Solid-state fermentation of paper sludge to obtain spores of the fungus Trichoderma asperellum

Open access

Abstract

Paper production generates large quantities of a solid waste known as papermaking sludge (PS), which needs to be handled properly for final disposal. The high amount of this byproduct creates expensive economical costs and induces environmental and ecological risks. Therefore, it is necessary to search uses for PS, in order to reduce the negative environmental impact and to generate a more valuable byproduct. Due to the cellulolytic composition of PS, this work evaluated a solid state fermentation process using it as substrate to obtain spores of the fungus Trichoderma asperellum. Optimal conditions to obtain T. asperellum spores were: 60% water content, 3% (w/w) salts (Nutrisol P® and Nutrisol K®), inoculum concentration at 1x105 spores/g, and pasteurized or sterilized PS. Under these conditions it was possible to obtain 2.37x109 spores/g. T. asperellum spores applied directly to pepper (Capsicum anuum) seeds without PS increased significantly seedling dry mass in greenhouse assays. This work suggests an alternative, economic and abundant substrate for production of T. asperellum spores.

1. Martínez Y, Rivero C. Efecto del uso de lodo papelero sobre el contenido de N, P, K en dos suelos de importancia en la Cuenca del Lago de Valencia. Rev Tec Fac Ing Univ 2007; 30: 63-70.

2. Ochoa J. Feasibility of recycling pulp and paper mill sludge in the paper and board industries. Resour Conserv Recy 2008; 52(7): 965-972.

3. Shin C, Lee J, Lee J, Park S. Enzyme production of Trichoderma reesei Rut C-30 on various lignocellulosic substrates. Appl Biochem Micro 2000; 84-86: 237-245.

4. Lee S, Koo Y, Lin J. Production of lactic acid from paper sludge by simultaneous saccharification and fermentation. Adv Biochem Eng Biot 2004; 87: 173-194.

5. Quinchia A, Valencia M, Giraldo G. Uso de lodos provenientes de la industria papelera en la elaboración de paneles prefabricados para la construcción. Revista EIA 2007; 8: 9-19.

6. Garg V, Gupta. Stabilization of primary of sewage sludge during vermicomposting. J Hazard Mater 2008; 153: 1023-1038.

7. Hara K, Mino T. Environmental assessment of sewage sludge recycling options and treatment processes in Tokio. Waste Manage 2008; 28: 2645-2652.

8. Afridi H, Arain M, Jalbani N, Jamali M, Kazi T, Memon A, Shan A. Use of sewage sludge after liming as fertilizer maize growth. Pedosphere 2008; 18: 203-213.

9. Wang W, Kang L, Lee Y. Production of cellulase from kraft paper mill sludge by Trichoderma reesei rut C-30. Appl Biochem Biotech 2010; 161(1-8): 382-94.

10. García A, Rivero C. Efecto de la aplicación de lodos papeleros sobre los contenidos de carbono microbiano y la actividad de deshidrogenasa en suelos agrícolas. Venesuelos 2011; 18: 29-35.

11. Shen J, Agblevor F. Ethanol production of semi-simultaneous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge. Bioproc Biosyst Eng 2011; 34(1): 33-43.

12. Chen H, Han Q, Daniel K, Venditti R, Jameel H. Conversion of industrial paper sludge to ethanol: fractionation of sludge and its impact. Appl Biochem Biotech 2014; 174(6): 2096-2113.

13. Gottumukkala L, Haigh K, Collard F, Van Rensburg E, Görgens J. Opportunities and prospects of biorefinery-based valorisation of pulp and paper sludge. Bioresource Technol 2016; 215: 37-49.

14. Donmez A, Yelb H, Boranc S, Pesmand E. Cement type composite panels manufactured using paper mill sludge as filler. Constr Build Mater 2017; 142: 410–416.

15. Lai T, Pham T, Adjallé K, Montplaisir D, Brouillette F, Barnabé S. Production of Trichoderma reesei RUT C-30 lignocellulolytic enzymes using paper sludge as fermentation substrate: An approach for on-site manufacturing of enzymes for biorefineries. Waste Biomass Valori 2017; 8 (4): 1081–1088.

16. Korhonen J, Honkasalo A, Seppälä J. Circular Economy: The Concept and its Limitations. Ecol Econ 2018; 143: 37–46.

17. Buchert J, Pere J, Ranua M, Siika-aho M, Viikari J. Trichoderma reesei cellulases in bleaching of kraft pulp. Appl Microbiol Biot 1994; 40: 941-945.

18. Argüello H, Castellanos D, Cruz N. Degradación de celulosa y xilano por microorganismos aislados de dos tipos de compost de residuos agrícolas en la sabana de Bogotá. Revista Colombiana de Ciencias Hortícolas 2009; 3 (2): 237-249.

19. Bischof R, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact 2016; 15(1): 106.

20. Harman G. Myths and dogmas of biocontrol: Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 2000; 84: 377-393.

21. Benítez T, Delgado J, Rey M, Rincón A, Limón M. Mejora de cepas de Trichoderma para su empleo como biofungicidas. Rev Iberoam Micol 2000; 17: 31-36.

22. Vos C, De Cremer K, Cammue B, De Coninck B. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Mol Plant Pathol 2015; 16(4): 400-412.

23. Centeno R, Pavone D. Producción de enzimas celulasas y biomasa del hongo Trichoderma reesei utilizando lodo papelero como fuente de carbono. Revista de la Sociedad Venezolana de Microbiología 2015; 35: 40-46.

24. Pavone D, Dorta B. Diversidad del hongo Trichoderma spp. en plantaciones de maíz de Venezuela. Interciencia 2015; 40(1): 23-31.

25. Dorta B, Bosch A, Arcas J, Ertola R. High level of sporulation of Metarhizium anisopliae in a medium containing by-products. Appl Microbiol Biot 1990; 33: 712-715.

26. Fink S, Schubert M, Schwarse F. In vitro screening of an antaginisc Trichoderma strain against wood decay fungi. Arboricultural Journal 2008; 31: 227-248.

27. Chinn M, Nokes S, Strobel H. Influence of process conditions on end product formation from Clostridium thermocellum 27405 in solid substrate cultivation on paper pulp sludge. Bioresource Technol 2007; 98: 2184–2193.

28. Barzegar M, Hamidi Z, Latifian M (2007) Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresource Technol 2007; 98: 3634-3637.

29. Gervais P, Molin P. The role of water in solid-state fermentation. Biochem Eng J 2003; 13(2-3):85-101.

30. Aceh D. Spore production of biocontrol agent Trichoderma harzianum: Effect of C/N ratio and glucose concentration. Journal Rekayasa Kimia dan Lingkubga 2007; 6: 35-40.

31. Agosin E, Crawford A, Martin R, Mun G, Volpe D. Effect of culture conditions on spore shelf life of the biocontrol agent Trichoderma harzianum. World J Microb Biot 1997; 13: 225-232.

32. Gao L, Liu X. A novel two-stage cultivation method to optimize carbon concentration and carbon-to-nitrogen ratio for sporulation of biocontrol fungi. Folia Microbiol 2009; 54(2):142-6.

33. Castro B, Valencia J. Estudios de algunos aspectos biológicos de Trichoderma sp. antagónicos a Rosellinia bunodes. Cenicafé 2004; 55 (1): 16-28.

34. Singh V, Sanmukh R, Kumar B, Baha H. Trichoderma asperellum spore dose depended modulation of plant growth in vegetable crops. Microbiol Res 2016; 193: 74-86.

35. Herrera-Parra E, Cristóbal-Alejo J, Ramos-Zapata J. Trichoderma strains as growth promoters in Capsicum annuum and as biocontrol agents in Meloidogyne incognita. Chil J Agr Res 2017; 77(4) http://dx.doi.org/10.4067/S0718-58392017000400318.

36. González P, Guigón C. Selección de cepas nativas de Trichoderma spp. con actividad antagónica sobre Phytophthora capsici Leonian y promotoras de crecimiento en el cultivo de chile (Capsicum annuum L.). Revista Mexicana de Fitopatología 2004; 22: (1) 117 – 124.

37. Björkman T, Harman G, Mastouri F. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 2010; 100 (11): 1213 – 1221.

38. Crowley D, Yang C. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microb 2000; 66: 365 – 369.

39. Marín-Guirao J, Rodríguez-Romera P, Lupión-Rodríguez B, Camacho-Ferre F, Tello-Marquina J. Effect of Trichoderma on horticultural seedlings’ growth promotion depending on inoculum and substrate type. J Appl Microbiol 2016; 121(4):1095-10

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 68 68 68
PDF Downloads 53 53 53