A Survey of Broken Rotor Bar Fault Diagnostic Methods of Induction Motor

Open access

Abstract

Electrical machines, induction motors in particular, play a key role in domestic and industrial applications. They act as a work horse in almost every industry and are responsible for a big proportion of total generated electricity consumption worldwide. The faults in induction motors are degenerative in nature and can lead to a catastrophic situation if not diagnosed earlier. The failures can cause considerable financial loss in the form of unexpected downtime. Broken rotor bar is a very common and frequently occurring fault in most of industrial induction motors. To select a better, more accurate and reliable fault diagnostic technique, this paper presents a comprehensive literature survey on the existing motor current signature analysis (MCSA) based fault diagnostic techniques. Different well-known MCSA based fault diagnostic techniques are summarized in the form of basic theories, considering complexity of their implementation, merits and demerits.

[1] R. H. C. Palacios, I. N. da Silva, A. Goedtel, W. F. Godoy, and T. D. Lopes, “Diagnosis of Stator Faults Severity in Induction Motors Using Two Intelligent Approaches,” IEEE Trans. Ind. Informatics, vol. 13, no. 4, pp. 1681–1691, Aug. 2017. https://doi.org/10.1109/TII.2017.2696978

[2] B. Ayhan, H. J. Trussell, M.-Y. Chow, and M.-H. Song, “On the Use of a Lower Sampling Rate for Broken Rotor Bar Detection With DTFT and AR-Based Spectrum Methods,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1421–1434, Mar. 2008. https://doi.org/10.1109/TIE.2007.896522

[3] Z. Hou, J. Huang, H. Liu, M. Ye, Z. Liu, and J. Yang, “Diagnosis of Broken Rotor Bar Fault in Open- and Closed-Loop Controlled Wye-Connected Induction Motors Using Zero-Sequence Voltage,” IET Electr. Power Appl., vol. 11, no. 7, pp. 1214–1223, Aug. 2017. https://doi.org/10.1049/iet-epa.2016.0505

[4] Y. Gritli, A. O. Di Tommaso, R. Miceli, C. Rossi, and F. Filippetti, “Diagnosis of Mechanical Unbalance for Double Cage Induction Motor Load in Time-Varying Conditions Based on Motor Vibration Signature Analysis,” in 2013 International Conference on Renewable Energy Research and Applications (ICRERA), 2013, pp. 1157–1162. https://doi.org/10.1109/ICRERA.2013.6749927

[5] P. Granjon, “Electromagnetic Vibrations Estimation of an Induction Motor by Nonlinear Optimal Filtering,” in 2005 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2005, pp. 1–5. https://doi.org/10.1109/DEMPED.2005.4662508

[6] L. Weili, X. Ying, S. Jiafeng, and L. Yingli, “Finite-Element Analysis of Field Distribution and Characteristic Performance of Squirrel-Cage Induction Motor With Broken Bars,” IEEE Trans. Magn., vol. 43, no. 4, pp. 1537–1540, Apr. 2007. https://doi.org/10.1109/TMAG.2006.892086

[7] R. Fiser and S. Ferkolj, “Application of a Finite Element Method to Predict Damaged Induction Motor Performance,” IEEE Trans. Magn., vol. 37, no. 5, pp. 3635–3639, 2001. https://doi.org/10.1109/20.952679

[8] D. Lopez-Perez and J. Antonino-Daviu, “Application of Infrared Thermography to Failure Detection in Industrial Induction Motors: Case Stories,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 1901–1908, May 2017. https://doi.org/10.1109/TIA.2017.2655008

[9] J. Antonino-Daviu, A. Quijano-Lopez, V. Climente-Alarcon, and C. Garin-Abellan, “Reliable Detection of Rotor Winding Asymmetries in Wound Rotor Induction Motors via Integral Current Analysis, ” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2040–2048, May 2017. https://doi.org/10.1109/TIA.2017.2672524

[10] Y. Park, M. Jeong, S. Bin Lee, J. A. Antonino-Daviu, and M. Teska, “Influence of Blade Pass Frequency Vibrations on MCSA-Based Rotor Fault Detection of Induction Motors,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2049–2058, May 2017. https://doi.org/10.1109/TIA.2017.2672526

[11] M. Drif, H. Kim, J. Kim, S. Bin Lee, and A. J. M. Cardoso, “Active and Reactive Power Spectra-Based Detection and Separation of Rotor Faults and Low-Frequency Load Torque Oscillations,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2702–2710, May 2017. https://doi.org/10.1109/TIA.2016.2613508

[12] H. W. Penrose, “Test Methods for Determining the Impact of Motor Condition on Motor Efficiency and Reliability,” Ph. D. Diss., vol. ALL-TEST P, no. LLC, Old Saybrook, CT, pp. 1–8.

[13] S. Karmakar, S. Chattopadhyay, M. Mitra, and S. Sengupta, Induction Motor Fault Diagnosis: Approach Through Current Signature Analysis, 1st ed.

[14] M. Hedayati and N. Mariun, “Assessment of Different Voltage Sags on Performance of Induction Motors Operated With Shunt FACTS,” in 2012 3rd Power Electronics and Drive Systems Technology (PEDSTC), 2012, pp. 483–489.

[15] T. Vaimann, A. Belahcen, and A. Kallaste, “Necessity for Implementation of Inverse Problem Theory in Electric Machine Fault Diagnosis,” in 2015 IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 2015, pp. 380–385. https://doi.org/10.1109/DEMPED.2015.7303718

[16] R. Puche-Panadero, M. Pineda-Sanchez, M. Riera-Guasp, J. Roger-Folch, E. Hurtado-Perez, and J. Perez-Cruz, “Improved Resolution of the MCSA Method via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 52–59, Mar. 2009. https://doi.org/10.1109/TEC.2008.2003207

[17] M. Malekpour, B. T. Phung, and E. Ambikairajah, “Stator Current Envelope Extraction for Analysis of Broken Rotor Bar in Induction Motors,” in 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 2017, pp. 240–246. https://doi.org/10.1109/DEMPED.2017.8062362

[18] G. Didier, H. Razik, O. Caspary, and E. Ternisien, “Rotor Cage Fault Detection in Induction Motor Using Global Modulation Index on the Instantaneous Power Spectrum,” in 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), 2003, pp. 104–109. https://doi.org/10.1109/DEMPED.2003.1234555

[19] D. Matić, F. Kulić, M. Pineda-Sánchez, and I. Kamenko, “Support Vector Machine Classifier for Diagnosis in Electrical Machines: Application to Broken Bar,” Expert Syst. Appl., vol. 39, no. 10, pp. 8681–8689, Aug. 2012. https://doi.org/10.1016/j.eswa.2012.01.214

[20] A. Bellini, “Quad Demodulation: A Time-Domain Diagnostic Method for Induction Machines,” IEEE Trans. Ind. Appl., vol. 45, no. 2, pp. 712–719, 2009. https://doi.org/10.1109/TIA.2009.2013593

[21] S. Das, P. Purkait, C. Koley, and S. Chakravorti, “Performance of a Load-Immune Classifier for Robust Identification of Minor Faults in Induction Motor Stator Winding,” IEEE Trans. Dielectr. Electr. Insul., vol. 21, no. 1, pp. 33–44, Feb. 2014. https://doi.org/10.1109/TDEI.2013.003549

[22] B. Mirafzal and N. A. O. Demerdash, “Induction Machine Broken-Bar Fault Diagnosis Using the Rotor Magnetic Field Space-Vector Orientation,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 534–542, Mar. 2004. https://doi.org/10.1109/TIA.2004.824433

[23] B. Mirafzal and N. A. O. Demerdash, “Effects of Load Magnitude on Diagnosing Broken Bar Faults in Induction Motors Using the Pendulous Oscillation of the Rotor Magnetic Field Orientation,” IEEE Trans. Ind. Appl., vol. 41, no. 3, pp. 771–783, 2005. https://doi.org/10.1109/TIA.2005.847315

[24] A. Sapena-Baño, M. Pineda-Sanchez, R. Puche-Panadero, J. Martinez-Roman, and Ž. Kanović, “Low-Cost Diagnosis of Rotor Asymmetries in Induction Machines Working at a Very Low Slip Using the Reduced Envelope of the Stator Current,” IEEE Trans. Energy Convers., vol. 30, no. 4, pp. 1409–1419, 2015. https://doi.org/10.1109/TEC.2015.2445216

[25] A. Sapena-Bano et al., “Harmonic Order Tracking Analysis: A Novel Method for Fault Diagnosis in Induction Machines,” IEEE Trans. Energy Convers., vol. 30, no. 3, pp. 833–841, Sep. 2015. https://doi.org/10.1109/TEC.2015.2416973

[26] A. Sapena-Bano, J. Burriel-Valencia, M. Pineda-Sanchez, R. Puche-Panadero, and M. Riera-Guasp, “The Harmonic Order Tracking Analysis Method for the Fault Diagnosis in Induction Motors Under Time-Varying Conditions,” IEEE Trans. Energy Convers., vol. 32, no. 1, pp. 244–256, Mar. 2017. https://doi.org/10.1109/TEC.2016.2626008

[27] B. K. Bose, Modern Power Electronics and AC Drives. Prentice Hall, 2002.

[28] E. P. Cornell and T. A. Lipo, “Modeling and Design of Controlled Current Induction Motor Drive Systems,” IEEE Trans. Ind. Appl., vol. IA-13, no. 4, pp. 321–330, Jul. 1977. https://doi.org/10.1109/TIA.1977.4503414

[29] S. A. Odhano, R. Bojoi, A. Boglietti, S. G. Rosu, and G. Griva, “Maximum Efficiency per Torque Direct Flux Vector Control of Induction Motor Drives,” IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 4415–4424, Nov. 2015. https://doi.org/10.1109/TIA.2015.2448682

[30] A. J. Marques Cardoso and E. S. Saraiva, “On-Line Diagnostics of Three-Phase Induction Motors by Park’s Vector.pdf,” in ICEM, 1988, pp. 231–234.

[31] A. J. Marques Cardoso and E. S. Saraiva, “On-Line Diagnostics of Current Source Inverter Fed Induction Machines by Park’s Vector Approach,” in ICEM, 1990, pp. 1000–1005.

[32] J. Perez-Cruz, R. Puche-Panadero, M. Pineda-Sanchez, M. Riera-Guasp, J. Martinez-Roman, and A. Sapena-Bano, “Cost-Effective On-Line Fault Diagnosis of Induction Motors Using the Reduced Modulus of the Current Park’s Vector,” in 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 2017, pp. 427–433. https://doi.org/10.1109/DEMPED.2017.8062390

[33] S. M. A. Cruz, A. J. Marques Cardoso, “Rotor Cage Fault Diagnosis in Three-Phase Induction Motors by Extended Park’s Vector Approach,” Electr. Mach. Power Syst., vol. 28, no. 4, pp. 289–299, Apr. 2000. https://doi.org/10.1080/073135600268261

[34] S. M. A. Cruz and A. J. M. Cardoso, “Stator Winding Fault Diagnosis in Three-Phase Synchronous and Asynchronous Motors, by the Extended Park’s Vector Approach,” IEEE Trans. Ind. Appl., vol. 37, no. 5, pp. 1227–1233, 2001. https://doi.org/10.1109/28.952496

[35] F. Haghjoo and M. Mostafaei, “Flux-Based Turn-to-Turn Fault Protection for Power Transformers, ” IET Gener. Transm. Distrib., vol. 10, no. 5, pp. 1154–1163, Apr. 2016. https://doi.org/10.1049/iet-gtd.2015.0738

[36] I. Bandyopadhyay, S. Das, P. Purkait, P. P. Das, and C. Koley, “Application of Wavelet Transform to Identify Faulty IGBTs in 3-Phase Induction Motor Drives,” in proc. 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC), 2014, pp. 296–300. https://doi.org/10.1109/CIEC.2014.6959097

[37] N. M. A. Freire, J. O. Estima, and A. J. Marques Cardoso, “Open-Circuit Fault Diagnosis in PMSG Drives for Wind Turbine Applications,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3957–3967, Sep. 2013. https://doi.org/10.1109/TIE.2012.2207655

[38] S. M. A. Cruz, A. M. S. Mendes, and M. B. Abadi, “Fault Diagnostic Algorithm for Three-Level Neutral Point Clamped AC Motor Drives, Based on the Average Current Park’s Vector,” IET Power Electron., vol. 7, no. 5, pp. 1127–1137, May 2014. https://doi.org/10.1049/ietpel.2013.0416

[39] G. R. Bossio, C. H. De Angelo, J. M. Bossio, C. M. Pezzani, and G. O. Garcia, “Separating Broken Rotor Bars and Load Oscillations on IM Fault Diagnosis Through the Instantaneous Active and Reactive Currents,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4571–4580, Nov. 2009. https://doi.org/10.1109/TIE.2009.2024656

[40] A. Soualhi, G. Clerc, and H. Razik, “Detection and Diagnosis of Faults in Induction Motor Using an Improved Artificial Ant Clustering Technique,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 4053–4062, Sep. 2013. https://doi.org/10.1109/TIE.2012.2230598

[41] R. J. Romero-Troncoso et al., “FPGA-Based Online Detection of Multiple Combined Faults in Induction Motors Through Information Entropy and Fuzzy Inference,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5263–5270, 2011. https://doi.org/10.1109/TIE.2011.2123858

[42] R. A. Lizarraga-Morales, C. Rodriguez-Donate, E. Cabal-Yepez, M. Lopez-Ramirez, L. M. Ledesma-Carrillo, and E. R. Ferrucho-Alvarez, “Novel FPGA-Based Methodology for Early Broken Rotor Bar Detection and Classification Through Homogeneity Estimation,” IEEE Trans. Instrum. Meas., vol. 66, no. 7, pp. 1760–1769, 2017. https://doi.org/10.1109/TIM.2017.2664520

[43] A. Khezzar, M. Y. Kaikaa, M. El Kamel Oumaamar, M. Boucherma, and H. Razik, “On the Use of Slot Harmonics as a Potential Indicator of Rotor Bar Breakage in the Induction Machine,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4592–4605, Nov. 2009. https://doi.org/10.1109/TIE.2009.2030819

[44] S. Bachir, S. Tnani, J.-C. Trigeassou, and G. Champenois, “Diagnosis by Parameter Estimation of Stator and Rotor Faults Occurring in Induction Machines,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 963–973, Jun. 2006. https://doi.org/10.1109/TIE.2006.874258

[45] K. Yong-Hwa, Y. Young-Woo, H. Don-Ha, S. Jong-Ho, and K. Dong-Sik, “High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors,” Ind. Electron. IEEE Trans., vol. 60, no. 9, pp. 4103–4117, 2013. https://doi.org/10.1109/TIE.2012.2227912

[46] J. Cusido Cusido, L. Romeral, J. a. Ortega, J. a. Rosero, and A. Garcia Espinosa, “Fault Detection in Induction Machines Using Power Spectral Density in Wavelet Decomposition,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 633–643, 2008. https://doi.org/10.1109/TIE.2007.911960

[47] D. Z. Li, W. Wang, and F. Ismail, “A Spectrum Synch Technique for Induction Motor Health Condition Monitoring,” IEEE Trans. Energy Convers., vol. 30, no. 4, pp. 1348–1355, Dec. 2015. https://doi.org/10.1109/TEC.2015.2454440

[48] A. Sapena-Bano, M. Pineda-Sanchez, R. Puche-Panadero, J. Martinez-Roman, and D. Matic, “Fault Diagnosis of Rotating Electrical Machines in Transient Regime Using a Single Stator Current’s FFT,” IEEE Trans. Instrum. Meas., vol. 64, no. 11, pp. 3137–3146, Nov. 2015. https://doi.org/10.1109/TIM.2015.2444240

[49] A. Sapena-Bano, M. Riera-Guasp, R. Puche-Panadero, J. Martinez-Roman, J. Perez-Cruz, and M. Pineda-Sanchez, “Harmonic Order Tracking Analysis: A Speed-Sensorless Method for Condition Monitoring of Wound Rotor Induction Generators,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4719–4729, Nov. 2016. https://doi.org/10.1109/TIA.2016.2597134

[50] T. G. Vilhekar, M. S. Ballal, and H. M. Suryawanshi, “Application of Double Park’s Vector Approach for Detection of Inter-Turn Fault in Induction Motor,” in 2015 International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), 2015, pp. 173–178. https://doi.org/10.1109/CATCON.2015.7449529

[51] J. Burriel-Valencia, A. Sapena-Bano, M. Pineda-Sanchez, and J. Martinez-Roman, “Multilayer Park’s Vector Approach, a Method for Fault Detection on Induction Motors,” in 2015 IEEE International Conference on Industrial Technology (ICIT), 2015, pp. 775–780. https://doi.org/10.1109/ICIT.2015.7125192

[52] B. Asad, T. Vaimann, A. Belahcen, and A. Kallaste, “Broken Rotor Bar Fault Diagnostic of Inverter Fed Induction Motor Using FFT, Hilbert and Park’s Vector Approach,” in 2018 XIII International Conference on Electrical Machines (ICEM), 2018, pp. 2352–2358. https://doi.org/10.1109/ICELMACH.2018.8506957

Electrical, Control and Communication Engineering

The Journal of Riga Technical University

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 227 227 50
PDF Downloads 150 150 15