Optical properties of translucent zirconia: A review of the literature

Open access


Translucent monolithic zirconia is the newest option of zirconia-based ceramics, which aimed to substitute the opaque classic yttria-stabilized tetragonal zirconia polycrystal (Y-TZPs) in more demanding esthetic cases.

The aim of this review was to assess the available literature regarding the optical, chemical and mechanical properties of translucent zirconia ceramics.

This systematic review was developed according to the PRISMA (Preferred Reporting Items for Systematic Review and Meta-analysis) guidelines. An electronic literature search was undertaken through Medline (National Library of Medicine) via PubMed to identify relevant articles, published in the interval 2010-2018. The search was limited to the English language publications, in vitro studies of color and microstructure of translucent zirconia material.

Yttria-stabilized tetragonal zirconia polycrystals (Y-TZPs) has excellent mechanical properties, but its intense white color and high opacity represent an esthetic limit. Cubic zirconia represents a new generation of dental ceramics with molecular structure and physical properties different from the conventional zirconia. Dental manufacturers created new formulations of this restorative material, introducing new cubic varieties of zirconia with improved optical properties. Translucent monolithic zirconia provides a new restorative option that combines strength with improved esthetics, due to its increased translucency. Translucent zirconia is indicated for anterior and posterior restorations but should be used carefully for discolored teeth, because the background color can affect the final esthetic appearance of the restoration.

1. Vichi A, Louca C, Corciolani G, Ferrari M. Color related to ceramic and zirconia restorations: A review. Dental Materials 2011; 27: 97-108.

2. Raptis NV, Michalakis KX, Hirayama H. Optical behaviour of current ceramic systems. International Journal of Periodontics and Restorative Dentistry 2006; 26: 31-41.

3. O’Boyle KH, Norling BK, Cagna DR, Phoenix RD. An investigation of new metal framework design for metal ceramic restorations. J Prosthet Dent 1997; 78: 295-301.

4. Christensen GJ. Choosing an all-ceramic restorative material: porcelain-fused-to-metal or zirconia based? J Am Dent Assoc 2007; 138: 662-5.

5. Touati B, Miara P, Nathanson D. Esthetic Dentistry and Ceramic Restorations. London:Marin Dunitz, 1999.

6. Anusavice KJ(ed). Philip’s Science of Dental Materials, ed 10. Philadelphia: WB Saunders, 1996.

7. Cohen M. Interdisciplinary treatment planing.Quintessence Publishing Co; 2008: 383-406.

8. Heffernan MJ, Aquilino SA, Diaz-Arnold AM, et al. Relative translucency of six all-ceramic systems. Part I: Core materials. J Prosthet Dent 2002; 88: 4-9.

9. Oden A, Andersson M, Krystek-Ondracek I, Magnusson D. Five-year clinical evaluation of Procera AllCeram crowns. J Prosthet Dent 1998; 80: 450-6.

10. Odman P, Andersson B. Procera AllCeram crowns followed for 5 to 10 years: A prospective clinical study. Int J Prosthodont 2001; 14: 504-9.

11. Fradeani M, D’Amelio M, Redemagni M, Corrado M. Five-year follow-up with Procera all-ceramic crowns. Quintessence Int 2005; 36: 105-13.

12. Christel P, Meunier A, Heller M. Mechanical properties and short term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater Res 1989; 23: 45-61.

13. Piconic C, Macauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999; 20: 1-25.

14. Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: A review of the literature. J Prosthet Dent 2004; 92: 557-62.

15. Howard CJ, Hill RJ. The polymorphs of zirconia: phase abundance and crystal structure by Rietveld analysis of neutron and X-ray diffraction data. J Mater Sci. 1991; 26(1): 127-34.

16. Volpato CAM, Garbelotto LG, Fredel MC, et al. Application of zirconia in dentistry: Biological, mechanical and optical considerations. In: Sikalidis C (ed). Advances in Ceramics: Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment. New York: InTech, 2011.

17. Guazzato M, Quach L, Albakry M, Swain MV. Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. J Dent 2005; 33: 9-18.

18. Kingery WD, Bowen HK, Uhlmann DR. Introduction to Ceramics, ed.2. New York: John Wiley, 1976.

19. Helvey GA. Zirconia and computer-aided design/computer-aided manufacturing (CAD/CAM) dentistry. Funct Esthet Restorative Dent 2007; 1: 28-39.

20. Yanagida H, Kawamoto K, Miyayama M. Chemistry of ceramics. Chichester, England:Wiley,1996: 226-228; 247-9.

21. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008; 24(3): 299-307.

22. Roy ME, Whiteside LA, Katerberg BJ, Steiger JA. Phase transformation, roughness and microhardness of artificially aged yttria- and magnesia- stabilized zirconia femoral heads. J Biomed Mater Res A 2007; 83: 1096-102.

23. Chevalier J, Gremillard L, Virkar A, Clarke DR. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 2009; 92: 1901-20.

24. Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott HW. Low-temperature degradation of a Y-TZP dental ceramic. Acta Biomater 2011; 7: 858-65.

25. Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, et al. Low-temperature degradation of different zirconia ceramics for dental applications. Acta Biomater 2012; 8: 1213-20.

26. Nakamura K, Harada A, Kanno T, Inagaki R, Niwano Y, Milleding P, et al. The influence of low-temperature degradation and cyclic loading on the fracture resistance of monolithic zirconia molar crowns. J Mech Behav Biomed Mater 2015; 47: 49-56.

27. Sorenson JA. The Lava all-ceramic system: CAD/CAM zirconium. Prosthodontics for the 21st century. Synergy in Dentistry 2003; 2(suppl to Contemp Esthet Restor Pract): 3-6.

28. Hannink RHJ, Kelly PM, Muddle BC. Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 2000; 83: 461-87.

29. McLaren EA, Giordano RA. Zirconia-based ceramics: Material properties, aesthetic and layering techniques of new veneering porcelain, VM9. Quintessence Dent Technol 2005; 28: 100.

30. Tanaka K, Tamura J, Kawanabe K, et al. Ce-TZP/A1203 nanocomposite as a bearing material in total joint replacement. J Biomed Mater Res 2002; 63: 262-70.

31. Chen YM, Smales RJ, Yip KH, Sung WJ. Translucency and biaxial flexural strength of four ceramic core materials. Dent Mater 2008; 24: 1506-11.

32. Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent 1996; 75: 18-32.

33. Watts DC, Cash AJ. Analysis of optical transmission by 400-500 nm visible light into aesthetic dental biomaterials. J Dent 1994; 22: 112-7.

34. Galip Gurel. The Science and Art of Porcelain Laminate Veneers. Quintessence Publishing. Germany, 2003, pp.159-204.

35. Yang D, Raj R, Conrad H. Enhanced sintering rate of Zirconia (3Y-TZP) through the effect of a weak dc electric field on grain growth. J Am Ceram Soc 2010; 93: 2935-7.

36. Li JF, Watanabe R. Phase Transformation in Y2O3-Partially-Stabilized ZrO2 Polycrystals of Various Grain Sizes during Low-Temperature Aging in Water. J Am Ceram Soc 1998; 81: 2687-91.

37. Casolco SR, Xu J, Garay JE. Transparent/translucent polycrystalline nanostructure yttrium stabilized zirconia with varying colors. Scr Mater 2008; 58: 516-9.

38. Jiang L, Liao Y, Wan Q, Li W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J Mater Sci 2011; 22: 2429-35.

39. Anselmi-Tamburini U, Woolman JN, Munir ZA. Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering. Adv Funct Mater 2007; 17: 3267-73.

40. Alaniz JE, Perez-Gutierrez FG, Aguilar G, Garay JE. Optical proprieties of transparent nano crystalline yttrium stabilised zirconia. Opt Mater 2009; 32: 62-8.

41. Wang H, Aboushelib MN, Feilzer AJ. Strength influencing variables on CAD/CAM zirconia frameworks. Dent Mater 2008; 24: 633-8.

42. Heuer AH, Claussen N, Krisen WM, Ruhle M. Stability of tetragonal ZrO2 particles in ceramic matrices. J Am Ceram Soc 1982; 65: 642-50.

43. Zhao M, Sun J, Zhang J, Zhang Y. Novel translucent and strong sub micron alumina ceramics for dental restorations. J Dent Res 2017; 1-7.

44. Mazda J. Shining a light on translucent zirconia. Inside Dentistry 2017;Volume 13, Issue 8.

45. Tong H, Tanaka CB, Kaizer MR, Zhang Y. Characterization of three commercial Y-TZP ceramics produced for their high-translucency, high-strength and high-surface area. Ceram Int. 2016; 42(1 Pt B): 1077-85.

46. Matsui K, Ohmichi N, Ohgai M, et al. Effect of alumina-doping on grain boundary segregation induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal. J Mater Res 2006; 21(9): 2278-89.

47. Harada K, Raigrodski AJ, Chung KH, et al. A comparative evaluation of the translucency of zirconias and lithium disilicate for monolithic restorations. J Prosthet Dent 2016; 116(2): 257-63.

48. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014; 30(10): 1195-203.

49. Wang SF, Zhang J, Luo DW, Gu F, Tang DN, Dong ZL, et al. Transparent ceramics: processing materials and applications. Prog Solid State Chem 2013; 41: 20-54.

50. Krell A, Hutzler T, Klimke J. Transparent ceramics: transmission physics and consequences for materials selection, manufacturing and applications. J Eur Ceram Soc 2009; 29: 207-21.

51. Callister WDJR. Materials science and engineering: an introduction. 8th ed. New York: John Wiley & Sons, Inc; 2007. p. 975.

52. Harianawala HH, Kheur MG, Apte SK, Kale BB, Sethi TS, Kheur SM. Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials. J Adv Prosthodont 2014; 6: 456-61.

53. Wang Y, Huang H, Gao L, Zhang F. Investigation of a new 3Y-stabilized zirconia with an improved optical property for applications as a dental ceramic. J Ceram Process Res 2011; 12: 473-476.

54. Kim MJ, Ahn JS, Kim JH, Kim HY, Kim WC. Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency. J Adv Prosthodont 2013; 5: 161-6.

55. Zhang HB, Kim BN, Morita K, Yoshida H, Lim JH, Hiraga K. Optimization of high-pressure sintering of transparent zirconia with nano-sized grains. J Alloy Compd. 2010; 508: 196-199.

56. Lucas TJ, Lawson NC, Janowski GM, Burgess JO. Effect of grain size on the monoclinic transformation, hardness, roughness, and modulus of aged stabilized zirconia. Dent Mater 2015; 31: 1487-92.

57. Ivoclar Vivadent. IPS e.max Lithium Disilicate. Ivoclar Vivadent website. http://www.ivoclarvivadent.com/en/p/all/products/all-ceramics/ips-emax-dentist/ips-emax-lithium-disilicate. Accessed June 23, 2017.

58. Shop and Compare: Millable Materials. Inside Dental Technology. 2017; 7(11).

59. Johansson C, Kmet G, Rivera J, et al. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand 2014;72:145-153.

60. Beuer F, Stimmelmayr M, Gueth JF, et al. In vitro performance of full-contour zirconia single crowns. Dent Mater 2012;28:449-456.

61. Holand W, Schweiger M, Watzke R, et al. Ceramics as biomaterials for dental restoration. Expert Rev Med Devices 2008;5:729-745.

62. Fischer J, Stawarczyk B and Hammerle CH. Flexural strength of veneering ceramics for zirconia. J Dent 2008; 36: 316-321.

63. Glidewell Laboratories. About Us. Glidewell Laboratories website. http://glidewelldental.com/about-us/. Accessed June 23, 2017.

64. Kwon SJ, Lawson NC, McLaren EE, et al. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent 2018

65. Zesewitz TF, Knauber AW and Northdurft FP. Fracture resistance of a selection of full-contour all-ceramic crowns: an in vitro study. Int J Prosthodont 2014; 27: 264-266.

66. Shahmiri R, Standard OC, Hart JN, et al. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. J Prosthet Dent 2018;119:36-46.

67. Vichi A, Sedda M, Fonzar RF, Carrabba M, Ferrari M. Comparison of contrast ratio, translucency parameter, and flexural strength of traditional and “augmented translucency” zirconia for CEREC CAD/CAM System. J Esthet Restor Dent 2016; 28: 32-9.

68. Zesewitz T, Knauber W, Nothdurft FP. Fracture resistance of a selection of full-contour all-ceramic crowns: an in vitro study. Int J Prosthodont 2014; 27: 264-6.

69. Preis V, Behr M, Hahnel S, Handel G, Rosentritt M. In vitro failure and fracture resistance of veneered and full-contour zirconia restorations. J Dent 2012; 40: 921-8.

70. Sun T, Zhou S, Lai R, Liu R, Ma S, Zhou Z, et al. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J Mech Behav Biomed Mater 2014; 35: 93-101.

71. Corciolani G, Vichi A, Louca C, Ferrari M. Influence of layering thickness on the color parameters of a ceramic system. dent Mater 2010; 26(8): 737-42.

72. Vichi A, Carrabba M, Paravina R, Ferrari M. Translucency of ceramic materials for CEREC CAD/CAM System. J Esthet Restor Dent 2014; 26(4): 224-31.

73. Karaagaclioglu L, Yilmaz B. Influence of cement shade and water storage on the final color of leucite-reinforced ceramics. Oper Dent 2008; 33: 386-91.

74. Milleding P. Preparation design for traditional fixed fullcrown restorations. Preparations For Fixed Prosthodontics. Denmark: Munksgaard, 2012.

75. Nakamura K, Harada A, Inagaki R, et al. Fracture resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontol Scand 2015;73:602-608

76. Rinke S and Fischer C. Range of indications for translucent zirconia modifications: clinical and technical aspects. Quintessence Int 2013;44:557-566.

77. Mitov G, Heintze SD, Walz S, et al. Wear behavior of dental Y-TZP ceramic against natural enamel after different finishing procedures. Dent Mater 2012;28:909-918.

78. Stawarczyk B, Ozcan M, Schmutz F, et al. Two-body wear of monolithic, veneered and glazed zirconia and their corresponding enamel antagonists. Acta Odontol Scand 2013; 71: 102-112.

79. Mundhe K, Jain V, Pruthi G, et al. Clinical study to evaluate the wear of natural enamel antagonist to zirconia and metal ceramic crowns. J Prosthet Dent. 2015;114:358-363.

80. Janyavula S, Lawson N, Cakir D, et al. The wear of polished and glazed zirconia against enamel. J Prosthet Dent 2013;109:22-29.

81. Rosentritt M, Preis V, Behr M, et al. Two-body wear of dental porcelain and substructure oxide ceramics. Clin Oral Investig 2012;16:935-943.

82. McLaren EA, Lawson N, Choi J, et al. New High-Translucent Cubic-Phase-Containing Zirconia: Clinical and Laboratory Considerations and the Effect of Air Abrasion on Strength. Compend Contin Educ Dent 2017;38:e13-e16.

83. Blatz MB, Alvarez M, Sawyer K, Brindis M. How to bond zirconia: the APC concept. Compend Contin Educ Dent. 2016;37(10):611-620.

84. Ghodsi S, Jafarian Z. A review on translucent zirconia. Eur. J. Prosthodont. Restor. Dent. 2018;26:62-74.

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 416 416 233
PDF Downloads 92 92 54