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Abstract
Pineapple is an economically important tropical fruit crop, but the lack of adequate planting material limits its productivity. 
A range of micropropagation protocols has been developed over the years to address this shortfall. Still, the final stage of 
micropropagation, i.e. acclimatisation, remains a challenge as pineapple plantlets grow very slowly. Several studies have been 
conducted focusing on this phase and attempting to improve plantlet growth and establishment, which requires tools for the 
non-destructive evaluation of growth during acclimatisation. This report describes the use of semi-automated and automated 
image analysis to quantify canopy growth of pineapple plantlets, during five months of acclimatisation. The canopy area prog-
ressively increased during acclimatisation, particularly after 90 days. Regression analyses were performed to determine the 
relationships between the automated image analysis and morphological indicators of growth. The mathematical relationships 
between estimations of the canopy area and the fresh and dry weights of intact plantlets, middle-aged leaves (D leaves) and 
roots showed determination coefficients (R2) between 0.84 and 0.92. We propose an appropriate tool for the simple, objective 
and non-destructive evaluation of pineapple plantlets growth, which can be generally applied for plant phenotyping, to reduce 
costs and develop streamlined pipelines for the assessment of plant growth. 
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Introduction
Pineapple [Ananas comosus (L.) Merr] is a monocotyledonous, herbaceous perennial 
crop valued for its fruit. It is the only species in the Bromeliaceae family that is cultivated 
commercially. In this regard, pineapple represents the third most important tropical fruit 
worldwide, in terms of production, after banana and mango (1-3). At present, pineapple 
is grown on more than one million hectares, with most of the harvested fruit destined 
for the fresh produce market in Europe and North America. The economic importance 
of pineapple is emphasised by the fact that the gross production value of the 24.8 million 
metric tons of fruit that are produced annually, is in the region of 9 x 109 US$ (4). Howev-
er, a severe restriction that hampers production is inadequate access to pineapple planting 
material of good quality (5, 6). To address this problem, alternative propagation methods 
have been investigated. In this regard, micropropagation techniques in tissue culture have 
been considered to rapidly multiply superior genotypes under controlled conditions in the 
laboratory (5, 7-12). The final stage of micropropagation, i.e. acclimatisation, presents a 
challenge in the case of pineapple since plants grow at a very slow rate during this process, 
which increases the time needed to release the plants and has associated cost implications 
(13-15). Several strategies have been employed to promote faster and more efficient accli-
matisation of pineapple plants, including the use of nitrogen-fixing microorganisms (16) 
and modifications in light supply, irrigation and fertilisation (17-19). Assessing the effi-
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cacy of these and other growth stimulatory treatments would 
be greatly facilitated if simple, non-destructive methods were 
available for the evaluation of pineapple growth during the ac-
climatisation process. 

Image analysis has been used for a range of diverse appli-
cations in plant sciences. For example, in a plant phenotyping 
study, semi-automated image analysis was combined with ma-
chine learning algorithms to quantify root system architectural 
traits (20). Similarly, fully automated image analysis has been 
used to identify quantitative trait loci in roots for plant pheno-
typing (21). Other authors showed that digital image analysis 
could be used for the real-time estimation of the leaf chloro-
phyll content of micropropagated potato plants, and suggested 
that this parameter could represent a quality control indica-
tor to assess the photosynthetic and hyperhydric status of tis-
sue-cultured plants during acclimatisation (22). Niazian et al. 
(23) used image analysis to determine the physical properties 
of ajowan embryogenic callus; subsequently, artificial neural 
network models were applied to predict the properties of the 
produced calli, depending on culture media and other input 
variables. In the context of plant diseases, the severity of Fusar-
ium Head Blight on the surface of grains has been quantified 
by an image analysis method that was recommended as being 
inexpensive, objective and fast, in comparison with current 
methods involving visual detection (24). Also, Wang et al. (25) 
described a combination of image analysis and deep learning 
to estimate the severity of apple black rot. The effects of abiot-
ic stress on plants can also be evaluated by image analysis, as 
shown in a detailed study undertaken to assess the efficiency of 
hyperspectral imaging in a high-throughput phenotyping plat-
form for early detection of water stress in plants (26). However, 
to our knowledge, canopy growth of pineapple in vitro-plant-
lets during acclimatisation has not yet been monitored through 
automated image analysis. 

Considering the ideas and examples above, the present 
study evaluated the use of semi-automated and automated im-
age analysis as tools to quantify canopy growth (superior pro-
jected area) in pineapple in vitro cultured plantlets, during five 
months of acclimatisation. The applicability of these methods 
was assessed using regression analyses to determine the rela-
tionship between the image analysis methods and morpholog-
ical growth indicators

Materials and Methods
Plant material and growth conditions
Pineapple buds (cv. MD-2) were initiated from field-grown 
plants, according to Daquinta and Benegas (7). Following a 
year of micropropagation, plantlets were acclimatised (13) in 
250 plastic bags with Ferralitic red soil and sugarcane filter 
cake (1:1, v:v). Relative humidity was maintained at 80 ± 3%, 
the temperature at 25.5 ± 2˚C, and the photosynthetic photon 
flow at 400 ± 25 µmol m−2s−1. Daily microjet irrigation for 
30 min (8:00 - 8:30 a.m.) was applied. The canopies of three 
blocks of 56 plantlets each were photographed (Cannon EOS 
600D) from a height of 1.3 m at 0, 1, 2, 3, 4 and 5 months. A 

separate group of plantlets, grown in parallel under the same 
conditions, were destructively harvested to determine fresh 
and dry weights (including all leaves, stem and roots) and D 
leaf (middle-aged leaf) (27). Ten plantlets were harvested each 
month for destructive measurements (n = 60 plantlets in total).
Image analysis

For canopy image analysis, two procedures were compared: 
semi-automated and automated analysis. For the semi-auto-
mated method, Paint.net (v4.013, tools: magic wand - contig-
uous and global saturation mode; bucket of paint and eraser) 
were used. On the other hand, image analysis for the automated 
system included image capturing in RGB format (Red, Green, 
Blue; 5,184-pixel x 3,456-pixel; vertical: 72 pixels per inch; hor-
izontal: 72 pixels per inch), followed by a series of processing 
steps. The image of the RGB colour system was first converted 
to the HSI (Hue, Saturation, Intensity) colour system, which 
disregards the effect of lighting conditions when photos were 
taken. Then, images were segmented, allowing for differenti-
ation of pineapple leaves from the picture background by the 
H component. After that, small ‘holes’ detected in the leaves 
were filled, and finally, the number of pixels belonging to the 
pineapple plantlet leaves were counted and converted to cm2, 
which represented the canopy area. 

Statistical analysis
Data were analysed using SPSS (Version 8.0 for Windows, SPSS 
Inc., New York, NY) to perform One-Way ANOVA and Tukey 
tests. Regression analyses and R2 were calculated in Microsoft 
Excel.

Results 
The use of image analysis to monitor canopy development rep-
resents one of the many applications of this technique, as men-
tioned above. In the present study, observation of the canopy 
of pineapple in vitro plantlets during acclimatisation showed 
that the canopy area progressively increased during the first 
five months of ex vitro growth (Fig. 1).

MMA common trend was observed for the fresh and dry 
mass of whole plantlets, D leaves and roots, i.e. there was lit-
tle mass gain at first, followed by an exponential increase in 
mass for the subsequent months (Fig. 2A-F). A sharp increase 
in mass was found after one month for fresh and dry weight of 
whole plantlets and following two to three months of growth 
for the other parameters measured.

A linear regression was performed to evaluate the relation-
ship between the canopy area data obtained using the semi-au-
tomated (x) and automated (y) methods (Fig. 3A). The results 
from this regression analysis showed that 99.15% of variations 
in automated data (y) resulted from variations in semi-auto-
mated data (x) [determination coefficient (R2) = 0.9915]. Fig. 
3B shows the progression of canopy development over the five 
months monitored with automated image analysis. These re-
sults indicate that canopy area increased significantly at each 
sampling stage except for the second month (where there was a 
non-significant increase in canopy area).
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Fig. 4 show the mathematical relationships (parabolas) be-
tween automated canopy area assessments and the fresh and 
dry weights of individual plantlets, including roots, stem and 
leaves (Fig. 4A, B); fresh and dry weights of D leaves (Fig. 4C, 
D), and fresh and dry weights of roots (Fig. 4E, F). The de-
termination coefficients (R2) ranged between 0.84 and 0.92, 
which are regarded as high in biological research (28).

Discussion
There have been several published reports on the use of auto-
mated image analysis techniques to determine the area of plant 
canopies. Aguilar et al. (29) studied the leaf area index in toma-
to plants in a greenhouse and reported an R2 value of 0.75 with 
the manual method. Minervini et al. (30) established an au-
tomated image analysis method for Arabidopsis phenotyping 
with 96.7% accuracy. Subsequently, these authors developed 
Phenotiki, an open-source hardware and software platform 
for image-based phenotyping of rosette-shaped plants (31). 
Similarly, Ubbens et al. (32) also reported on the application 
of image analysis phenotyping in rosette plants and achieved 
R2 values of 0.82. Rincon Guerrero et al. (33) used different 
types of cameras for image analysis, to study leaf area in several 
species, namely Syngonium podophyllum, Codiaeum variega-
tum, Citrus spp., Tradescantia zebrina and Malviscus arboreus. 
These authors obtained R2 coefficients in the region of 0.98. 
Finally, Guo et al. (34) developed a novel algorithm for image 
analysis to investigate canopy coverage in a rice paddy, report-
ing R2 values of 0.99. These are just some examples of research 
demonstrating the effectiveness of image analysis in studies in-
vestigating canopy dynamics in a diverse range of crops.

Our work describes the application of image analysis to 
monitor the progression of canopy development in microprop-
agated pineapple during the first five months of acclimatisation. 
This method is easy to carry out, non-destructive and objective. 
In the current study, blocks of 56 plantlets were photographed 
every month, and their canopy area was automatically deter-
mined. Strong correlations were found between canopy area 
measurements from image analysis and destructive measure-
ments of plant fresh and dry mass for intact plantlets, D leaves 
and roots. These data indicated the efficacy of image analysis 
for canopy estimations in pineapple. 

There was also an excellent correlation between the data ob-
tained by the semi-automated and automated image analysis, 
but with a substantial difference in the time required for each of 
the two methods The the semi-automated procedure took ap-
proximately 4 hours per image, whereas the automated method 
could be completed in 0.27 seconds (Intel(R) Core(TM) I3-
4160 3.6 GHz and 8 GB RAM). 

An additional advantage of the automated system is that the 
HSI colour system of this method is closer to how humans per-
ceive colours and is less affected by lighting changes that gen-
erally occur in acclimatisation greenhouses (35). These obser-
vations make the automated method a preferred option when 
compared with the semi-automated technique. In the context 
of H values, values between 30 and 150 were recorded for the 

pineapple leaves, ranging from pure yellow to the green-cyan 
border. As these values were not present in the background, it 
was possible to discriminate between the background and the 
leaves. 

The automated procedure has the potential to save time 
and reduce research costs in plant phenotyping studies, which 
could have diverse applications such as investigating the effect 
of different growth conditions, fertilisation and irrigation re-
gimes, or soil treatments. Furthermore, in plant breeding pro-
grammes, automated image analysis has the potential to allow 
for fast and efficient phenotyping of superior genotypes (or 
identification of inferior genotypes), particularly when large 
numbers of samples are evaluated. In the context of pineapple 
production, image analysis can be used to improve the efficien-
cy of pineapple micropropagation and to design strategies to 
promote plantlet growth and establishment during the accli-
matisation stage.
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