703 135 
8 7039 896 774 138 

TABLE II 

PERFORMANCE COMPARISON OF ITERATIVE ALGORITHMS AT 107828 DOF – 

INDUCTION MOTOR PROBLEM. 

NP NDoF NIDoF 
MCG 

N. of Iter. 
PMCG 

N. of Iter. 
4 26837 525 679 337 
5 21510 646 887 298 
6 17950 794 1001 494 
7 15337 913 1182 597 
8 13494 1066 1198 541 

TABLE III 

DATA OF PRECONDITIONED FETI SOLVER AT 71655 DOF – QUARTER OF 

TRANSFORMER PROBLEM. 

NP NDoF NIDoF 
PMCG 

N. of Iter. 
5 14288 777 100 
6 11987 1067 210 
7 10278 1056 121 
8 9007 1177 125 

V. CONCLUSIONS 

In this paper, we have presented the description of the 
Finite Element Tearing and Interconnecting method for static 
magnetic field problems. We have illustrated the speedup of 
the method and the convergence behavior of solvers with the 
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solution of two-dimensional static field problems on massively 
parallel computer. 

For the three problems, the speedup achieves nearly 11-fold 
3-fold and 2-fold speedup using 8 processors. 

It can be concluded that the direct solver outperforms the 
modified and the preconditioned modified conjugate gradient 
algorithms. The computation costs and the memory 
requirement of the computation of the null space and pseudo-
inverse of the sub-domain mass matrices are small, because 
the first two problems does not contain floating sub-domain. 
However, these computations can become the Achilles’ heel 
for the direct solver in the third case. This is the reason, why 
the PMCG solver seems to be better than the direct solver for 
the quarter of the transformer problem. 

The aim of the future research is to solve more complex, 
larger two dimensional and three dimensional problems, and 
to realize DP-FETI method, which is distinguished by low 
memory requirement and a shorter time is necessary to reach 
convergence. 
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