Real time human micro-organisms biotyping based on Water-Assisted Laser Desorption/Ionization

Open access


We previously demonstrated that remote infrared Matrix Assisted Laser Desorption Ionization technology (Spidermass) using endogenous water as matrix (or so called water assisted laser desorption/ionization) was enabling real-time in vitro and in vivo analysis of clinical pathological tissues. In the present work, Spidermass was used to biotype human pathogens either from liquid bacteria growth in time course, from petri dish or on smears. Reproducibility experiments as well as bacteria dispersion and lipids identifications with SpiderMass in MS/MS mode were undertaken. The whole of the data establish that SpiderMass instrument allows real time bacteria biotyping and can be useful in clinic for pathogen identification.

1. Claydon MA, Davey SN, Edwards-Jones V, Gordon DB. The rapid identification of intact microorganisms using mass spectrometry. Nature biotechnology 1996; 14: 1584.

2. Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spectrometry. Mass spectrometry reviews 2001; 20:157-171.

3. Holland R, Wilkes J, Rafii F, Sutherland J, Persons C, Voorhees K, Lay Jr J. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 1996;10: 1227-1232.

4. Kliem M, Sauer S. The essence on mass spectrometry based microbial diagnostics. Current opinion in microbiology 2012; 15: 397-402.

5. Krishnamurthy T, Rajamani U, Ross P. Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 1996; 10 : 883-888.

6. Valentine N, Wunschel S, Wunschel D, Petersen C, Wahl K. Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry. Applied and environmental microbiology 2005; 71: 58-64.

7. Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, Dunn J, Hall G, Wilson D, Lasala P. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. Journal of clinical microbiology 2008; 46 : 1946-1954.

8. Gekenidis M-T, Studer P, Wüthrich S, Brunisholz R, Drissner D. Beyond the matrix-assisted laser desorption ionization (MALDI) biotyping workflow: in search of microorganism-specific tryptic peptides enabling discrimination of subspecies. Applied and environmental microbiology 2014; 80 : 4234-4241.

9. Hill RB, Sandberg G, Gunn BA, Eberly BJ. Reproducibility of three identification systems for biotyping of coagulase-negative staphylococci. American journal of clinical pathology 1994;101 : 443-445.

10. Wunschel SC, Jarman KH, Petersen CE, Valentine NB, Wahl KL, Schauki D, Jackman J, Nelson CP, White E. Bacterial analysis by MALDI-TOF mass spectrometry: an inter-laboratory comparison. Journal of the American Society for Mass Spectrometry 2005; 6 : 456-462.

11. Sogawa K, Watanabe M, Sato K, Segawa S, Ishii C, Miyabe A, Murata S, Saito T, Nomura F. Use of the MALDI BioTyper system with MALDI–TOF mass spectrometry for rapid identification of microorganisms. Analytical and bioanalytical chemistry 2011; 400: 1905.

12. TeKippe EM, Shuey S, Winkler DW, Butler MA, Burnham C; AD. Optimizing identification of clinically relevant Gram-positive organisms using the Bruker Biotyper MALDI-TOF MS system. Journal of clinical microbiology, JCM 2013; 51(5) : 1421-1427

13. Cheng K, Chui H, Domish L, Hernandez D, Wang G. Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. PROTEOMICS–Clinical Applications 2016; 10 : 346-357.

14. Zhang W, Wang X, Xia Y, Ouyang Z. Ambient ionization and miniature mass spectrometry systems for disease diagnosis and therapeutic monitoring. Theranostics 2017; 7,:2968.

15. Strittmatter N, Jones EA, Veselkov KA, Rebec M, Bundy JG, Takats Z. Analysis of intact bacteria using rapid evaporative ionisation mass spectrometry. Chemical Communications 2013; 49 :6188-6190.

16. Camero SJ, Bolt F, Perdones-Montero A, Rickards T, Hardiman K, Abdolrasouli A, Burke A, Bodai Z, Karancsi T, Simon D. Rapid evaporative ionisation mass spectrometry (REIMS) provides accurate direct from culture species identification within the genus Candida. Scientific reports 2016; 6 :36788.

17. Fatou B, Saudemont P, Leblanc E, Vinatier D, Mesdag V, Wisztorski M, Focsa C, Salzet M, Ziskind M, Fournier I. In vivo Real-Time Mass Spectrometry for Guided Surgery Application. Sci Rep 2016; 6 : 25919.

18. Fatou B, Ziskind M, Saudemont P, Quanico J, Focsa C, Salzet M, Fournier I. Remote Atmospheric Pressure Infrared Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry (Remote IR-MALDI MS) of Proteins. Molecular & cellular proteomics : Molecular Cell. Proteomic 2018;17 :1637-1649.

19. Fatou B, Saudemont P, Duhamel M, Ziskind M, Focsa C, Salzet M, Fournier I. Real time and in vivo pharmaceutical and environmental studies with SpiderMass instrument. Journal of biotechnology 2018; 281 : 61-66.

20. Saudemont P, Quanico J, Robin Y-M, Baud A, Balog J, Fatou B, Tierny D, Pascal Q, Minier K, Pottier M, Focsa C, Ziskind M, Takats Z, Salzet M, Fournier I. Real-time molecular diagnosis of tumors using water-assisted laser desorption/ionization mass spectrometry technology. Cancer cell. 2018; 34(5):840-851. 018;

21. Tasiemski A, Hammad H, Vandenbulcke F, Breton C, Bilfinger TJ, Pestel J, Salzet M. Presence of chromogranin-derived antimicrobial peptides in plasma during coronary artery bypass surgery and evidence of an immune origin of these peptides. Blood 2002; 100 : 553-559.

22. Salzet M, Fournier I, Focsa C, Ziskind M, Fatou B, Wisztorski M. Device for real-time in vivo molecular analysis. US Patent App. 2017; 15/512,703.

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 93 93 93
PDF Downloads 85 85 85