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Abstract – The predictable CPU architectures that run hard 

real-time tasks must be executed with isolation in order to 

provide a timing-analyzable execution for real-time systems. The 

major problems for real-time operating systems are determined 

by an excessive jitter, introduced mainly through task switching. 

This can alter deadline requirements, and, consequently, the 

predictability of hard real-time tasks. New requirements also 

arise for a real-time operating system used in mixed-criticality 

systems, when the executions of hard real-time applications 

require timing predictability. The present article discusses 

several solutions to improve the performance of CPU 

architectures and eventually overcome the Operating Systems 

overhead inconveniences. This paper focuses on the innovative 

CPU implementation named nMPRA-MT, designed for small 

real-time applications. This implementation uses the replication 

and remapping techniques for the program counter, general 

purpose registers and pipeline registers, enabling multiple 

threads to share a single pipeline assembly line. In order to 

increase predictability, the proposed architecture partially 

removes the hazard situation at the expense of larger execution 

latency per one instruction. 

 

Keywords – Jitter; Multithreading; Pipeline processing; Real-

time systems; Scheduling. 

 

I. INTRODUCTION 

Nowadays, specialized CPU architectures are among the 

most adopted solution for obtaining high performance, 

especially in embedded systems. Currently, a part of the 

available CPU implementations is not feasible to be used in 

mixed-criticality systems with hard real-time requirements. 

Such systems are really critical in terms of hard real-time 

execution, and the spatial and temporal isolation and timing 

predictability of tasks represent defining characteristics even 

in distributed systems. 

In addition, real-time systems are used in all embedded 

applications within the economic and social areas, including 

public institutions [1]. We can say that there is no area without 

one or more microprocessors, and thus research in this field 

has increased, achieving considerable improvements and also 

providing Quality of Service (QoS) for hard real-time 

applications. 

The current trend in mixed-criticality systems is represented 

by the predictable execution with hardware-based isolation of 

a large number of software tasks in different contexts, using 

limited hardware resources. Thus, in order to meet the 

appropriate deadlines, a single or multi-core processor must 

execute multiple types of tasks, according to their priorities in 

different situations. For this to be obtained, the field-

programmable gate array (FPGA) devices with a high capacity 

in logic gates, available today at acceptable prices, represents 

a hardware support for the development of embedded real-

time operating systems [2], [3]. 

In order to eliminate or reduce this inconvenience, in the 

last few years, studies have been carried out on software 

schedulers for mixed-criticality system, where software 

isolation was ensured by the real-time operating system 

(RTOS). Spatial isolation may be obtained by moving each 

task on a separate computational component. In this way, 

multithreaded processors use the hardware support in order to 

share a pipeline among more threads. With every cycle on the 

assembly line, fine-grained multithreaded processors alternate 

instructions from multiple threads, to the detriment of the 

long-latency created by context switch. Some fine-grained 

multithreaded processors could achieve isolation to the 

detriment of an immutable scheduling algorithm. 

Achieving a hardware-based isolation using different 

multiprocessor solutions leads to a non-analyzable timing 

behavior and inefficient use of hardware resources. On the 

other hand, in mixed-criticality systems, the predictable 

behavior of all concurrent tasks can be obtained by scheduling 

each task on a distinct execution component, such as the cores 

in multi-core processors. 

In order to obtain a competitive processor, we focus on the 

Multi Pipeline Register Architecture (nMPRA) [4], [5], as a 

RTOS developed in hardware, based on a Hardware Scheduler 

Engine (nHSE). 

The proposed nMPRA-MT (Multi Pipeline Register 

Architecture – Fine-grained Multithreading) project fulfills the 

requirements for the time-bounded execution of parallel hard 

real-time tasks, being focused on multithreading execution of 

different types of threads. Although this implementation has 

reduced costs, the RTOS still has to be checked and validated. 
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This article is an extended version of the work published in 

[6]; in this paper, we provide a schedulability analysis of the 

already existing scheduling algorithms and a detailed 

description of the experimental results obtained during the 

tests performed on the nMPRA-MT CPU architecture.  

This paper is structured as follows: the brief introduction in 

section I is followed by the related work in section II. 

Subsequently, section III presents the performance of several 

scheduling algorithms and section IV gives an overview on the 

nMPRA and nMPRA-MT architectures. The validation of the 

proposals including the experimental results achieved during 

the tests, is presented in section V, while section VI concludes 

the paper. 

II. RELATED WORK 

This section presents a brief description of some single-

core, multi-core architecture and scheduler implementations, 

regarding the development of real-time kernel primitives in 

hardware, focusing on reducing the operating system 

overhead. 

We will start with the XMOS project. The processor 

presented by May in [7] has a 32 bit scalable architecture, and 

can therefore use the entire central processing unit, although 

there are less than four active execution threads. The new 

XMOS architecture allows systems designers to build 

interconnected multiple Xcore systems. Communication 

between Xcore processor cores from the same or from 

different chips is conducted through messages sent by point-

to-point communication links. Cores interact with other 

external devices through integrated ports, ensuring the 

predictable execution of concurrent programs.  

Therefore, XMOS architecture can be successfully used in 

multi-core systems, dedicated boards, or distributed systems. 

The Merasa project [8], [9] was developed in order to obtain 

a processor architecture which can be successfully used in 

hard real-time embedded systems. The main characteristics of 

this project are the predictability of task execution and the 

efficient WCET (Worst Case Execution Time) analysis for 

each task. The MERASA project is better suited for mixed-

criticality systems but is focused on the multi-core level. The 

proposed architecture is based on the SMT (Simultaneous 

Multithreading) technique, able to execute both hard real-time 

(HRT) and non real-time (NHRT) threads. 

Each core is made up of two five-stage pipeline assembly 

lines. The first one is dedicated to one HRT execution thread, 

and the second one – to the NHRT execution threads. As seen 

in the example used by the authors, in a quad-core model, each 

core is composed of four hardware slots. The proposed 

architecture can therefore execute simultaneously one HRT 

thread and three NHRT threads. The HRT thread has the 

highest priority, as it is isolated by the real-time scheduler 

from other NHRT threads from the core. To reduce the task 

interferences to minimum, the authors propose the use of an 

AMC (analyzable real-time memory controller). In order to 

manage shared resources and critical sections belonging to the 

execution threads, the proposed architecture offers 

synchronization and inter-task communication mechanisms, 

such as spinlock, conditional variables, or barriers. To validate 

the architecture, the authors have calculated WCET for 

various configurations, using OTAWA and RapiTime 

benchmarks, based both on real parameters. 

Zimmer et al. proposed a new research in the field of 

precision timed infrastructure. The FlexPRET project [10] is 

an innovative solution for mixed-criticality systems where 

time is a decisive factor of correctness. The basic idea of this 

concept is to ensure predictability and hardware isolation for 

hard real-time threads, while allowing the soft real-time 

threads to efficiently use the CPU, in order to increase the 

overall processor throughput (total number of instructions 

processed on all threads).  

For these new processors called FlexPRET, a multitude of 

challenges appear regarding the multithreading techniques, 

single-core and multi-core architectures, scheduling 

algorithms, memory hierarchy, software components 

technologies, and programming languages.  

The aim of the ARPRET project [11] is to ensure the 

development and verification of large safety-critical 

applications, providing thread-safe communication via shared 

memory access by projecting a particular soft-core coupled 

with a hardware accelerator.  

The hthread project was presented for the first time by 

Andrews et al. in [12]. The hardware/software implementation 

of this multithreading architecture represents an innovative 

operating system for the embedded systems. The authors used 

Round-Robin or FIFO scheduling algorithm for its 256 active 

hardware threads, 256 active software threads, 64 binary spin-

lock semaphores, and 64 common semaphores. 

In [13], this structure is significantly improved. The 

scheduler is designed as a finite state machine (FSM), 

implemented in the hardware. In order to provide the 

necessary services for real-time requirements, the authors 

organize the operating system into four separate hardware 

cores: Thread Manager, Synchronization Manager, Scheduler 

and Condition Variables. Nevertheless, the architecture can 

schedule 256 active threads with an average delay of 1.9 μs 

and a jitter of 1.4 μs. 

The disadvantage of this architecture is rendered by the 

jitter emerged from conducting communication among the 

cores through the system bus. These clock cycles are very 

important to a hard real-time architecture, even for the use of 

scheduling coprocessors or accelerators. 

In [15], the authors proposed a new processor called 

Predator. This architectural approach characterized by 

predictability may be successfully used for embedded systems, 

even in real-time applications. The reason is that the Predator 

project uses the simple cores with predictable behavior, 

analyzable caches, compiler-controlled memory management 

and predictable kernel mechanisms. In order to obtain a real-

time multi-core architecture, the authors use crossbars to 

implement communication among cores, shared cache, and 

memory. Thus, allocating the code and data of different 

threads to a shared memory, the architecture needs an accurate 

scheduler and memory controller, in order to ensure exclusive 

access and noninterference. 
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El-Haj-Mahmoud et al. in [16] have proposed an 

architecture which can be divided into a set of virtual 

processors. The execution times of these processors are 

independent of each other, providing the tasks executed on 

virtual processors with a composable time [17]. The 

architecture proposed by the authors presents its partitioning 

either into a few higher-performance processors, more low-

performance processors, or a combination of the two 

extremes. 

The data in Table I represents the main characteristics of the 

most representative implementations described in the present 

section, as well as the differences between them. The issues 

involved refer to: coprocessor, replication of resources 

(program counter, register file or pipeline registers), scheduler 

implementation, assembly line (number of stages for every 

pipeline), synchronization and communication mechanisms, 

type of scheduler, and implementation. These processor 

architectures are generally scalable, depending on the FPGA 

characteristics used and on the type of the implemented 

processor. Hardware execution of specialized processors, 

coprocessors or schedulers is a novelty and a challenge in the 

area of real-time systems. 

III. PERIODIC AND APERIODIC TASK SCHEDULING  

FOR REAL-TIME SYSTEMS 

The present section will present various algorithms for real-

time periodic and aperiodic task scheduling. Taking into 

account the restrictions for each set of tasks, each algorithm 

represents a scheduling solution. When rigorous scheduling 

restrictions are not applied, the complexity of implementation 

can be reduced by using basic algorithms. Thus, although the 

resulting scheduling scheme is not an optimal solution, the 

feasibility of the system is ensured for a wide range of 

situations [1]. 

A. Aperiodic Task Scheduling 

The algorithms described in this section can be used for 

scheduling aperiodic tasks running on single-processor 

systems; they can also be applied to multiprocessor systems or 

distributed architectures with complex tasks. 

In non-preemptive scheduling, a CPU runs until completion 

a task that has entered execution. In this case, all necessary 

operations are performed in order to complete the current task. 

Therefore, the executed task will transfer control to the 

scheduler only when it completes his execution, even if there 

are tasks with a higher priority ready for execution. Therefore, 

the impossibility to guarantee the determinism of starting the 

task execution represents the disadvantage of non-preemptive 

scheduling. This type of scheduler is not preferred by 

commercial real-time schedulers because the control transfer 

towards the scheduler is not deterministic. 

An example in this sense is Bratley’s algorithm, proposed 

by Bratley et al. in 1971 [18]. This implementation was 

proposed in order to find a scheduling scheme for a certain 

number of non-preemptive and aperiodic tasks. 

The Spring non-preemptive algorithm was first adopted in 

the hard real-time kernel called Spring kernel, designed by 

Stankovic and Ramamritham [19]. The kernel has been 

implemented for critical control applications in dynamic 

systems, the objective of the algorithm being to find a feasible 

scheduling for a set of tasks with precedence constraints, 

shared resources, aperiodic arrival, and non-preemptive 

properties.  

In certain applications, the scheduling of a set of tasks 

cannot be performed randomly, because the compliance of 

some precedence relationships defined at the design stage is 

mandatory.  

 

TABLE I 

THE MAIN CHARACTERISTICS OF THE RTOS PRESENTED IN SECTION II 

RTOS 
Copro-

cessor 

Scheduler 

implementation 

Resource 

replication 
Pipeline 

Synchronization 

and communication 

mechanisms 

Scheduling 

algorithm 

Implementation 

type 

Hthread [12], 

[13] 

Yes HW (individual 

RTOS core) 

No No Yes (implemented in 

hardware) 

Static (FIFO, round-

robin, priority based) 

Single-core 

FASTCHART
[33], [34] 

No HW No No Yes (introduced the 
next version [34]) 

Static (rate 
monotonic) 

Single-core 

nMPRA [5] No HW Yes (general 

and pipeline 
registers) 

5-stage 

pipeline 

Yes (implemented in 

hardware) 

Static (round-robin, 

priority based) and 
dynamic (SW) 

Single-core 

PRET [32] No HW No 5-stage 

pipeline 

Yes Static (round-robin) Single-core 

FlexPRET 
[10] 

No HW No 5-stage 
pipeline 

Yes (PRET-C) Static and dynamic 
(earliest deadline first, 

rate-monotonic) 

Single-core 

JOP [35] and 
JOP-Plus [36] 

No SW No 3-stage 
pipeline 

Yes Dynamic Single-core 

Merasa [8], 

[9] 

No HW + SW 

scheduler for 

optimization 

Yes (general 

registers) 

Two 5-stage 

pipeline / 

core 

Yes (single-core and 

multi-core) 

Dynamic Multi-core 

XMOS [7] No HW Yes (general 

registers) 

4-stage 

pipeline/ 

core 

Yes (single-core and 

multi-core) 

Dynamic Multi-core 

Komodo [14] No SW Yes 4-stage 
pipeline 

No Dynamic Single-core 
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These precedence relationships are usually described 

through acyclic directed graphs, where the tasks are 

represented through nodes and the precedence relationships 

through arrows. The precedence graphs introduce a partial 

order for the set of tasks subject to scheduling. This 

scheduling method was used in two implementations using the 

following precedence constraints: Latest Deadline First (LDF), 

and Earliest Deadline First (EDF). The LDF algorithm was 

presented by Lawler [20] in 1973, and it can be applied on a 

set of aperiodic tasks with simultaneous arrival and a 

precedence relationship. 

Chetto et al. [21] presented an algorithm for scheduling a 

set of aperiodic tasks with precedence constraints and dynamic 

activation. This implementation is achievable provided that 

the tasks are preemptive and by transforming the set of 

dependent tasks in a set of independent ones by modifying the 

time parameters. If these steps have been completed, aperiodic 

tasks can be scheduled further using the EDF algorithm. 

The Earliest Due Date algorithm (EDD) was presented by 

Jackson in 1955 [22]. This algorithm schedules a set of 

aperiodic tasks on a single core, minimizing the maximum 

delays. Tasks have a synchronized occurrence, different 

deadlines and periods of execution; they are also independent, 

without a precedence relation and shared resources. The 

complexity of the EDD algorithm to achieve optimal 

scheduling is rendered by the procedure of sorting tasks in the 

ascending order of the deadline. The scheduling of this 

algorithm ensures that, in the worst case, all tasks complete 

execution before the deadline. 

The Earliest Deadline First algorithm, proposed by Horn in 

1974 [23], is a solution for scheduling an independent set of 

preemptive and aperiodic tasks executed on a single core 

system.  

In the case aperiodic tasks are not synchronized (these tasks 

can be dynamically activated during execution), preemptivety 

becomes an important factor. In general, the issues raised by 

preemptive schedulers are simpler than those raised by the 

non-preemptive ones.  

In the case of non-preemptive schedulers, the emergence of 

a new task ready for execution will not interrupt the task being 

executed in order to meet its deadline. When preemptivety is 

possible, any task can enter execution if its deadline is lower 

than that of the one being executed. 

For exemplification, we propose in Table II a set of five 

tasks with their relative parameters, where ai is the arrival time 

of τi. Each task τi is characterized by a WCET noted with Ci, a 

deadline Di, and period Ti. A deadline model is defined, 

compelling a Di smaller or equal to Ti. 

Fig. 1 shows an example of scheduling a set of five tasks 

using the EDF algorithm. At moment t = 0, task τ1 enters 

execution, and at moment t = 1, task τ2 cannot interrupt τ1 

because D1 < D2. Task τ1 completes execution at time moment 

t = 2, and at moment t = 4, when τ2 is being executed, task τ3 

interrupts τ2 because D3 < D2. 

To be noted that at time moment t = 7, task τ4 does not 

interrupt τ3 because D3 < D4. 

 

TABLE II 

THE PARAMETERS OF A SET OF FIVE TASKS 

 ai Ci Di 

τ5 12 5 18 

τ4 7 8 24 

τ3 4 4 10 

τ2 1 3 11 

τ1 0 2 4 

When τ3 completes execution, the CPU is assigned to task 

τ2. Task τ4 is executed at moment t = 9, but it is interrupted at 

t = 12 by τ5, because the last one has a lower deadline. Task τ4 

re-enters in execution at moment t = 17, when τ5 completes its 

own. 

Fig. 1. A scheduling example using the EDF algorithm. 

B. Periodic Task Scheduling 

In most real-time applications, periodic activities are the 

system's major computing necessity. Periodic tasks come from 

the control loops, system monitoring, or sensory data 

acquisition. These activities need to be performed cyclically 

with a certain rate specified by the application requirements. 

For a control application with a set of competing periodic 

tasks, each having different time constraints, the real time 

operating system must guarantee that every periodic instance 

is regularly activated and completed until the limit imposed by 

the deadline [1]. 

The basic algorithms used in periodic task scheduling are 

the following:  

• Timeline Scheduling; 

• Rate Monotonic; 

• Deadline Monotonic; 

• Earliest Deadline First. 

The Timeline Scheduling algorithm (TS) is one of the most 

common approaches for scheduling periodic tasks in the 

control of traffic and military systems [1]. The algorithm is 

called Cyclic Executive, and it consists in dividing the time 

axis in equal intervals during which one or more tasks can be 

scheduled for execution.  
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Fig. 2. An example of scheduling three tasks using the TS algorithm. 

In order to guarantee the individual scheduling frequency 

for every task, a timer synchronizes their activation at the 

beginning of each time frame.  

Fig. 2 shows an example of how this scheduling algorithm 

is used. 

Three tasks are considered: τ1, τ2, and τ3; these tasks have to 

be executed at a time frame of T1 = 5 ms, T2 = 10 ms, and T3 = 

20 ms. A possible scheduling for these tasks is represented in 

Fig. 2. In this case, it is easy to verify that the optimal time 

length is 5 ms; this period is called Greatest Common Divizor 

of execution periods. Therefore, task τ1 must be executed at 

each interval, task τ2 at every two intervals, and task τ3 at 

every four intervals. The duration of these intervals is called 

Minor Cycle, while the time frame in which the scheduling of 

all tasks is repeated is called Major Cycle. In order to ensure 

the feasibility of the scheduling scheme, it suffices to know 

the WCET for each task and to check the fact that the sum of 

execution periods from each interval is less than or equal to 

the Minor Cycle. Therefore, for the aforementioned example, 

the following relations must be satisfied: C1 + C2 ≤ 5 ms, and 

C1 + C3 ≤ 5 ms. 

The major advantage of the TS algorithm is its simplicity. 

The method can be implemented by scheduling an interrupt at 

a time frame equal to the Minor Cycle, by writing the main 

program for calling tasks in the order given by the Major 

Cycle, and by inserting a synchronization point at the 

beginning of each Minor Cycle. The major disadvantage of 

this algorithm is that scheduling is fragile at overload. 

The scheduling Rate Monotonic (RM) algorithm is based on 

a simple rule that attaches priorities to tasks, depending on the 

execution rates. Therefore, the tasks with a higher execution 

rate will have higher priorities Pi; therefore, RM becomes an 

intrinsic preemptive algorithm, because the task being 

executed can be interrupted by the occurrence of a task with a 

higher priority. If the execution rates are constant, the 

algorithm assigns fixed priorities Pi before the execution of the 

tasks that are not changed over time [1]. 

Fig. 3.a shows that the time response of task τk is delayed by 

the occurrence of task τi with a higher priority. Fig. 3.b shows 

how task τi delays even further the execution of task τk, the 

response time being constantly influenced by the number of 

interrupts generated by task τi.  

Considering a set of tasks scheduled with RM algorithm, 

the worst response time of a task τi is that when all tasks with 

higher priority are executed simultaneously. Liu and Layland 

in [24] proved that, for a set of tasks with unique execution 

periods, there is a feasible scheduling before the deadline, 

provided that the CPU usage is less than a certain limit.  

Fig. 3. An example for scheduling using the RM algorithm. 

The advantage of this algorithm is that the scheduling 

scheme can be easily checked at all critical instants. 

According to the Deadline Monotonic (DM) algorithm, 

each task has attached a fixed priority Pi inversely 

proportional with its relative deadline Di. Therefore, the task 

with the lowest deadline is scheduled at any moment of 

execution, and if the relative deadlines are constant, the DM 

algorithm is one with constant priorities.  

This algorithm was proposed in 1982 by Leung and 

Whitehead [25] as an extension for the RM algorithm. The 

feasibility test using the DM algorithm can be performed using 

the following formula: 

 
1

1

(2 1)
n

i n

i i

C
n

D

  . (1) 

The DM and RM algorithms are used especially in full-

preemptive scheduling models, because the executed task can 

be interrupted by the occurrence of another task with a 

relatively lower deadline or with a higher execution rate.  

The EDF algorithm is a dynamic scheduling method that 

selects tasks according to their absolute deadline. Higher 

priorities will be dynamically assigned to tasks with a closer 

deadline. Moreover, the algorithm is executed preemptively so 

that the execution of a task can be interrupted by the 

occurrence of one with a lower deadline. The EDF algorithm 

does not refer to the frequency of tasks, so it can be used for 

scheduling both periodic and aperiodic tasks. Checking the 

scheduling of a set of periodic tasks using the EDF algorithm 

can be performed through the CPU usage factor (2). This is 

stated in the following theorem [26]:  

Theorem 1: A periodic set of n task can be scheduled with 

the EDF algorithm only if: 

 
1

1
n

i

i i

C

T

 . (2) 

The EDF algorithm implies the fact that a task can be 

interrupted only once in the same interval Ti. Therefore, the 
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small number of interrupts is the result of dynamically 

assigning the priorities Pi. 

IV. OVERVIEW OF THE NMPRA AND NMPRA-MT 

ARCHITECTURE 

The nMPRA architecture proposed by Gaitan et al. in [5] 

has been specially designed to reduce the scheduler overhead 

and the switch time of the task context, with the purpose to 

minimize the unacceptable jitter present in the current RTOS. 

A. nMPRA Architecture  

nMPRA is a hardware design that represents a custom CPU 

architecture based on replication of resources, such as program 

counter, general purpose registers, and pipeline registers. 

As it can be seen in Fig. 4, the authors use a register file and 

a set of four pipeline registers for each task, in order to hold 

the individual running state information. All the tasks running 

on the CPU use the same data path, control unit, ALU, Hazard 

Detection Unit, and Forward Unit.  

The pipeline registers used by nMPRA architecture are the 

following: IF/ID (instruction fetch/instruction decode), ID/EX 

(instruction decode/execute), EX/MEM (execute/memory), 

MEM/WB (memory/write back), and also PC (Program 

Counter) which is not a pipeline register, but it is managed by 

the nHSE in the same manner. 

This implementation allows a very fast context switching, 

which is possible due to the remapping of the active running 

task context with the scheduled task; the jitter is minimized in 

order to provide an accurate predictability behavior. In other 

words, the nMPRA architecture replaces the classical stack-

saving methods with a remapping technique, allowing us to 

execute a new task in an average of one clock cycle and 

maximum three in the case of working with memory 

instructions.  

The original design is based on a traditional MIPS 

architecture that was specially modified to support instructions 

dedicated to the hardware scheduler, part of the CPU itself. 

The nHSE is task-oriented, in order to increase the 

throughput of execution and to avoid the excessive use of 

resources. The entire nHSE is disabled when the processor is 

connected to a power supply, the only one active being the 

high priority HT0. 

In order to prove the performance of the new processor 

concept, we used our assembler translator. This component 

proves useful in validating the opcode of the new instructions 

added to control the nHSE. 

B. Proposed nMPRA-MT Architecture  

The nMPRA-MT architecture presented in [27] is a fine-

grained multithreaded processor based on the original nMPRA 

concept, designed to support architectural requirements for 

hard real-time systems. 

The development of a new application has been imposed by 

the fact that the proposed architecture extends the instruction 

set of the MIPS processor. After testing the functionalities of 

this processor, traditional MIPS compilation tools can be 

easily used to develop real-time applications. 

 

Fig. 4. nMPRA CPU architecture. 

The purpose of this paper is to describe and present the 

implementation results of a predictable scheduler that controls 

different types of tasks interlacing with the pipeline levels. In 

order to do this, hard real-time tasks are classified and become 

Hard Threads-HT, whereas low priority tasks become Soft 

Threads-ST. Thus, HTs represent the tasks where a missing 

deadline generates critical effects, and STs represent useful 

tools for completing the system (we will use the terms 

“thread” and “task” interchangeably). Using these notations, 

the implementation of the nMPRA-MT processor is designed 

to support hardware-based isolation for HTs, at the same time 

allowing STs to use the unallocated cycles. 

The nMPRA-MT is a multithreaded processor based on a 

hardware scheduler and independent pipeline registers, 

designed to support architectural requirements for hard real-

time systems. The main reason for implementing the nMPRA-

MT project is the decrease of execution overhead given by the 

scheduling and context switching operation. 

Although, nMPRA-MT is an architecture that involves 

multiplication of resources, its pipeline modification improves 

the related costs that are more effective than those of other 

commercial CPU architectures using resource replication. 

Such CPU implementations are recommended for a reasonable 

number of tasks designed for small hard real-time 

applications. For a large number of tasks, due to a synthesis of 

logic with unreasonably high propagation times, the frequency 

will significantly decrease. 
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Every thread has its own ID and STATE registers; the 

thread with the highest priority has the ID equal to 0 and the 

lowest priority corresponds to n − 1. 

In order to maintain the performance of pipeline processing, 

the authors use a five-stage assembly line to allow the 

execution of multiple instructions from different threads in the 

pipeline levels. Because nMPRA-MT architecture uses CPU 

working registers and resource remapping techniques for the 

pipeline registers, nHSE interleave different threads into the 

pipeline assembly line, without losing clock cycles due to 

contexts switching operation. 

At the expense of two cycle clock latencies per one 

instruction from the same HT thread, when the pipeline is full, 

the efficiency is equal to one instruction for every clock cycle. 

When data hazard situations are detected, a new forwarding 

unit is implemented in order to solve data dependencies within 

the same thread. When a HT thread is scheduled to be 

executed every two clock cycles, it is no longer possible to 

stall an instruction already fetched if it is dependent on data 

hazards. This turns the nMPRA-MT project into a predictable 

architecture, designed to compute faster; only in exceptional 

cases, instructions from the pipeline are flushed. 

Concerning the interrupt system, the nMPRA-MT 

architecture preserves the algorithm used by nMPRA. Thus, 

an interrupt could be assigned to one task only, HT or ST, 

inheriting its priority and behavior. This interrupt system is 

completely allocated, so that an important advantage is 

represented by the fact that interrupts do not affect the pipeline 

assembly line. By doing this, the proposed nMPRA-MT is 

able to manage periodic or aperiodic events, such as a time 

event, watchdog, or deadline events. 

nHSE has been designed to implement dynamic scheduling 

algorithms for HT and ST threads, in order to allow certain ST 

threads to execute multiple tasks. By doing this, every thread 

has its own ID and STATE registers. Therefore, the ID 

register indicates the priority and the type of threads that can 

be HT or ST. The STATE register memorizes the state of each 

thread, which can either be active, idle or sleeping. The ID 

register identifies the thread when an event appears, attached 

by the scheduler. When HT threads are in the sleeping state, 

the STs are scheduled to consume the available processor 

cycles. 

C. Pipeline and Thread Management  

This paper extends the basic idea presented in [4] and [5], 

proposing an original implementation based on the nHSE 

concept. 

The PC_IF_i signal connected to the simple 32-bit adder is 

used to provide the program counter (PC_IF_0, PC_IF_1, …, 

PC_IF_n−1) available in the next clock cycles.  

nHSE supports an arbitrary interleaving of threads by using 

a new innovative Forward Unit. In order to prevent the stalls, 

the data or control hazards that occur when the HTs are 

scheduled every two clock cycles are treated by the new 

Hazard Detection Unit described in subsection E.  

Fig. 5. Hardware for selecting PC corresponding to the scheduled thread. 

Due to the fact that each thread has its own program 

counter, a set of pipeline registers and working registers for 

general purpose, the next program counter corresponding to 

the scheduled thread is selected by using en_PC_decode and 

nHSE_PC_select signals, as shown in Fig. 5. 

However, it is difficult to predict how many cycles it would 

require for HT threads to be executed, because pipeline 

spacing between them can vary unpredictably. 

D. Events and Resource Management 

The model for interrupt handling proposed in this paper is 

similar to the solution presented in [28]. This is based on the 

unification of threads and interrupts into a single model; the 

interrupts are converted into threads using a limited overhead. 

This model allows the implementation of periodic, 

aperiodic or sporadic events related to CPU operation, 

eliminating the interrupts of the tasks [29]. The interrupts are 

treated as events attached to HTs or STs, and therefore 

inheriting their priority. By using this approach, a task can be 

suspended only by the interrupts that are attached to higher 

priority tasks; the behavior of the system is more predictable 

in the context of a small real-time application. 

As shown in Fig. 6, there are three types of events: periodic 

time events, watchdog timer, and two deadline events that are 

equal to an alarm and/or a fault [30]. 

E. Exceptions and Hazard Situations  

The innovative Hazard Detection Unit and Forward Unit 

allow the fine-grained pipelined processor to operate 

efficiently and correctly in the presence of data, structural, and 

control hazards in various situations.  
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Fig. 6. Architecture of hardware scheduler engine with enable oi signals and 

interrupt handling model [30]. 

Data redirecting units play a significant role in improving 

system performance. We have already mentioned in the 

previous sections that there are various hazard situations when 

the data consumed by an instruction is not yet produced by the 

previous instruction. 

When a different number of threads is active on the pipeline 

assembly line, Hazard Unit detects that the required data is 

still in the pipeline and whether that data may be forwarded by 

one of the Forward Units presented in Table III.  

For each situation, depending on the number of HT and ST 

threads, the nMPRA-MT uses the appropriate Forward Unit in 

order to meet deadlines; therefore, the latency effect is reduced 

to a minimum. If the scheduler fetches instructions from the 

same HT thread every two clock cycles, the worst cases of 

assembly line stalling are avoided, at the expense of a wider 

execution latency.  

As shown in Table III, by way of example, we consider two 

HTs that are scheduled simultaneously at the expense of two 

clock cycles latency per one instruction from the same thread. 

In this case, there will be no wasted clock cycles due to 

unsolved hazard situations, and the UFW2 Forward Unit does 

not affect system predictability. 

When nHSE fetches continuously and unpredictably the 

instructions from a scheduled ST thread, using UFW1 

Forward Unit, it is possible to stall the pipeline assembly line. 

In another case, when the instructions executed in the pipeline 

belong to four different HT or ST threads, no hazard situations 

are possible and NO FW Forward Unit is used. 

TABLE III 

HAZARD DETECTION AND FORWARD UNIT CONFIGURATION 

Active threads 

in the pipeline 

HT Latency 

(HT) 

ST Latency 

(ST) 

Forward 

Unit 

1 0 0 1 1 UFW1 

2 2 2 0 0 UFW2 

2 1 2 1 2 UFW3 

3 1 2 2 4 UFW4 

2 0 0 2 2 UFW2 

4 2 4 2 4 NO FW 

4 4 4 0 0 NO FW 

4 0 0 4 4 NO FW 

V.  VALIDATION OF THE NMPRA-MT ARCHITECTURE 

In this section, we focus on the validation of the presented 

concept, introducing the experimental results of the 

implemented FPGA prototype.  

The project has been tested on a Virtex-6 FPGA ML605 

Evaluation Kit from Xilinx, and the code of the processor was 

developed in standard Verilog. Nevertheless, in the testing and 

validation procedure, we took into account the influence of the 

signal propagation time on the number of independent sets of 

pipeline registers and register files [31]. Every thread uses a 

PC register, a register file, and a set of pipeline registers, while 

the replication of these resources for eight active threads 

requires 8.64 kB of RAM. 

A. The Impact of Different Configuration Models on FPGA 

Resources  

In order to evaluate the area cost associated to different 

requirement models, several nMPRA and nMPRA-MT 

configurations were validated on a Xilinx FPGA. The register 

file block has a fixed size, computed at the level of 

compilation. This is large enough for six nesting levels, so that 

at a given time, different Register Files can be accessed, 

according to the nHSE configuration. 

Between the original nMPRA project presented in [5] and 

the proposed nMPRA-MT implementation, the cost increase is 

by 6 % in LUTs (lookup-table) and 35 % in FFs (flip-flop). 

This is caused by the fine-grained multithreading, nHSE, 

Hazard Detection Unit, and Forward Unit. Although the 

nMPRA-MT removes the stalls from the pipeline levels, the 

architecture logic requires more multiplexing based on ID and 

STATE thread registers which must be stored for each thread.  

Fig. 7 shows the resource differences between the original 

nMPRA implementation presented in [5] and the nMPRA-MT 

implementation.  

The implementation proposed in the present paper is a 

deterministic architecture, as compared to SMT processors, 

which may expose additional overcontrol, if the program does 

not expose an ILP (Instruction Level Parallelism). Taking into 

consideration these data, we can state that the amount of 

memory needed for the implementation of the nMPRA-MT 

processor is more than acceptable, provided that the total 

number of tasks may be 8, 16, or 32. 

 

Fig. 7. FPGA resource usage corresponding to the nMPRA and nMPRA-MT 

processor configurations, with 16 threads each. 
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B. Experimental Results 

As it is seen in Fig. 8, the clock on channel 1 is used for the 

synchronization of memories and pipeline registers, while the 

clock on channel 2 is used for the synchronization of the 

nHSE scheduler. Channel 4 marks the answer of the 

application to an asynchronous external event (channel 3 

signal), resulted from pushing a button from the ML605 board. 

 

Fig. 8. Application response in relation with an external asynchronous event 

when the program executes sw instructions. 

For the case in which the program executes special 

instructions used for external memory accesses at an operating 

frequency of 50 MHz, the scheduler response to an 

asynchronous external event can reach 67 ns, depending on 

the occurrence time of the event. This working frequency is 

not the maximum operating frequency of the processor. In 

order to monitor the clock, for the asynchronous interrupt 

signal and scheduler answer, we used unregistered ports. 

C. WCET Analysis 

In order to improve WCET analysis, specific algorithms 

have been enhanced and developed to ensure the nMPRA-MT 

features, including a fine-grained pipeline implementation, a 

particular threaded scheduler, and an original Forward Unit. 

Being a fine-grained multithreading implementation, the 

nMPRA-MT scheduler had to be able to execute 

simultaneously instructions from different threads. When the 

pipeline assembly line is occupied by two concurrent HTs, the 

execution report is finally an instruction for two clock cycles 

per thread. This means that, at any given time, there may be 

multiple instructions in the pipeline levels, without 

encountering unsolved hazard situations. Therefore, to 

guarantee hardware-based isolation and timing predictability, 

a constant scheduling frequency is required for HTs. For 

mixed-criticality systems, the upper bound is statically 

guaranteed at the compile time. The WCET analysis 

techniques are applied in order to confirm the safe upper 

bounds of HTs, but they are not necessarily required for STs. 

VI. CONCLUSION AND FUTURE WORK 

The proposed nMPRA-MT is an innovative project mainly 

because it provides a minimum time switch between the tasks 

that are normally accomplished in a single machine cycle.  

The response of the system to an external asynchronous 

event will not exceed 1.5 clock cycles or a maximum of three 

clock cycles when the CPU accesses the global memory, as 

seen in Fig. 8. The main reasons for implementing the 

nMPRA-MT project are: the reduction of memory footprint, 

the jitter reduction, and the improvement of the response time 

for external events.  

In conclusion, we can say that the use of nMPRA-MT 

architecture with 16 tasks is fully justified by the benefits it 

brings; moreover, the implementation performance/cost 

indicator is very good. The resource differences between the 

original nMPRA implementation presented in [5] and the 

nMPRA-MT implementation may increase. 

As future work, we will present the experimental WCET 

analysis obtained using complete benchmarks, considering a 

feasible set of tasks executed on the nMPRA-MT architecture, 

which guarantees the predictability and hardware-based 

isolation for HTs.  

However, the processor is opened to new improvements 

such as: 

• implementation in hardware of a memory controller for 

an explicit model of memory hierarchy; 

• computing of the WCET using complete benchmarks. 

ACKNOWLEDGMENT 

This work was partially supported from the project 

“Integrated Center for research, development and innovation 

in Advanced Materials, Nanotechnologies, and Distributed 

Systems for fabrication and control”, Contract No. 

671/09.04.2015, Sectoral Operational Program for Increase of 

the Economic Competitiveness co-funded from the European 

Regional Development Fund. 

This paper has been prepared with the financial support of 

the project “Quality European Doctorate – EURODOC”, 

Contract No. POSDRU/187/1.5/S/155450, project co-financed 

by the European Social Fund through the Sectoral Operational 

Programme “Human Resources Development” 2007–2013. 

REFERENCES 

[1] G. C. Buttazzo, Hard Real-Time Computing Systems – Predictable 

Scheduling Algorithms and Applications (Real-Time Systems Series 24). 
3rd ed., Springer US, 2011. ISBN 978-1-4614-0675-4.   

https://doi.org/10.1007/978-1-4614-0676-1  

[2] B. Kumthekar, L. Benini, E. Macii and F. Somenzi, “Power optimisation 
of FPGA-based designs without rewiring,” in IEE Proc. – Comput. and 

Digital Techniques, vol. 147, no. 3, pp. 167–174, May 2000.   
https://doi.org/10.1049/ip-cdt:20000497 

[3] M. Shahbazi, P. Poure, S. Saadate and M. R. Zolghadri, “FPGA-Based 

Reconfigurable Control for Fault-Tolerant Back-to-Back Converter 
Without Redundancy,” IEEE Trans. on Industrial Electronics, vol. 60, 

no. 8, pp. 3360–3371, Aug. 2013.   
https://doi.org/10.1109/TIE.2012.2200214 

[4] E. Dodiu and V. G. Gaitan, “Custom designed CPU architecture based 

on a hardware scheduler and independent pipeline registers – concept 
and theory of operation,” in 2012 IEEE Int. Conf. on 

Electro/Information Technology, Indianapolis, IN, USA, May 2012, 
pp. 1–5. https://doi.org/10.1109/EIT.2012.6220705 

[5] V. G. Gaitan, N. C. Gaitan and I. Ungurean, “CPU Architecture Based 

on a Hardware Scheduler and Independent Pipeline Registers,” IEEE 
Trans. on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 9, 

pp. 1661–1674, Sep. 2015.   
https://doi.org/10.1109/TVLSI.2014.2346542 

https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1049/ip-cdt:20000497
https://doi.org/10.1109/TIE.2012.2200214
https://doi.org/10.1109/EIT.2012.6220705
https://doi.org/10.1109/TVLSI.2014.2346542


Electrical, Control and Communication Engineering 

________________________________________________________________________________________________ 2016/10 

22 

[6] I. Zagan, “Improving the performance of CPU architectures by reducing 

the Operating System overhead,” in 2015 IEEE 3rd Workshop on 

Advances in Information, Electronic and Electrical Engineering 
(AIEEE), Riga, Nov. 2015, pp. 1–6.  

https://doi.org/10.1109/AIEEE.2015.7367279 
[7] D. May, “The XMOS Architecture and XS1 Chips,” IEEE Micro, 

vol. 32, no. 6, pp. 28–37, Nov.–Dec. 2012.   

https://doi.org/10.1109/MM.2012.87 
[8] T. Ungerer et al., “Merasa: Multicore execution of hard real-time 

applications supporting analyzability,” IEEE Micro, vol. 30, no. 5, 
pp. 66–75, 2010. https://doi.org/10.1109/MM.2010.78 

[9] J. Wolf, M. Gerdes, F. Kluge, S. Uhrig, J. Mische, S. Metzlaff, 

C. Rochange, H. Cassé, P. Sainrat and T. Ungerer, “RTOS Support for 
Parallel Execution of Hard Real-Time Applications on the MERASA 

Multi-core Processor,” in 2010 13th IEEE Int. Symp. on 
Object/Component/Service-Oriented Real-Time Distributed Computing, 

Carmona, Seville, May 2010, pp. 193–201.  

https://doi.org/10.1109/ISORC.2010.31 
[10] M. Zimmer, D. Broman, C. Shaver and E. A. Lee, “FlexPRET:  

A processor platform for mixed-criticality systems,” in 2014 IEEE 20th 
Real-Time and Embedded Technology and Applicat. Symp. (RTAS), 

Berlin, 2014, pp. 101–110. https://doi.org/10.1109/RTAS.2014.6925994  

[11] S. Andalam, “Predictable platforms for safety-critical embedded 
systems,” Thesis, The University of Auckland, 2013. 

[12] D. Andrews et al., “hthreads: A hardware/software co-designed 
multithreaded RTOS kernel,” in 2005 10th IEEE Conference on 

Emerging Technol. and Factory Autom., Catania, Italy, Sep. 2005, 

pp. 331–338. https://doi.org/10.1109/ETFA.2005.1612697 
[13] J. Agron, D. Andrews, “Hardware Microkernels for Heterogeneous 

Manycore Systems,” in 2009 Int. Conf. on Parallel Processing 
Workshops (ICPPW '09), Vienna, 2009, pp. 19–26.   

https://doi.org/10.1109/ICPPW.2009.21 

[14] J. Kreuzinger, R. Marston, T. Ungerer, U. Brinkschulte and 
C. Krakowski, “The Komodo project: thread-based event handling 

supported by a multithreaded Java microcontroller,” in Proc. 25th 
EUROMICRO Conf. Informatics: Theory and Practice for the New 

Millennium, Milan, 1999, vol. 2, pp. 122–128.   

https://doi.org/10.1109/EURMIC.1999.794770 
[15] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister and 

C. Ferdinand, “Memory Hierarchies, Pipelines, and Buses for Future 

Architectures in Time-Critical Embedded Systems,” IEEE Trans. on 

Computer-Aided Design of Integrated Circuits and Systems, vol. 28, 

no. 7, pp. 966–978, July 2009.   
https://doi.org/10.1109/TCAD.2009.2013287 

[16] A. El-Haj-Mahmoud, A. S. Al-Zawawi, A. Anantaraman, and 
E. Rotenberg, “Virtual multiprocessor: an analyzable, highperformance 

architecture for real-time computing,” in Proc. of the 2005 int. conf. on 

Compilers, architectures and synthesis for embedded systems, CASES 
’05. San Francisco, 2005, pp. 213–224.  

https://doi.org/10.1145/1086297.1086326 
[17] A. El-Haj-Mahmoud and E. Rotenberg, “Safely Exploiting 

Multithreaded Processors to Tolerate Memory Latency in Real-Time 

Systems,” in Proc. of the 2004 int. conf. on Compilers, architecture, and 
synthesis for embedded systems, Washington, 2004, pp. 2–13.   

https://doi.org/10.1145/1023833.1023837 
[18] P. Bratley, M. Florian, and P. Robillard, “Scheduling with earliest start 

and due date constraints,” Naval Research Quarterly, vol. 18, no. 4, 

1971. https://doi.org/10.1002/nav.3800180410 
[19] J. Stankovic and K. Ramamritham, “The design of the spring kernel,” in 

Proc. of the IEEE Real-Time Systems Symp., Dec. 1987. 
[20] E. L. Lawler, “Optimal sequencing of a single machine subject to 

precedence constraints,” Managements Science, vol. 19, no. 5, pp. 544–

546, 1973. https://doi.org/10.1287/mnsc.19.5.544 
[21] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of 

realtime tasks under precedence constraints,” J. of Real-Time Systems, 
vol. 2, no. 3, pp. 181–194, Sep. 1990.  

https://doi.org/10.1007/BF00365326 

[22] J. R. Jackson, “Scheduling a production line to minimize maximum 
tardiness,” Management Science Research, vol. 43, 1955. 

[23] W. Horn, “Some simple scheduling algorithms,” Naval Research 
Logistics Quarterly, vol. 21, no. 1, Mar. 1974.   

https://doi.org/10.1002/nav.3800210113 

[24] C. L. Liu and J. Layland, “Scheduling algorithms for multiprogramming 
in a hard real-time environment,” Journal of the ACM (JACM), vol. 20, 

no. 1, pp. 46–61, 1973. https://doi.org/10.1145/321738.321743 

[25] J. Leung and J. Whitehead, “On the complexity of fixed-priority 

scheduling of periodic real-time tasks,” Performance Evaluation, vol. 2, 

no. 4, pp. 237–250, 1982.   
https://doi.org/10.1016/0166-5316(82)90024-4 

[26] C. L. Liu and J. W. Layland, “Scheduling algorithms for 
multiprogramming in a hard-real-time environment,” J. of the 

Association for Computing Machinery, vol. 20, no. 1, 1973.   

https://doi.org/10.1145/321738.321743 
[27] N. C. Gaitan, I. Zagan and V. G. Gaitan, “Predictable CPU Architecture 

Designed for Small Real-Time Application - Concept and Theory of 
Operation,” Int. J. of Advanced Computer Science and Applications, 

vol. 6, no. 4, pp. 47–52, 2015.   

https://doi.org/10.14569/IJACSA.2015.060406 
[28] S. Kelinman and J. Eykholt, “Interrupts as threads,” ACM SIGOPS 

Operating Syst. Rev., vol. 29, no. 2, pp. 21–26, Apr. 1995.   
https://doi.org/10.1145/202213.202217 

[29] N. C. Gaitan, V. G. Gaitan, I. Ungurean and I. Zagan, “Methods to 

Improve the Performances of the Real-Time Operating Systems for 
Small Microcontrollers,” in 2015 20th Int. Conf. on Control Systems and 

Computer Science, Bucharest, 2015, pp. 261–266.   
https://doi.org/10.1109/CSCS.2015.10 

[30] N. C. Gaitan, I. Zagan and V. G. Gaitan, “Improving the Predictability 

of nMPRA and nHSE Architecture,” Bulletin of the Polytechnic Institute 
of Iasi, Automatic Control and Computer Science Section, fasc. 1/2015, 

pp. 27–38, 2015, ISSN 1220-2169, 
[31] E. Dodiu, “Real-Time Hardware Scheduler for FPGA Based Embedded 

Systems,” Ph.D. dissertation, University Stefan cel Mare of Suceava, 

Romania, 2013. 
[32] S. A. Edwards and E. A. Lee, “The Case for the Precision Timed 

(PRET) Machine,” in Proc. of the 44th annu. Design Automation Conf. 
DAC '07, San Diego, 2007, pp. 264–265.   

https://doi.org/10.1145/1278480.1278545  

[33] L. Lindh, “Fastchart – A fast time deterministic CPU and hardware 
based real-time-kernel,” in Proc. EUROMICRO `91 Workshop on Real-

Time Syst., Paris-Orsay, 1991, pp. 36–40.   
https://doi.org/10.1109/EMWRT.1991.144077 

[34] F. Stanischewski, “FASTCHART – Performance, Benefits and 

Disadvantages of the Architecture,” in Proc. Fifth Euromicro Workshop 
on Real-Time Syst., 1993, pp. 246–250.   

https://doi.org/10.1109/EMWRT.1993.639104 

[35] M. Schoeberl, “A time predictable Java processor,” in Proc. of the 

Design Automation & Test in Europe Conference, DATE’06, Munich, 

2006, pp. 1–6. https://doi.org/10.1109/DATE.2006.244146 
[36] M. Nadeem, M. Biglari-Abhari and Z. Salcic, “JOP-plus - A processor 

for efficient execution of java programs extended with GALS 
concurrency,” in 2012 17th Asia and South Pacific Design Automation 

Conf., ASP-DAC, 2012, pp. 17–22.   

https://doi.org/10.1109/ASPDAC.2012.6164940 
 

 
Ionel Zagan received the M.Sc. degree in computer 

science from the Stefan cel Mare University of 

Suceava, Suceava, Romania, in 2005. He is currently 
a Ph.D. student at the Department of Computers of 

Stefan cel Mare University of Suceava. His research 
interests include real-time systems, microcontrollers 

and pipeline processors with parallel execution of 

tasks. Mr. Zagan is a member of the IEEE Computer 
Society. 

Address: Str. Universitatii nr. 13, 720229, Suceava, Romania. 
E-mail: zagan@eed.usv.ro 

 

Vasile Gheorghita Gaitan received the M.Sc. and 
Ph.D. degree from the Gheorghe Asachi Technical 

University of Iasi, Romania, in 1984 and 1997, 
respectively. He is currently a Professor at the 

Department of Computers of Stefan cel Mare 

University of Suceava, Romania. His main research 
interests include real time scheduling, embedded 

middleware, digital systems design with FPGAs, 
fieldbuses and embedded system application. He is a 

member of the IEEE, and a member of the IEEE 

Computer Society. 
Address: Str. Universitatii nr. 13, 720229, Suceava, Romania. 

E-mail: vgaitan@usm.ro 

https://doi.org/10.1109/AIEEE.2015.7367279
https://doi.org/10.1109/MM.2012.87
https://doi.org/10.1109/MM.2010.78
https://doi.org/10.1109/ISORC.2010.31
https://doi.org/10.1109/RTAS.2014.6925994
https://doi.org/10.1109/ETFA.2005.1612697
https://doi.org/10.1109/ICPPW.2009.21
https://doi.org/10.1109/EURMIC.1999.794770
https://doi.org/10.1109/TCAD.2009.2013287
https://doi.org/10.1145/1086297.1086326
https://doi.org/10.1145/1023833.1023837
https://doi.org/10.1002/nav.3800180410
https://doi.org/10.1287/mnsc.19.5.544
https://doi.org/10.1007/BF00365326
https://doi.org/10.1002/nav.3800210113
https://doi.org/10.1145/321738.321743
https://doi.org/10.1016/0166-5316(82)90024-4
https://doi.org/10.1145/321738.321743
https://doi.org/10.14569/IJACSA.2015.060406
https://doi.org/10.1145/202213.202217
https://doi.org/10.1109/CSCS.2015.10
https://doi.org/10.1145/1278480.1278545
https://doi.org/10.1109/EMWRT.1991.144077
https://doi.org/10.1109/EMWRT.1993.639104
https://doi.org/10.1109/DATE.2006.244146
https://doi.org/10.1109/ASPDAC.2012.6164940

