
Electrical, Control and Communication Engineering

13

ISSN 2255-9159 (online)

ISSN 2255-9140 (print)
July 2016, vol. 10, pp. 13–22

doi: 10.1515/ecce-2016-0002

https://www.degruyter.com/view/j/ecce

©2016 Ionel Zagan, Vasile Gheorghita Gaitan.

This is an open access article licensed under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Improving the Performance of CPU Architectures

by Reducing the Operating System Overhead

(Extended Version)

Ionel Zagan (Doctoral student, Stefan Cel Mare University of Suceava, Integrated Center for Research, Development

and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control

(MANSiD)),

Vasile Gheorghita Gaitan (Professor, Stefan Cel Mare University of Suceava, Integrated Center for Research,

Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and

Control (MANSiD))

Abstract – The predictable CPU architectures that run hard

real-time tasks must be executed with isolation in order to

provide a timing-analyzable execution for real-time systems. The

major problems for real-time operating systems are determined

by an excessive jitter, introduced mainly through task switching.

This can alter deadline requirements, and, consequently, the

predictability of hard real-time tasks. New requirements also

arise for a real-time operating system used in mixed-criticality

systems, when the executions of hard real-time applications

require timing predictability. The present article discusses

several solutions to improve the performance of CPU

architectures and eventually overcome the Operating Systems

overhead inconveniences. This paper focuses on the innovative

CPU implementation named nMPRA-MT, designed for small

real-time applications. This implementation uses the replication

and remapping techniques for the program counter, general

purpose registers and pipeline registers, enabling multiple

threads to share a single pipeline assembly line. In order to

increase predictability, the proposed architecture partially

removes the hazard situation at the expense of larger execution

latency per one instruction.

Keywords – Jitter; Multithreading; Pipeline processing; Real-

time systems; Scheduling.

I. INTRODUCTION

Nowadays, specialized CPU architectures are among the

most adopted solution for obtaining high performance,

especially in embedded systems. Currently, a part of the

available CPU implementations is not feasible to be used in

mixed-criticality systems with hard real-time requirements.

Such systems are really critical in terms of hard real-time

execution, and the spatial and temporal isolation and timing

predictability of tasks represent defining characteristics even

in distributed systems.

In addition, real-time systems are used in all embedded

applications within the economic and social areas, including

public institutions [1]. We can say that there is no area without

one or more microprocessors, and thus research in this field

has increased, achieving considerable improvements and also

providing Quality of Service (QoS) for hard real-time

applications.

The current trend in mixed-criticality systems is represented

by the predictable execution with hardware-based isolation of

a large number of software tasks in different contexts, using

limited hardware resources. Thus, in order to meet the

appropriate deadlines, a single or multi-core processor must

execute multiple types of tasks, according to their priorities in

different situations. For this to be obtained, the field-

programmable gate array (FPGA) devices with a high capacity

in logic gates, available today at acceptable prices, represents

a hardware support for the development of embedded real-

time operating systems [2], [3].

In order to eliminate or reduce this inconvenience, in the

last few years, studies have been carried out on software

schedulers for mixed-criticality system, where software

isolation was ensured by the real-time operating system

(RTOS). Spatial isolation may be obtained by moving each

task on a separate computational component. In this way,

multithreaded processors use the hardware support in order to

share a pipeline among more threads. With every cycle on the

assembly line, fine-grained multithreaded processors alternate

instructions from multiple threads, to the detriment of the

long-latency created by context switch. Some fine-grained

multithreaded processors could achieve isolation to the

detriment of an immutable scheduling algorithm.

Achieving a hardware-based isolation using different

multiprocessor solutions leads to a non-analyzable timing

behavior and inefficient use of hardware resources. On the

other hand, in mixed-criticality systems, the predictable

behavior of all concurrent tasks can be obtained by scheduling

each task on a distinct execution component, such as the cores

in multi-core processors.

In order to obtain a competitive processor, we focus on the

Multi Pipeline Register Architecture (nMPRA) [4], [5], as a

RTOS developed in hardware, based on a Hardware Scheduler

Engine (nHSE).

The proposed nMPRA-MT (Multi Pipeline Register

Architecture – Fine-grained Multithreading) project fulfills the

requirements for the time-bounded execution of parallel hard

real-time tasks, being focused on multithreading execution of

different types of threads. Although this implementation has

reduced costs, the RTOS still has to be checked and validated.

Electrical, Control and Communication Engineering

__ 2016/10

14

This article is an extended version of the work published in

[6]; in this paper, we provide a schedulability analysis of the

already existing scheduling algorithms and a detailed

description of the experimental results obtained during the

tests performed on the nMPRA-MT CPU architecture.

This paper is structured as follows: the brief introduction in

section I is followed by the related work in section II.

Subsequently, section III presents the performance of several

scheduling algorithms and section IV gives an overview on the

nMPRA and nMPRA-MT architectures. The validation of the

proposals including the experimental results achieved during

the tests, is presented in section V, while section VI concludes

the paper.

II. RELATED WORK

This section presents a brief description of some single-

core, multi-core architecture and scheduler implementations,

regarding the development of real-time kernel primitives in

hardware, focusing on reducing the operating system

overhead.

We will start with the XMOS project. The processor

presented by May in [7] has a 32 bit scalable architecture, and

can therefore use the entire central processing unit, although

there are less than four active execution threads. The new

XMOS architecture allows systems designers to build

interconnected multiple Xcore systems. Communication

between Xcore processor cores from the same or from

different chips is conducted through messages sent by point-

to-point communication links. Cores interact with other

external devices through integrated ports, ensuring the

predictable execution of concurrent programs.

Therefore, XMOS architecture can be successfully used in

multi-core systems, dedicated boards, or distributed systems.

The Merasa project [8], [9] was developed in order to obtain

a processor architecture which can be successfully used in

hard real-time embedded systems. The main characteristics of

this project are the predictability of task execution and the

efficient WCET (Worst Case Execution Time) analysis for

each task. The MERASA project is better suited for mixed-

criticality systems but is focused on the multi-core level. The

proposed architecture is based on the SMT (Simultaneous

Multithreading) technique, able to execute both hard real-time

(HRT) and non real-time (NHRT) threads.

Each core is made up of two five-stage pipeline assembly

lines. The first one is dedicated to one HRT execution thread,

and the second one – to the NHRT execution threads. As seen

in the example used by the authors, in a quad-core model, each

core is composed of four hardware slots. The proposed

architecture can therefore execute simultaneously one HRT

thread and three NHRT threads. The HRT thread has the

highest priority, as it is isolated by the real-time scheduler

from other NHRT threads from the core. To reduce the task

interferences to minimum, the authors propose the use of an

AMC (analyzable real-time memory controller). In order to

manage shared resources and critical sections belonging to the

execution threads, the proposed architecture offers

synchronization and inter-task communication mechanisms,

such as spinlock, conditional variables, or barriers. To validate

the architecture, the authors have calculated WCET for

various configurations, using OTAWA and RapiTime

benchmarks, based both on real parameters.

Zimmer et al. proposed a new research in the field of

precision timed infrastructure. The FlexPRET project [10] is

an innovative solution for mixed-criticality systems where

time is a decisive factor of correctness. The basic idea of this

concept is to ensure predictability and hardware isolation for

hard real-time threads, while allowing the soft real-time

threads to efficiently use the CPU, in order to increase the

overall processor throughput (total number of instructions

processed on all threads).

For these new processors called FlexPRET, a multitude of

challenges appear regarding the multithreading techniques,

single-core and multi-core architectures, scheduling

algorithms, memory hierarchy, software components

technologies, and programming languages.

The aim of the ARPRET project [11] is to ensure the

development and verification of large safety-critical

applications, providing thread-safe communication via shared

memory access by projecting a particular soft-core coupled

with a hardware accelerator.

The hthread project was presented for the first time by

Andrews et al. in [12]. The hardware/software implementation

of this multithreading architecture represents an innovative

operating system for the embedded systems. The authors used

Round-Robin or FIFO scheduling algorithm for its 256 active

hardware threads, 256 active software threads, 64 binary spin-

lock semaphores, and 64 common semaphores.

In [13], this structure is significantly improved. The

scheduler is designed as a finite state machine (FSM),

implemented in the hardware. In order to provide the

necessary services for real-time requirements, the authors

organize the operating system into four separate hardware

cores: Thread Manager, Synchronization Manager, Scheduler

and Condition Variables. Nevertheless, the architecture can

schedule 256 active threads with an average delay of 1.9 μs

and a jitter of 1.4 μs.

The disadvantage of this architecture is rendered by the

jitter emerged from conducting communication among the

cores through the system bus. These clock cycles are very

important to a hard real-time architecture, even for the use of

scheduling coprocessors or accelerators.

In [15], the authors proposed a new processor called

Predator. This architectural approach characterized by

predictability may be successfully used for embedded systems,

even in real-time applications. The reason is that the Predator

project uses the simple cores with predictable behavior,

analyzable caches, compiler-controlled memory management

and predictable kernel mechanisms. In order to obtain a real-

time multi-core architecture, the authors use crossbars to

implement communication among cores, shared cache, and

memory. Thus, allocating the code and data of different

threads to a shared memory, the architecture needs an accurate

scheduler and memory controller, in order to ensure exclusive

access and noninterference.

Electrical, Control and Communication Engineering

__ 2016/10

15

El-Haj-Mahmoud et al. in [16] have proposed an

architecture which can be divided into a set of virtual

processors. The execution times of these processors are

independent of each other, providing the tasks executed on

virtual processors with a composable time [17]. The

architecture proposed by the authors presents its partitioning

either into a few higher-performance processors, more low-

performance processors, or a combination of the two

extremes.

The data in Table I represents the main characteristics of the

most representative implementations described in the present

section, as well as the differences between them. The issues

involved refer to: coprocessor, replication of resources

(program counter, register file or pipeline registers), scheduler

implementation, assembly line (number of stages for every

pipeline), synchronization and communication mechanisms,

type of scheduler, and implementation. These processor

architectures are generally scalable, depending on the FPGA

characteristics used and on the type of the implemented

processor. Hardware execution of specialized processors,

coprocessors or schedulers is a novelty and a challenge in the

area of real-time systems.

III. PERIODIC AND APERIODIC TASK SCHEDULING

FOR REAL-TIME SYSTEMS

The present section will present various algorithms for real-

time periodic and aperiodic task scheduling. Taking into

account the restrictions for each set of tasks, each algorithm

represents a scheduling solution. When rigorous scheduling

restrictions are not applied, the complexity of implementation

can be reduced by using basic algorithms. Thus, although the

resulting scheduling scheme is not an optimal solution, the

feasibility of the system is ensured for a wide range of

situations [1].

A. Aperiodic Task Scheduling

The algorithms described in this section can be used for

scheduling aperiodic tasks running on single-processor

systems; they can also be applied to multiprocessor systems or

distributed architectures with complex tasks.

In non-preemptive scheduling, a CPU runs until completion

a task that has entered execution. In this case, all necessary

operations are performed in order to complete the current task.

Therefore, the executed task will transfer control to the

scheduler only when it completes his execution, even if there

are tasks with a higher priority ready for execution. Therefore,

the impossibility to guarantee the determinism of starting the

task execution represents the disadvantage of non-preemptive

scheduling. This type of scheduler is not preferred by

commercial real-time schedulers because the control transfer

towards the scheduler is not deterministic.

An example in this sense is Bratley’s algorithm, proposed

by Bratley et al. in 1971 [18]. This implementation was

proposed in order to find a scheduling scheme for a certain

number of non-preemptive and aperiodic tasks.

The Spring non-preemptive algorithm was first adopted in

the hard real-time kernel called Spring kernel, designed by

Stankovic and Ramamritham [19]. The kernel has been

implemented for critical control applications in dynamic

systems, the objective of the algorithm being to find a feasible

scheduling for a set of tasks with precedence constraints,

shared resources, aperiodic arrival, and non-preemptive

properties.

In certain applications, the scheduling of a set of tasks

cannot be performed randomly, because the compliance of

some precedence relationships defined at the design stage is

mandatory.

TABLE I

THE MAIN CHARACTERISTICS OF THE RTOS PRESENTED IN SECTION II

RTOS
Copro-

cessor

Scheduler

implementation

Resource

replication
Pipeline

Synchronization

and communication

mechanisms

Scheduling

algorithm

Implementation

type

Hthread [12],

[13]

Yes HW (individual

RTOS core)

No No Yes (implemented in

hardware)

Static (FIFO, round-

robin, priority based)

Single-core

FASTCHART
[33], [34]

No HW No No Yes (introduced the
next version [34])

Static (rate
monotonic)

Single-core

nMPRA [5] No HW Yes (general

and pipeline
registers)

5-stage

pipeline

Yes (implemented in

hardware)

Static (round-robin,

priority based) and
dynamic (SW)

Single-core

PRET [32] No HW No 5-stage

pipeline

Yes Static (round-robin) Single-core

FlexPRET
[10]

No HW No 5-stage
pipeline

Yes (PRET-C) Static and dynamic
(earliest deadline first,

rate-monotonic)

Single-core

JOP [35] and
JOP-Plus [36]

No SW No 3-stage
pipeline

Yes Dynamic Single-core

Merasa [8],

[9]

No HW + SW

scheduler for

optimization

Yes (general

registers)

Two 5-stage

pipeline /

core

Yes (single-core and

multi-core)

Dynamic Multi-core

XMOS [7] No HW Yes (general

registers)

4-stage

pipeline/

core

Yes (single-core and

multi-core)

Dynamic Multi-core

Komodo [14] No SW Yes 4-stage
pipeline

No Dynamic Single-core

Electrical, Control and Communication Engineering

__ 2016/10

16

These precedence relationships are usually described

through acyclic directed graphs, where the tasks are

represented through nodes and the precedence relationships

through arrows. The precedence graphs introduce a partial

order for the set of tasks subject to scheduling. This

scheduling method was used in two implementations using the

following precedence constraints: Latest Deadline First (LDF),

and Earliest Deadline First (EDF). The LDF algorithm was

presented by Lawler [20] in 1973, and it can be applied on a

set of aperiodic tasks with simultaneous arrival and a

precedence relationship.

Chetto et al. [21] presented an algorithm for scheduling a

set of aperiodic tasks with precedence constraints and dynamic

activation. This implementation is achievable provided that

the tasks are preemptive and by transforming the set of

dependent tasks in a set of independent ones by modifying the

time parameters. If these steps have been completed, aperiodic

tasks can be scheduled further using the EDF algorithm.

The Earliest Due Date algorithm (EDD) was presented by

Jackson in 1955 [22]. This algorithm schedules a set of

aperiodic tasks on a single core, minimizing the maximum

delays. Tasks have a synchronized occurrence, different

deadlines and periods of execution; they are also independent,

without a precedence relation and shared resources. The

complexity of the EDD algorithm to achieve optimal

scheduling is rendered by the procedure of sorting tasks in the

ascending order of the deadline. The scheduling of this

algorithm ensures that, in the worst case, all tasks complete

execution before the deadline.

The Earliest Deadline First algorithm, proposed by Horn in

1974 [23], is a solution for scheduling an independent set of

preemptive and aperiodic tasks executed on a single core

system.

In the case aperiodic tasks are not synchronized (these tasks

can be dynamically activated during execution), preemptivety

becomes an important factor. In general, the issues raised by

preemptive schedulers are simpler than those raised by the

non-preemptive ones.

In the case of non-preemptive schedulers, the emergence of

a new task ready for execution will not interrupt the task being

executed in order to meet its deadline. When preemptivety is

possible, any task can enter execution if its deadline is lower

than that of the one being executed.

For exemplification, we propose in Table II a set of five

tasks with their relative parameters, where ai is the arrival time

of τi. Each task τi is characterized by a WCET noted with Ci, a

deadline Di, and period Ti. A deadline model is defined,

compelling a Di smaller or equal to Ti.

Fig. 1 shows an example of scheduling a set of five tasks

using the EDF algorithm. At moment t = 0, task τ1 enters

execution, and at moment t = 1, task τ2 cannot interrupt τ1

because D1 < D2. Task τ1 completes execution at time moment

t = 2, and at moment t = 4, when τ2 is being executed, task τ3

interrupts τ2 because D3 < D2.

To be noted that at time moment t = 7, task τ4 does not

interrupt τ3 because D3 < D4.

TABLE II

THE PARAMETERS OF A SET OF FIVE TASKS

 ai Ci Di

τ5 12 5 18

τ4 7 8 24

τ3 4 4 10

τ2 1 3 11

τ1 0 2 4

When τ3 completes execution, the CPU is assigned to task

τ2. Task τ4 is executed at moment t = 9, but it is interrupted at

t = 12 by τ5, because the last one has a lower deadline. Task τ4

re-enters in execution at moment t = 17, when τ5 completes its

own.

Fig. 1. A scheduling example using the EDF algorithm.

B. Periodic Task Scheduling

In most real-time applications, periodic activities are the

system's major computing necessity. Periodic tasks come from

the control loops, system monitoring, or sensory data

acquisition. These activities need to be performed cyclically

with a certain rate specified by the application requirements.

For a control application with a set of competing periodic

tasks, each having different time constraints, the real time

operating system must guarantee that every periodic instance

is regularly activated and completed until the limit imposed by

the deadline [1].

The basic algorithms used in periodic task scheduling are

the following:

• Timeline Scheduling;

• Rate Monotonic;

• Deadline Monotonic;

• Earliest Deadline First.

The Timeline Scheduling algorithm (TS) is one of the most

common approaches for scheduling periodic tasks in the

control of traffic and military systems [1]. The algorithm is

called Cyclic Executive, and it consists in dividing the time

axis in equal intervals during which one or more tasks can be

scheduled for execution.

Electrical, Control and Communication Engineering

__ 2016/10

17

Fig. 2. An example of scheduling three tasks using the TS algorithm.

In order to guarantee the individual scheduling frequency

for every task, a timer synchronizes their activation at the

beginning of each time frame.

Fig. 2 shows an example of how this scheduling algorithm

is used.

Three tasks are considered: τ1, τ2, and τ3; these tasks have to

be executed at a time frame of T1 = 5 ms, T2 = 10 ms, and T3 =

20 ms. A possible scheduling for these tasks is represented in

Fig. 2. In this case, it is easy to verify that the optimal time

length is 5 ms; this period is called Greatest Common Divizor

of execution periods. Therefore, task τ1 must be executed at

each interval, task τ2 at every two intervals, and task τ3 at

every four intervals. The duration of these intervals is called

Minor Cycle, while the time frame in which the scheduling of

all tasks is repeated is called Major Cycle. In order to ensure

the feasibility of the scheduling scheme, it suffices to know

the WCET for each task and to check the fact that the sum of

execution periods from each interval is less than or equal to

the Minor Cycle. Therefore, for the aforementioned example,

the following relations must be satisfied: C1 + C2 ≤ 5 ms, and

C1 + C3 ≤ 5 ms.

The major advantage of the TS algorithm is its simplicity.

The method can be implemented by scheduling an interrupt at

a time frame equal to the Minor Cycle, by writing the main

program for calling tasks in the order given by the Major

Cycle, and by inserting a synchronization point at the

beginning of each Minor Cycle. The major disadvantage of

this algorithm is that scheduling is fragile at overload.

The scheduling Rate Monotonic (RM) algorithm is based on

a simple rule that attaches priorities to tasks, depending on the

execution rates. Therefore, the tasks with a higher execution

rate will have higher priorities Pi; therefore, RM becomes an

intrinsic preemptive algorithm, because the task being

executed can be interrupted by the occurrence of a task with a

higher priority. If the execution rates are constant, the

algorithm assigns fixed priorities Pi before the execution of the

tasks that are not changed over time [1].

Fig. 3.a shows that the time response of task τk is delayed by

the occurrence of task τi with a higher priority. Fig. 3.b shows

how task τi delays even further the execution of task τk, the

response time being constantly influenced by the number of

interrupts generated by task τi.

Considering a set of tasks scheduled with RM algorithm,

the worst response time of a task τi is that when all tasks with

higher priority are executed simultaneously. Liu and Layland

in [24] proved that, for a set of tasks with unique execution

periods, there is a feasible scheduling before the deadline,

provided that the CPU usage is less than a certain limit.

Fig. 3. An example for scheduling using the RM algorithm.

The advantage of this algorithm is that the scheduling

scheme can be easily checked at all critical instants.

According to the Deadline Monotonic (DM) algorithm,

each task has attached a fixed priority Pi inversely

proportional with its relative deadline Di. Therefore, the task

with the lowest deadline is scheduled at any moment of

execution, and if the relative deadlines are constant, the DM

algorithm is one with constant priorities.

This algorithm was proposed in 1982 by Leung and

Whitehead [25] as an extension for the RM algorithm. The

feasibility test using the DM algorithm can be performed using

the following formula:

1

1

(2 1)
n

i n

i i

C
n

D

  . (1)

The DM and RM algorithms are used especially in full-

preemptive scheduling models, because the executed task can

be interrupted by the occurrence of another task with a

relatively lower deadline or with a higher execution rate.

The EDF algorithm is a dynamic scheduling method that

selects tasks according to their absolute deadline. Higher

priorities will be dynamically assigned to tasks with a closer

deadline. Moreover, the algorithm is executed preemptively so

that the execution of a task can be interrupted by the

occurrence of one with a lower deadline. The EDF algorithm

does not refer to the frequency of tasks, so it can be used for

scheduling both periodic and aperiodic tasks. Checking the

scheduling of a set of periodic tasks using the EDF algorithm

can be performed through the CPU usage factor (2). This is

stated in the following theorem [26]:

Theorem 1: A periodic set of n task can be scheduled with

the EDF algorithm only if:

1

1
n

i

i i

C

T

 . (2)

The EDF algorithm implies the fact that a task can be

interrupted only once in the same interval Ti. Therefore, the

Electrical, Control and Communication Engineering

__ 2016/10

18

small number of interrupts is the result of dynamically

assigning the priorities Pi.

IV. OVERVIEW OF THE NMPRA AND NMPRA-MT

ARCHITECTURE

The nMPRA architecture proposed by Gaitan et al. in [5]

has been specially designed to reduce the scheduler overhead

and the switch time of the task context, with the purpose to

minimize the unacceptable jitter present in the current RTOS.

A. nMPRA Architecture

nMPRA is a hardware design that represents a custom CPU

architecture based on replication of resources, such as program

counter, general purpose registers, and pipeline registers.

As it can be seen in Fig. 4, the authors use a register file and

a set of four pipeline registers for each task, in order to hold

the individual running state information. All the tasks running

on the CPU use the same data path, control unit, ALU, Hazard

Detection Unit, and Forward Unit.

The pipeline registers used by nMPRA architecture are the

following: IF/ID (instruction fetch/instruction decode), ID/EX

(instruction decode/execute), EX/MEM (execute/memory),

MEM/WB (memory/write back), and also PC (Program

Counter) which is not a pipeline register, but it is managed by

the nHSE in the same manner.

This implementation allows a very fast context switching,

which is possible due to the remapping of the active running

task context with the scheduled task; the jitter is minimized in

order to provide an accurate predictability behavior. In other

words, the nMPRA architecture replaces the classical stack-

saving methods with a remapping technique, allowing us to

execute a new task in an average of one clock cycle and

maximum three in the case of working with memory

instructions.

The original design is based on a traditional MIPS

architecture that was specially modified to support instructions

dedicated to the hardware scheduler, part of the CPU itself.

The nHSE is task-oriented, in order to increase the

throughput of execution and to avoid the excessive use of

resources. The entire nHSE is disabled when the processor is

connected to a power supply, the only one active being the

high priority HT0.

In order to prove the performance of the new processor

concept, we used our assembler translator. This component

proves useful in validating the opcode of the new instructions

added to control the nHSE.

B. Proposed nMPRA-MT Architecture

The nMPRA-MT architecture presented in [27] is a fine-

grained multithreaded processor based on the original nMPRA

concept, designed to support architectural requirements for

hard real-time systems.

The development of a new application has been imposed by

the fact that the proposed architecture extends the instruction

set of the MIPS processor. After testing the functionalities of

this processor, traditional MIPS compilation tools can be

easily used to develop real-time applications.

Fig. 4. nMPRA CPU architecture.

The purpose of this paper is to describe and present the

implementation results of a predictable scheduler that controls

different types of tasks interlacing with the pipeline levels. In

order to do this, hard real-time tasks are classified and become

Hard Threads-HT, whereas low priority tasks become Soft

Threads-ST. Thus, HTs represent the tasks where a missing

deadline generates critical effects, and STs represent useful

tools for completing the system (we will use the terms

“thread” and “task” interchangeably). Using these notations,

the implementation of the nMPRA-MT processor is designed

to support hardware-based isolation for HTs, at the same time

allowing STs to use the unallocated cycles.

The nMPRA-MT is a multithreaded processor based on a

hardware scheduler and independent pipeline registers,

designed to support architectural requirements for hard real-

time systems. The main reason for implementing the nMPRA-

MT project is the decrease of execution overhead given by the

scheduling and context switching operation.

Although, nMPRA-MT is an architecture that involves

multiplication of resources, its pipeline modification improves

the related costs that are more effective than those of other

commercial CPU architectures using resource replication.

Such CPU implementations are recommended for a reasonable

number of tasks designed for small hard real-time

applications. For a large number of tasks, due to a synthesis of

logic with unreasonably high propagation times, the frequency

will significantly decrease.

Electrical, Control and Communication Engineering

__ 2016/10

19

Every thread has its own ID and STATE registers; the

thread with the highest priority has the ID equal to 0 and the

lowest priority corresponds to n − 1.

In order to maintain the performance of pipeline processing,

the authors use a five-stage assembly line to allow the

execution of multiple instructions from different threads in the

pipeline levels. Because nMPRA-MT architecture uses CPU

working registers and resource remapping techniques for the

pipeline registers, nHSE interleave different threads into the

pipeline assembly line, without losing clock cycles due to

contexts switching operation.

At the expense of two cycle clock latencies per one

instruction from the same HT thread, when the pipeline is full,

the efficiency is equal to one instruction for every clock cycle.

When data hazard situations are detected, a new forwarding

unit is implemented in order to solve data dependencies within

the same thread. When a HT thread is scheduled to be

executed every two clock cycles, it is no longer possible to

stall an instruction already fetched if it is dependent on data

hazards. This turns the nMPRA-MT project into a predictable

architecture, designed to compute faster; only in exceptional

cases, instructions from the pipeline are flushed.

Concerning the interrupt system, the nMPRA-MT

architecture preserves the algorithm used by nMPRA. Thus,

an interrupt could be assigned to one task only, HT or ST,

inheriting its priority and behavior. This interrupt system is

completely allocated, so that an important advantage is

represented by the fact that interrupts do not affect the pipeline

assembly line. By doing this, the proposed nMPRA-MT is

able to manage periodic or aperiodic events, such as a time

event, watchdog, or deadline events.

nHSE has been designed to implement dynamic scheduling

algorithms for HT and ST threads, in order to allow certain ST

threads to execute multiple tasks. By doing this, every thread

has its own ID and STATE registers. Therefore, the ID

register indicates the priority and the type of threads that can

be HT or ST. The STATE register memorizes the state of each

thread, which can either be active, idle or sleeping. The ID

register identifies the thread when an event appears, attached

by the scheduler. When HT threads are in the sleeping state,

the STs are scheduled to consume the available processor

cycles.

C. Pipeline and Thread Management

This paper extends the basic idea presented in [4] and [5],

proposing an original implementation based on the nHSE

concept.

The PC_IF_i signal connected to the simple 32-bit adder is

used to provide the program counter (PC_IF_0, PC_IF_1, …,

PC_IF_n−1) available in the next clock cycles.

nHSE supports an arbitrary interleaving of threads by using

a new innovative Forward Unit. In order to prevent the stalls,

the data or control hazards that occur when the HTs are

scheduled every two clock cycles are treated by the new

Hazard Detection Unit described in subsection E.

Fig. 5. Hardware for selecting PC corresponding to the scheduled thread.

Due to the fact that each thread has its own program

counter, a set of pipeline registers and working registers for

general purpose, the next program counter corresponding to

the scheduled thread is selected by using en_PC_decode and

nHSE_PC_select signals, as shown in Fig. 5.

However, it is difficult to predict how many cycles it would

require for HT threads to be executed, because pipeline

spacing between them can vary unpredictably.

D. Events and Resource Management

The model for interrupt handling proposed in this paper is

similar to the solution presented in [28]. This is based on the

unification of threads and interrupts into a single model; the

interrupts are converted into threads using a limited overhead.

This model allows the implementation of periodic,

aperiodic or sporadic events related to CPU operation,

eliminating the interrupts of the tasks [29]. The interrupts are

treated as events attached to HTs or STs, and therefore

inheriting their priority. By using this approach, a task can be

suspended only by the interrupts that are attached to higher

priority tasks; the behavior of the system is more predictable

in the context of a small real-time application.

As shown in Fig. 6, there are three types of events: periodic

time events, watchdog timer, and two deadline events that are

equal to an alarm and/or a fault [30].

E. Exceptions and Hazard Situations

The innovative Hazard Detection Unit and Forward Unit

allow the fine-grained pipelined processor to operate

efficiently and correctly in the presence of data, structural, and

control hazards in various situations.

Electrical, Control and Communication Engineering

__ 2016/10

20

Fig. 6. Architecture of hardware scheduler engine with enable oi signals and

interrupt handling model [30].

Data redirecting units play a significant role in improving

system performance. We have already mentioned in the

previous sections that there are various hazard situations when

the data consumed by an instruction is not yet produced by the

previous instruction.

When a different number of threads is active on the pipeline

assembly line, Hazard Unit detects that the required data is

still in the pipeline and whether that data may be forwarded by

one of the Forward Units presented in Table III.

For each situation, depending on the number of HT and ST

threads, the nMPRA-MT uses the appropriate Forward Unit in

order to meet deadlines; therefore, the latency effect is reduced

to a minimum. If the scheduler fetches instructions from the

same HT thread every two clock cycles, the worst cases of

assembly line stalling are avoided, at the expense of a wider

execution latency.

As shown in Table III, by way of example, we consider two

HTs that are scheduled simultaneously at the expense of two

clock cycles latency per one instruction from the same thread.

In this case, there will be no wasted clock cycles due to

unsolved hazard situations, and the UFW2 Forward Unit does

not affect system predictability.

When nHSE fetches continuously and unpredictably the

instructions from a scheduled ST thread, using UFW1

Forward Unit, it is possible to stall the pipeline assembly line.

In another case, when the instructions executed in the pipeline

belong to four different HT or ST threads, no hazard situations

are possible and NO FW Forward Unit is used.

TABLE III

HAZARD DETECTION AND FORWARD UNIT CONFIGURATION

Active threads

in the pipeline

HT Latency

(HT)

ST Latency

(ST)

Forward

Unit

1 0 0 1 1 UFW1

2 2 2 0 0 UFW2

2 1 2 1 2 UFW3

3 1 2 2 4 UFW4

2 0 0 2 2 UFW2

4 2 4 2 4 NO FW

4 4 4 0 0 NO FW

4 0 0 4 4 NO FW

V. VALIDATION OF THE NMPRA-MT ARCHITECTURE

In this section, we focus on the validation of the presented

concept, introducing the experimental results of the

implemented FPGA prototype.

The project has been tested on a Virtex-6 FPGA ML605

Evaluation Kit from Xilinx, and the code of the processor was

developed in standard Verilog. Nevertheless, in the testing and

validation procedure, we took into account the influence of the

signal propagation time on the number of independent sets of

pipeline registers and register files [31]. Every thread uses a

PC register, a register file, and a set of pipeline registers, while

the replication of these resources for eight active threads

requires 8.64 kB of RAM.

A. The Impact of Different Configuration Models on FPGA

Resources

In order to evaluate the area cost associated to different

requirement models, several nMPRA and nMPRA-MT

configurations were validated on a Xilinx FPGA. The register

file block has a fixed size, computed at the level of

compilation. This is large enough for six nesting levels, so that

at a given time, different Register Files can be accessed,

according to the nHSE configuration.

Between the original nMPRA project presented in [5] and

the proposed nMPRA-MT implementation, the cost increase is

by 6 % in LUTs (lookup-table) and 35 % in FFs (flip-flop).

This is caused by the fine-grained multithreading, nHSE,

Hazard Detection Unit, and Forward Unit. Although the

nMPRA-MT removes the stalls from the pipeline levels, the

architecture logic requires more multiplexing based on ID and

STATE thread registers which must be stored for each thread.

Fig. 7 shows the resource differences between the original

nMPRA implementation presented in [5] and the nMPRA-MT

implementation.

The implementation proposed in the present paper is a

deterministic architecture, as compared to SMT processors,

which may expose additional overcontrol, if the program does

not expose an ILP (Instruction Level Parallelism). Taking into

consideration these data, we can state that the amount of

memory needed for the implementation of the nMPRA-MT

processor is more than acceptable, provided that the total

number of tasks may be 8, 16, or 32.

Fig. 7. FPGA resource usage corresponding to the nMPRA and nMPRA-MT

processor configurations, with 16 threads each.

Electrical, Control and Communication Engineering

__ 2016/10

21

B. Experimental Results

As it is seen in Fig. 8, the clock on channel 1 is used for the

synchronization of memories and pipeline registers, while the

clock on channel 2 is used for the synchronization of the

nHSE scheduler. Channel 4 marks the answer of the

application to an asynchronous external event (channel 3

signal), resulted from pushing a button from the ML605 board.

Fig. 8. Application response in relation with an external asynchronous event

when the program executes sw instructions.

For the case in which the program executes special

instructions used for external memory accesses at an operating

frequency of 50 MHz, the scheduler response to an

asynchronous external event can reach 67 ns, depending on

the occurrence time of the event. This working frequency is

not the maximum operating frequency of the processor. In

order to monitor the clock, for the asynchronous interrupt

signal and scheduler answer, we used unregistered ports.

C. WCET Analysis

In order to improve WCET analysis, specific algorithms

have been enhanced and developed to ensure the nMPRA-MT

features, including a fine-grained pipeline implementation, a

particular threaded scheduler, and an original Forward Unit.

Being a fine-grained multithreading implementation, the

nMPRA-MT scheduler had to be able to execute

simultaneously instructions from different threads. When the

pipeline assembly line is occupied by two concurrent HTs, the

execution report is finally an instruction for two clock cycles

per thread. This means that, at any given time, there may be

multiple instructions in the pipeline levels, without

encountering unsolved hazard situations. Therefore, to

guarantee hardware-based isolation and timing predictability,

a constant scheduling frequency is required for HTs. For

mixed-criticality systems, the upper bound is statically

guaranteed at the compile time. The WCET analysis

techniques are applied in order to confirm the safe upper

bounds of HTs, but they are not necessarily required for STs.

VI. CONCLUSION AND FUTURE WORK

The proposed nMPRA-MT is an innovative project mainly

because it provides a minimum time switch between the tasks

that are normally accomplished in a single machine cycle.

The response of the system to an external asynchronous

event will not exceed 1.5 clock cycles or a maximum of three

clock cycles when the CPU accesses the global memory, as

seen in Fig. 8. The main reasons for implementing the

nMPRA-MT project are: the reduction of memory footprint,

the jitter reduction, and the improvement of the response time

for external events.

In conclusion, we can say that the use of nMPRA-MT

architecture with 16 tasks is fully justified by the benefits it

brings; moreover, the implementation performance/cost

indicator is very good. The resource differences between the

original nMPRA implementation presented in [5] and the

nMPRA-MT implementation may increase.

As future work, we will present the experimental WCET

analysis obtained using complete benchmarks, considering a

feasible set of tasks executed on the nMPRA-MT architecture,

which guarantees the predictability and hardware-based

isolation for HTs.

However, the processor is opened to new improvements

such as:

• implementation in hardware of a memory controller for

an explicit model of memory hierarchy;

• computing of the WCET using complete benchmarks.

ACKNOWLEDGMENT

This work was partially supported from the project

“Integrated Center for research, development and innovation

in Advanced Materials, Nanotechnologies, and Distributed

Systems for fabrication and control”, Contract No.

671/09.04.2015, Sectoral Operational Program for Increase of

the Economic Competitiveness co-funded from the European

Regional Development Fund.

This paper has been prepared with the financial support of

the project “Quality European Doctorate – EURODOC”,

Contract No. POSDRU/187/1.5/S/155450, project co-financed

by the European Social Fund through the Sectoral Operational

Programme “Human Resources Development” 2007–2013.

REFERENCES

[1] G. C. Buttazzo, Hard Real-Time Computing Systems – Predictable

Scheduling Algorithms and Applications (Real-Time Systems Series 24).
3rd ed., Springer US, 2011. ISBN 978-1-4614-0675-4.

https://doi.org/10.1007/978-1-4614-0676-1

[2] B. Kumthekar, L. Benini, E. Macii and F. Somenzi, “Power optimisation
of FPGA-based designs without rewiring,” in IEE Proc. – Comput. and

Digital Techniques, vol. 147, no. 3, pp. 167–174, May 2000.
https://doi.org/10.1049/ip-cdt:20000497

[3] M. Shahbazi, P. Poure, S. Saadate and M. R. Zolghadri, “FPGA-Based

Reconfigurable Control for Fault-Tolerant Back-to-Back Converter
Without Redundancy,” IEEE Trans. on Industrial Electronics, vol. 60,

no. 8, pp. 3360–3371, Aug. 2013.
https://doi.org/10.1109/TIE.2012.2200214

[4] E. Dodiu and V. G. Gaitan, “Custom designed CPU architecture based

on a hardware scheduler and independent pipeline registers – concept
and theory of operation,” in 2012 IEEE Int. Conf. on

Electro/Information Technology, Indianapolis, IN, USA, May 2012,
pp. 1–5. https://doi.org/10.1109/EIT.2012.6220705

[5] V. G. Gaitan, N. C. Gaitan and I. Ungurean, “CPU Architecture Based

on a Hardware Scheduler and Independent Pipeline Registers,” IEEE
Trans. on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 9,

pp. 1661–1674, Sep. 2015.
https://doi.org/10.1109/TVLSI.2014.2346542

https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1049/ip-cdt:20000497
https://doi.org/10.1109/TIE.2012.2200214
https://doi.org/10.1109/EIT.2012.6220705
https://doi.org/10.1109/TVLSI.2014.2346542

Electrical, Control and Communication Engineering

__ 2016/10

22

[6] I. Zagan, “Improving the performance of CPU architectures by reducing

the Operating System overhead,” in 2015 IEEE 3rd Workshop on

Advances in Information, Electronic and Electrical Engineering
(AIEEE), Riga, Nov. 2015, pp. 1–6.

https://doi.org/10.1109/AIEEE.2015.7367279
[7] D. May, “The XMOS Architecture and XS1 Chips,” IEEE Micro,

vol. 32, no. 6, pp. 28–37, Nov.–Dec. 2012.

https://doi.org/10.1109/MM.2012.87
[8] T. Ungerer et al., “Merasa: Multicore execution of hard real-time

applications supporting analyzability,” IEEE Micro, vol. 30, no. 5,
pp. 66–75, 2010. https://doi.org/10.1109/MM.2010.78

[9] J. Wolf, M. Gerdes, F. Kluge, S. Uhrig, J. Mische, S. Metzlaff,

C. Rochange, H. Cassé, P. Sainrat and T. Ungerer, “RTOS Support for
Parallel Execution of Hard Real-Time Applications on the MERASA

Multi-core Processor,” in 2010 13th IEEE Int. Symp. on
Object/Component/Service-Oriented Real-Time Distributed Computing,

Carmona, Seville, May 2010, pp. 193–201.

https://doi.org/10.1109/ISORC.2010.31
[10] M. Zimmer, D. Broman, C. Shaver and E. A. Lee, “FlexPRET:

A processor platform for mixed-criticality systems,” in 2014 IEEE 20th
Real-Time and Embedded Technology and Applicat. Symp. (RTAS),

Berlin, 2014, pp. 101–110. https://doi.org/10.1109/RTAS.2014.6925994

[11] S. Andalam, “Predictable platforms for safety-critical embedded
systems,” Thesis, The University of Auckland, 2013.

[12] D. Andrews et al., “hthreads: A hardware/software co-designed
multithreaded RTOS kernel,” in 2005 10th IEEE Conference on

Emerging Technol. and Factory Autom., Catania, Italy, Sep. 2005,

pp. 331–338. https://doi.org/10.1109/ETFA.2005.1612697
[13] J. Agron, D. Andrews, “Hardware Microkernels for Heterogeneous

Manycore Systems,” in 2009 Int. Conf. on Parallel Processing
Workshops (ICPPW '09), Vienna, 2009, pp. 19–26.

https://doi.org/10.1109/ICPPW.2009.21

[14] J. Kreuzinger, R. Marston, T. Ungerer, U. Brinkschulte and
C. Krakowski, “The Komodo project: thread-based event handling

supported by a multithreaded Java microcontroller,” in Proc. 25th
EUROMICRO Conf. Informatics: Theory and Practice for the New

Millennium, Milan, 1999, vol. 2, pp. 122–128.

https://doi.org/10.1109/EURMIC.1999.794770
[15] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister and

C. Ferdinand, “Memory Hierarchies, Pipelines, and Buses for Future

Architectures in Time-Critical Embedded Systems,” IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems, vol. 28,

no. 7, pp. 966–978, July 2009.
https://doi.org/10.1109/TCAD.2009.2013287

[16] A. El-Haj-Mahmoud, A. S. Al-Zawawi, A. Anantaraman, and
E. Rotenberg, “Virtual multiprocessor: an analyzable, highperformance

architecture for real-time computing,” in Proc. of the 2005 int. conf. on

Compilers, architectures and synthesis for embedded systems, CASES
’05. San Francisco, 2005, pp. 213–224.

https://doi.org/10.1145/1086297.1086326
[17] A. El-Haj-Mahmoud and E. Rotenberg, “Safely Exploiting

Multithreaded Processors to Tolerate Memory Latency in Real-Time

Systems,” in Proc. of the 2004 int. conf. on Compilers, architecture, and
synthesis for embedded systems, Washington, 2004, pp. 2–13.

https://doi.org/10.1145/1023833.1023837
[18] P. Bratley, M. Florian, and P. Robillard, “Scheduling with earliest start

and due date constraints,” Naval Research Quarterly, vol. 18, no. 4,

1971. https://doi.org/10.1002/nav.3800180410
[19] J. Stankovic and K. Ramamritham, “The design of the spring kernel,” in

Proc. of the IEEE Real-Time Systems Symp., Dec. 1987.
[20] E. L. Lawler, “Optimal sequencing of a single machine subject to

precedence constraints,” Managements Science, vol. 19, no. 5, pp. 544–

546, 1973. https://doi.org/10.1287/mnsc.19.5.544
[21] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of

realtime tasks under precedence constraints,” J. of Real-Time Systems,
vol. 2, no. 3, pp. 181–194, Sep. 1990.

https://doi.org/10.1007/BF00365326

[22] J. R. Jackson, “Scheduling a production line to minimize maximum
tardiness,” Management Science Research, vol. 43, 1955.

[23] W. Horn, “Some simple scheduling algorithms,” Naval Research
Logistics Quarterly, vol. 21, no. 1, Mar. 1974.

https://doi.org/10.1002/nav.3800210113

[24] C. L. Liu and J. Layland, “Scheduling algorithms for multiprogramming
in a hard real-time environment,” Journal of the ACM (JACM), vol. 20,

no. 1, pp. 46–61, 1973. https://doi.org/10.1145/321738.321743

[25] J. Leung and J. Whitehead, “On the complexity of fixed-priority

scheduling of periodic real-time tasks,” Performance Evaluation, vol. 2,

no. 4, pp. 237–250, 1982.
https://doi.org/10.1016/0166-5316(82)90024-4

[26] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J. of the

Association for Computing Machinery, vol. 20, no. 1, 1973.

https://doi.org/10.1145/321738.321743
[27] N. C. Gaitan, I. Zagan and V. G. Gaitan, “Predictable CPU Architecture

Designed for Small Real-Time Application - Concept and Theory of
Operation,” Int. J. of Advanced Computer Science and Applications,

vol. 6, no. 4, pp. 47–52, 2015.

https://doi.org/10.14569/IJACSA.2015.060406
[28] S. Kelinman and J. Eykholt, “Interrupts as threads,” ACM SIGOPS

Operating Syst. Rev., vol. 29, no. 2, pp. 21–26, Apr. 1995.
https://doi.org/10.1145/202213.202217

[29] N. C. Gaitan, V. G. Gaitan, I. Ungurean and I. Zagan, “Methods to

Improve the Performances of the Real-Time Operating Systems for
Small Microcontrollers,” in 2015 20th Int. Conf. on Control Systems and

Computer Science, Bucharest, 2015, pp. 261–266.
https://doi.org/10.1109/CSCS.2015.10

[30] N. C. Gaitan, I. Zagan and V. G. Gaitan, “Improving the Predictability

of nMPRA and nHSE Architecture,” Bulletin of the Polytechnic Institute
of Iasi, Automatic Control and Computer Science Section, fasc. 1/2015,

pp. 27–38, 2015, ISSN 1220-2169,
[31] E. Dodiu, “Real-Time Hardware Scheduler for FPGA Based Embedded

Systems,” Ph.D. dissertation, University Stefan cel Mare of Suceava,

Romania, 2013.
[32] S. A. Edwards and E. A. Lee, “The Case for the Precision Timed

(PRET) Machine,” in Proc. of the 44th annu. Design Automation Conf.
DAC '07, San Diego, 2007, pp. 264–265.

https://doi.org/10.1145/1278480.1278545

[33] L. Lindh, “Fastchart – A fast time deterministic CPU and hardware
based real-time-kernel,” in Proc. EUROMICRO `91 Workshop on Real-

Time Syst., Paris-Orsay, 1991, pp. 36–40.
https://doi.org/10.1109/EMWRT.1991.144077

[34] F. Stanischewski, “FASTCHART – Performance, Benefits and

Disadvantages of the Architecture,” in Proc. Fifth Euromicro Workshop
on Real-Time Syst., 1993, pp. 246–250.

https://doi.org/10.1109/EMWRT.1993.639104

[35] M. Schoeberl, “A time predictable Java processor,” in Proc. of the

Design Automation & Test in Europe Conference, DATE’06, Munich,

2006, pp. 1–6. https://doi.org/10.1109/DATE.2006.244146
[36] M. Nadeem, M. Biglari-Abhari and Z. Salcic, “JOP-plus - A processor

for efficient execution of java programs extended with GALS
concurrency,” in 2012 17th Asia and South Pacific Design Automation

Conf., ASP-DAC, 2012, pp. 17–22.

https://doi.org/10.1109/ASPDAC.2012.6164940

Ionel Zagan received the M.Sc. degree in computer

science from the Stefan cel Mare University of

Suceava, Suceava, Romania, in 2005. He is currently
a Ph.D. student at the Department of Computers of

Stefan cel Mare University of Suceava. His research
interests include real-time systems, microcontrollers

and pipeline processors with parallel execution of

tasks. Mr. Zagan is a member of the IEEE Computer
Society.

Address: Str. Universitatii nr. 13, 720229, Suceava, Romania.
E-mail: zagan@eed.usv.ro

Vasile Gheorghita Gaitan received the M.Sc. and
Ph.D. degree from the Gheorghe Asachi Technical

University of Iasi, Romania, in 1984 and 1997,
respectively. He is currently a Professor at the

Department of Computers of Stefan cel Mare

University of Suceava, Romania. His main research
interests include real time scheduling, embedded

middleware, digital systems design with FPGAs,
fieldbuses and embedded system application. He is a

member of the IEEE, and a member of the IEEE

Computer Society.
Address: Str. Universitatii nr. 13, 720229, Suceava, Romania.

E-mail: vgaitan@usm.ro

https://doi.org/10.1109/AIEEE.2015.7367279
https://doi.org/10.1109/MM.2012.87
https://doi.org/10.1109/MM.2010.78
https://doi.org/10.1109/ISORC.2010.31
https://doi.org/10.1109/RTAS.2014.6925994
https://doi.org/10.1109/ETFA.2005.1612697
https://doi.org/10.1109/ICPPW.2009.21
https://doi.org/10.1109/EURMIC.1999.794770
https://doi.org/10.1109/TCAD.2009.2013287
https://doi.org/10.1145/1086297.1086326
https://doi.org/10.1145/1023833.1023837
https://doi.org/10.1002/nav.3800180410
https://doi.org/10.1287/mnsc.19.5.544
https://doi.org/10.1007/BF00365326
https://doi.org/10.1002/nav.3800210113
https://doi.org/10.1145/321738.321743
https://doi.org/10.1016/0166-5316(82)90024-4
https://doi.org/10.1145/321738.321743
https://doi.org/10.14569/IJACSA.2015.060406
https://doi.org/10.1145/202213.202217
https://doi.org/10.1109/CSCS.2015.10
https://doi.org/10.1145/1278480.1278545
https://doi.org/10.1109/EMWRT.1991.144077
https://doi.org/10.1109/EMWRT.1993.639104
https://doi.org/10.1109/DATE.2006.244146
https://doi.org/10.1109/ASPDAC.2012.6164940

