Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): the biotechnological escape route of choice out of the plastic predicament?

Open access


The benefit of biodegradable “green plastics” over established synthetic plastics from petro-chemistry, namely their complete degradation and safe disposal, makes them attractive for use in various fields, including agriculture, food packaging, and the biomedical and pharmaceutical sector. In this context, microbial polyhydroxyalkanoates (PHA) are auspicious biodegradable plastic-like polyesters that are considered to exert less environmental burden if compared to polymers derived from fossil resources.

The question of environmental and economic superiority of bio-plastics has inspired innumerable scientists during the last decades. As a matter of fact, bio-plastics like PHA have inherent economic drawbacks compared to plastics from fossil resources; they typically have higher raw material costs, and the processes are of lower productivity and are often still in the infancy of their technical development. This explains that it is no trivial task to get down the advantage of fossil-based competitors on the plastic market. Therefore, the market success of biopolymers like PHA requires R&D progress at all stages of the production chain in order to compensate for this disadvantage, especially as long as fossil resources are still available at an ecologically unjustifiable price as it does today.

Ecological performance is, although a logical argument for biopolymers in general, not sufficient to make industry and the society switch from established plastics to bio-alternatives. On the one hand, the review highlights that there’s indeed an urgent necessity to switch to such alternatives; on the other hand, it demonstrates the individual stages of the production chain, which need to be addressed to make PHA competitive in economic, environmental, ethical, and performance-related terms. In addition, it is demonstrated how new, smart PHA-based materials can be designed, which meet the customer’s expectations when applied, e.g., in the biomedical or food packaging sector.

1. Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Edit 2019; 58(1): 50-62.

2. Mathuriya AS, Yakhmi JV. Polyhydroxyalkanoates: Biodegradable Plastics and Their Applications. In: Martínez LM, Kharissova OV, Kharisov BI (Eds.): Handbook of Ecomaterials, 2017, pp. 1-29.

3. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017; 3(7): e1700782.

7. Gajšt T, Bizjak T, Palatinus A, Liubartseva S, Kržan A. Sea surface microplastics in Slovenian part of the Northern Adriatic. Mar Pollut Bull 2016; 113(1-2): 392-399.

8. Cesa FS, Turra A, Baruque-Ramos J. Synthetic fibers as microplastics in the marine environment: a review from textile perspective with a focus on domestic washings. Sci Total Environ 2017; 598: 1116-1129

9. Fonseca MMA, Gamarro EG, Toppe J, Bahri T, Barg U. The Impact of Microplastics on Food Safety: the Case of Fishery and Aquaculture Products. FAO Aquaculture Newsletter 2017; 57: 43-45.

10. Bouwmeester H, Hollman PC, Peters RJ. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ Sci Technol 2015; 49(15): 8932-8947.

11. Online resource 4: Last accessed October 24th, 2018 (in German) https://derstandard.at/2000089947285/Frage-und-Antwort-Wie-Mikroplastik-in-den-Organismus-gelangt.

12. Jia P, Xia H, Tang K, Zhou Y. Plasticizers derived from biomass resources: a short review. Polymers 2018; 10(12): 1303.

13. Zhu Y, Romain C, Williams CK. Sustainable polymers from renewable resources. Nature 2016; 540(7633): 354.

14. Koller M, Maršálek L, Miranda de Sousa Dias M, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 2017; 37(A): 24-38.

15. Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017; 4(2): 55.

16. Akiyama M, Tsuge T, Doi Y. Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym Degrad Stab 2003; 80(1): 183-194.

17. Narodoslawsky M, Shazad K, Kollmann R, Schnitzer H. LCA of PHA production–Identifying the ecological potential of bio-plastic. Chem Biochem Eng Q 2015; 29(2): 299-305.

18. Nielsen C, Rahman A, Rehman AU, Walsh MK, Miller CD. Food waste conversion to microbial polyhydroxyalkanoates. Microb Biotechnol 2017; 10(6): 1338-1352.

19. Kwan TH, Hu Y, Lin CSK. Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly(lactic acid) production. J Clean Prod 2018; 181: 72–87.

20. Koller M, Braunegg G. Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. The EuroBiotech Journal 2018; 2(2): 89-103.

21. Carvalho G, Oehmen A, Albuquerque MG, Reis MAM. The relationship between mixed microbial culture composition and PHA production performance from fermented molasses. New Biotechnol 2014; 31(4): 257-263.

22. Akaraonye E, Moreno C, Knowles JC, Keshavarz T, Roy I. Poly(3-hydroxybutyrate) production by Bacillus cereus SPV using sugarcane molasses as the main carbon source. Biotechnol J 2012; 7(2): 293-303.

23. Obruca S, Benesova P, Marsalek L, Marova I. Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 2015; 29(2): 135-144.

24. Lopes MSG, Gomez JGC, Taciro MK, Mendonça TT, Silva LF. Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia sp. J Ind Microbiol Biotechnol 2014; 41(9): 1353-1363.

25. Cesário MT, Raposo RS, de Almeida MCM, van Keulen F, Ferreira BS, da Fonseca MMR. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnol 2014; 31(1): 104-113.

26. Ahn J, Jho EH, Kim M, Nam K. Increased 3HV concentration in the bacterial production of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) copolymer with acid-digested rice straw waste. J Polym Environ 2016; 24(2): 98-103.

27. Bowers T, Vaidya A, Smith DA, Lloyd-Jones G. Softwood hydrolysate as a carbon source for polyhydroxyalkanoate production. J Chem Technol Biotechnol 2014; 89(7): 1030-1037.

28. Kucera D, Benesova P, Ladicky P, Pekar M, Sedlacek P, Obruca S. Production of polyhydroxyalkanoates using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of overliming, active carbon, and lignite. Bioengineering 2017: 4(2): 53.

29. Davis R, Kataria R, Cerrone F, Woods T, Kenny S, O’Donovan A, et al. Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresource Technol 2013; 150: 202-209.

30. Kataria R, Woods T, Casey W, Cerrone F, Davis R, O’Connor K, et al. Surfactant-mediated hydrothermal pretreatment of Ryegrass followed by enzymatic saccharification for polyhydroxyalkanoate production. Ind Crop Prod 2018; 111: 625-632.

31. Zhang Y, Sun W, Wang H, Geng A. Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11. Bioresource Technol 2013; 147: 307-314.

32. Sawant SS, Salunke BK, Kim BS. Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile Paracoccus sp. LL1. Bioresource Technol 2015, 194: 247-255.

33. Hokamura A, Yunoue Y, Goto S, Matsusaki H. Biosynthesis of polyhydroxyalkanoate from steamed soybean wastewater by a recombinant strain of Pseudomonas sp. 61-3. Bioengineering 2017; 4(3): 68.

34. Bhattacharya S, Dubey S, Singh P, Shrivastava A, Mishra S. Biodegradable polymeric substances produced by a marine bacterium from a surplus stream of the biodiesel industry. Bioengineering 2016; 3(4): 34.

35. Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G. Archaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-products. Archaea 2013; 2013: article ID 129268.

36. Takahashi RYU, Castilho NAS, Silva MACD, Miotto MC, Lima AODS. Prospecting for marine bacteria for polyhydroxyalkanoate production on low-cost substrates. Bioengineering 2017; 4(3): 60.

37. Koller M, Marsalek L. Principles of glycerol-based polyhydroxyalkanoate production. Applied Food Biotechnology 2015; 2(4): 3-10.

38. Koller M, Braunegg G. Biomediated production of structurally diverse poly(hydroxyalkanoates) from surplus streams of the animal processing industry. Polimery 2015; 60: 298-308.

39. Koller M, Shahzad K, Braunegg G. Waste Streams of the Animal-Processing Industry as Feedstocks to Produce Polyhydroxyalkanoate Biopolyesters. Applied Food Biotechnology 2018; 5(4): 193-203.

40. Neelamegam A, Al-Battashi H, Al-Bahry S, Nallusamy S. Biorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentation. J Biotechnol 2018; 265: 25-30.

41. Weissgram M, Gstöttner J, Lorantfy B, Tenhaken R, Herwig C, Weber HK. Generation of PHB from spent sulfite liquor using halophilic microorganisms. Microorganisms 2015; 3(2): 268-289.

42. Obruca S, Benesova P, Kucera D, Petrik S, Marova I. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. New Biotechnol 2015; 32(6): 569-574.

43. Kourmentza C, Costa J, Azevedo Z, Servin C, Grandfils C, De Freitas V, Reis MAM. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresource Technol 2018; 247: 829-837.

44. Johnston B, Jiang G, Hill D, Adamus G, Kwiecień I, Zięba M, et al. The molecular level characterization of biodegradable polymers originated from polyethylene using non-oxygenated polyethylene wax as a carbon source for polyhydroxyalkanoate production. Bioengineering 2017; 4(3): 73.

45. Koller M, Sandholzer D, Salerno A, Braunegg G, Narodoslawsky M. Biopolymer from industrial residues: Life cycle assessment of poly (hydroxyalkanoates) from whey. Res Cons Recyc 2013; 73: 64-71.

46. Koller M, Puppi D, Chiellini F, Braunegg G. Comparing chemical and enzymatic Hydrolysis of whey lactose to generate feedstocks for haloarchaeal poly (3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesis. Int J Pharm Sci Res 2016; 3(1).

47. Kovalcik A, Kucera D, Matouskova P, Pernicova I, Obruca S, Kalina M, et al. Influence of removal of microbial inhibitors on PHA production from spent coffee grounds employing Halomonas halophila. J Environ Chem Eng 2018; 6(2): 3495-3501.

48. Keskin G, Kızıl G, Bechelany M, Pochat-Bohatier C, Öner M. Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure Appl. Chem. 2017; 89 (12): 1841-1848

49. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez VA. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. eXPRESS Polym Lett 2014; 8(11): 791-808.

50. Mallegni N, Cinelli P, Balestri E, Lazzeri A, Seggiani M. New eco-composites based on polyhydroxyalkanoates (PHA) for marine applications. J Adv Chem Eng 2016; 6(3): 70-70.

51. Lenz RW, Marchessault RH. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 2005; 6: 1-8.

52. Braunegg G. Lefebvre G, Genser KF. Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J. Biotechnol 1998; 65: 127-161.

53. Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol Adv 2018; 36(3): 856-870.

54. Obruca S, Sedlacek P, Mravec F, Samek O, Marova I. Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly (3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 2016; 100(3): 1365-1376.

55. Slaninova E, Sedlacek P, Mravec F, Mullerova L, Samek O, Koller M, et al., Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl. Microbiol Biotechnol 2018; 102: 1923.

56. Obruca S, Sedlacek P, Krzyzanek V, Mravec F, Hrubanova K, Samek O, et al. Accumulation of poly (3-hydroxybutyrate) helps bacterial cells to survive freezing. PloS one 2016; 11(6): e0157778.

57. Sedlacek P, Slaninova E, Koller M, Nebesarova J, Marova I, Krzyzanek V, Obruca S. PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. New Biotechnol 2019; 49(25): 129-136.

58. Obruca S, Marova I, Stankova M, Mravcova L, Svoboda Z. Effect of ethanol and hydrogen peroxide on poly (3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16. World J Microbiol Biotechnol 2010; 26(7): 1261-1267.

59. Al Rowaihi IS, Paillier A, Rasul S, Karan R, Grötzinger SW, Takanabe K, Eppinger J. Poly(3-hydroxybutyrate) production in an integrated electromicrobial setup: Investigation under stress-inducing conditions. PloS one 2018; 13(4), e0196079.

60. González-García Y, Nungaray J, Córdova J, González-Reynoso O, Koller M, Atlić A, Braunegg G. Biosynthesis and characterization of polyhydroxyalkanoates in the polysaccharide-degrading marine bacterium Saccharophagus degradans ATCC 43961. J Ind Microbiol Biotechnol 2008; 35(6): 629-633.

61. Montenegro EMDS, Delabary GS, Silva MACD, Andreote FD, Lima AODS. Molecular diagnostic for prospecting polyhydroxyalkanoate-producing bacteria. Bioengineering 2017; 4(2): 52.

62. Salgaonkar BB, Bragança JM. Utilization of sugarcane bagasse by Halogeometricum borinquense strain E3 for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioengineering 2017; 4(2): 50.

63. Yin J, Chen JC, Wu Q, Chen GQ. Halophiles, coming stars for industrial biotechnology. Biotechnology Adv 2015; 33(7): 1433-1442.

64. Chen GQ, Jiang XR. Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotech 2018; 50: 94-100.

65. Chen GQ, Jiang XR. Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis. Curr Opin Biotech 2018; 53: 20-25.

66. Povolo S, Toffano P, Basaglia M, Casella, S. Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose. Bioresource Technol 2010; 101(20): 7902-7907.

67. Ouyang P, Wang H, Hajnal I, Wu Q, Guo Y, Chen GQ. Increasing oxygen availability for improving poly(3-hydroxybutyrate) production by Halomonas. Metab Eng 2018; 45: 20-31.

68. Ling C, Qiao GQ, Shuai BW, Olavarria K, Yin J, Xiang RJ, et al. Engineering NADH/NAD+ ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA). Metab Eng 2018; 49: 275-286.

69. Qin Q, Ling C, Zhao Y, Yang T, Yin J, Guo Y, Chen GQ. CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metab Eng 2018; 47: 219-229.

70. Liu Q, Luo G, Zhou XR, Chen GQ. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab Eng 2011; 13(1): 11-17.

71. Shen R, Cai L, Meng D, Wu L, Guo K, Dong G, et al. Benzene containing polyhydroxyalkanoates homo-and copolymers synthesized by genome edited Pseudomonas entomophila. Science China Life Sciences 2014; 57(1), 4-10.

72. Wei X, Liu F, Jian J, Wang R, Chen GQ. Production of Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) by Recombinant Pseudomonas stutzeri 1317 from Unrelated Carbon Sources. Chinese J Chem Eng 2013; 21(9): 1057-1061.

73. Zhou XY, Yuan XX, Shi ZY, Meng DC, Jiang WJ, Wu LP., et al. Hyperproduction of poly (4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Microb Cell Fact 2012; 11(1): 54.

74. Gamero JER, Favaro L, Pizzocchero V, Lomolino G, Basaglia M, Casella S. Nuclease expression in efficient polyhydroxyalkanoates-producing bacteria could yield cost reduction during downstream processing. Bioresource Technol 2018; 261: 176-181.

75. Favaro L, Basaglia M, Casella S. Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: a review. Biofuel Bioprod Bior 2018; online ahead of press; doi: 10.1002/bbb

76. Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutscher C., et al. Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Biores Technol 2008; 99(11): 4854-4863.

77. Blunt W, Levin D, Cicek N. Bioreactor Operating Strategies for Improved Polyhydroxyalkanoate (PHA) Productivity. Polymers 2018; 10(11): 1197.

78. Koller M. A review on established and emerging fermentation schemes for microbial production of Polyhydroxyalkanoate (PHA) biopolyesters. Fermentation 2018: 4(2), 30.

79. Braunegg G, Lefebvre G, Renner G, Zeiser A, Haage G, Loidl-Lanthaler K. Kinetics as a tool for polyhydroxyalkanoate production optimization. Can J Microbiol 1995; 41(13): 239-248.

80. Sindhu R, Silviya N, Binod P, Pandey A. Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem Eng J 2013; 78: 67-72.

81. Gahlawat G, Srivastava AK. Enhancing the production of polyhydroxyalkanoate biopolymer by Azohydromonas australica using a simple empty and fill bioreactor cultivation strategy. Chem Biochem Eng Q 2018; 31(4): 479-485.

82. Miranda de Sousa Dias M, Koller M, Puppi D, Morelli A, Chiellini F, Braunegg G. Fed-Batch synthesis of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from sucrose and 4-hydroxybutyrate precursors by Burkholderia sacchari strain DSM 17165. Bioengineering 2017; 4: 36

83. Ibrahim M.H, Steinbüchel A. High-cell-density cyclic fed-batch fermentation of a poly(3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10. Appl Environ Microbiol 2010; 76: 7890-7895.

84. Haas C, El-Najjar T, Virgolini N, Smerilli M, Neureiter M. High cell-density production of poly(3-hydroxybutyrate) in a membrane bioreactor. New Biotechnol 2017; 37: 117-122.

85. Koller M, Muhr A. Continuous production mode as a viable process-engineering tool for efficient poly(hydroxyalkanoate)(PHA) bio-production. Chem Biochem Eng Q 2014; 28(1): 65-77.

86. Koller M, Braunegg G. Potential and prospects of continuous polyhydroxyalkanoate (PHA) production. Bioengineering 2015; 2(2): 94-121.

87. Atlić A, Koller M, Scherzer D, Kutschera C, Grillo-Fernandes E, Horvat P, et al. Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 2011; 91(2): 295-304.

88. Horvat P, Špoljarić IV, Lopar M, Atlić A, Koller M, Braunegg G. Mathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly[-(R)-3-hydroxybutyrate] by Cupriavidus necator. Bioproc Biosyst Eng 2013; 36(9): 1235-1250.

89. Lopar M, Špoljarić IV, Atlić A, Koller M, Braunegg G, Horvat P. Five-step continuous production of PHB analyzed by elementary flux, modes, yield space analysis and high structured metabolic model. Biochem Eng J 2013; 79: 57-70.

90. Vadlja D, Koller M, Novak M, Braunegg G, Horvat P. Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Appl Microbiol Biotechnol 2016; 100(23): 10065-10080.

91. Koller M, Vadlja D, Braunegg G, Atlić A, Horvat P. Formal-and high-structured kinetic process modelling and footprint area analysis of binary imaged cells: Tools to understand and optimize multistage-continuous PHA biosynthesis. The EuroBiotech Journal 2017; 1(3): 203-211.

92. Koller M; Maršálek L: Cyanobacterial polyhydroxyalkanoate production: status quo and quo vadis? Curr Biotechnol 2015; 4(4): 464-480.

93. Drosg B, Fritz I, Gattermayr F, Silvestrini L. Photo-autotrophic production of poly(hydroxyalkanoates) in cyanobacteria. Chem Biochem Engineering Q 2015; 29(2): 145-156.

94. Costa JAV, Moreira JB, Lucas BF, Braga VDS, Cassuriaga APA, Morais MGD. Recent Advances and Future Perspectives of PHB Production by Cyanobacteria. Industrial Biotechnol 2018; 14(5): 249-256.

95. Koller M Khosravi-Darani K, Braunegg G. Advanced Photobioreactor Systems for the Efficient Cultivation of Cyanobacteria. In: Yiu Fai Tsang (Ed.): PhotobioreactorsAdnacements, Applications and Research. New York. Nova Science Publishers, 2017, pp. 35-90.

96. Troschl C, Meixner K, Drosg B. Cyanobacterial PHA production—Review of recent advances and a summary of three years’ working experience running a pilot plant. Bioengineering 2017: 4(2): 26.

97. Tanaka K, Miyawaki K, Yamaguchi A, Khosravi-Darani K, Matsusaki H. Cell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella sp. O-1, Appl Microbiol Biotechnol 2011; 92(6): 1161-1169.

98. Khosravi-Darani K, Vasheghani-Farahani E, Tanaka K. Hydrogen-oxidizing bacteria as poly(hydroxybutyrate) producers. Iran J Biotechnol 2006; 4: 193-196.

99. Khosravi-Darani K, Mokhtari ZB, Amai T, Tanaka K. Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microb Biotechnol 2013; 97(12): 56-57.

100. Mokhtari-Hosseini ZB, Vasheghani-Farahani E, Heidarzadeh-Vazifekhoran A, Shojaosadati SA, Karimzadeh R, Khosravi-Darani K. Statistical media optimization for growth and PHB production from methanol by a methylotrophic bacterium. Bioresour Technol 2009; 100: 2436-2443.

101. Mokhtari-Hosseini ZB, Vasheghani-Farahani E, Shojaosadati SA, Karimzadeh R, Heidarzadeh-Vazifekhoran A. Effect of feed composition on PHB production from methanol by HCDC Methylobacterium extorquens (DSMZ 1340). J Chem Technol Biotechnol 2009; 84: 1136-1139.

102. Strong P, Laycock B, Mahamud S, Jensen P, Lant P, Tyson G, Pratt S. The opportunity for high-performance biomaterials from methane. Microorganisms 2016; 4(1): 11.

103. Revelles O, Tarazona N, García JL, Prieto MA. Carbon roadmap from syngas to polyhydroxyalkanoates in Rhodospirillum rubrum. Environ Microbiol 2016; 18(2): 708-720.

104. Heinrich D, Raberg M, Fricke P, Kenny ST, Morales-Gamez L, Babu RP, et al. Syngas-derived medium-chain-length PHA synthesis in engineered Rhodospirillum rubrum. Appl Environ Microbiol 2016; 82(20); 6132-6149 (AEM-01744).

105. Khosravi-Darani K, Yazdian F, Rashedi H, Mofradnia SR, Moradi M, Madadian-Bozorg N, Koller M. Simulation of bioreactors for poly(3-hydroxybutyrate) production from natural gas. Iran J Chem Chem Eng 2019; 39(1) (online ahead of print).

106. Karmann S, Follonier S, Egger D, Hebel D, Panke S, Zinn M. Tailor-made PAT platform for safe syngas fermentations in batch, fed-batch and chemostat mode with Rhodospirillum rubrum. Microb Biotechnol 2017; 10(6): 1365-1375.

107. Kosseva MR, Rusbandi E. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int J Biol Macromolecul 2018; 107(A): 762-778

108. Koller M, Niebelschütz H, Braunegg G. Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Eng Life Sci 2013; 13(6): 549-562.

109. Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbüchel A. PHA recovery from biomass. Biomacromolecules 2013; 14(9): 2963-2972.

110. Marudkla J, Patjawit A, Chuensangjun C, Sirisansaneeyakul S. Optimization of poly (3-hydroxybutyrate) extraction from Cupriavidus necator DSM 545 using sodium dodecyl sulfate and sodium hypochlorite. Agric Natural Res 2018; 52(3): 266-273

111. Samorì C, Basaglia M, Casella S, Favaro L, Galletti P, Giorgini L, et al. Dimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomass. Green Chem 2015; 17(2): 1047-1056.

112. Jiang G, Johnston B, Townrow D, Radecka I, Koller M, Chaber P, et al. Biomass Extraction Using Non-Chlorinated Solvents for Biocompatibility Improvement of Polyhydroxyalkanoates. Polymers 2018; 10(7): 731.

113. Koller M, Bona R, Chiellini E, Braunegg G. Extraction of short-chain-length poly-[(R)-hydroxyalkanoates] (scl-PHA) by the “anti-solvent” acetone under elevated temperature and pressure. Biotechnol Lett 2013; 35(7): 1023-1028.

114. Ong SY, Zainab-L I, Pyary S, Sudesh K. A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl Microbiol Biotechnol 2018; 122(5): 2117–2127.

115. Chen GQ, Wang Y. Medical applications of biopolyesters polyhydroxyalkanoates. Chinese J Polym Sci 2013; 31(5): 719-736.

116. Koller M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 2018; 23(2): 362.

117. Peptu C, Kowalczuk M. Biomass-derived polyhydroxyalkanoates: Biomedical applications. In: Popa V, Volf I (Eds.), Biomass as renewable raw material to obtain bioproducts of high-tech value. Elsevier, 2018; pp. 271-313.

118. Butt FI, Muhammad N, Hamid A, Moniruzzaman M, Sharif F. Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications–Review. Int J Biol Macromol 2018; 120(A): 1294-1305.

119. Zinn M, Witholt B, Egli T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliver Rev 2001; 53(1): 5-21.

120. Luef KP, Stelzer F, Wiesbrock F. Poly(hydroxyalkanoate)s in medical applications. Chem Biochem Eng Q 2015; 29(2): 287-297.

121. Valappil SP, Boccaccini AR, Bucke C, Roy I. Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie van Leeuwenhoek 2007; 91(1): 1-17.

122. Peng Q, Zhang ZR, Gong T, Chen GQ, Sun X. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles. Biomaterials 2012; 33(5): 1583-1588.

123. Luo Z, Jiang L, Ding C, Hu B, Loh XJ, Li Z, Wu YL. Surfactant free delivery of docetaxel by poly[(R) -3-hydroxybutyrate-(R)-3-hydroxyhexanoate]-based polymeric micelles for effective melanoma treatments. Adv Healthc Mater 2018; 1801221 (online ahead of print; doi: 10.1002/adhm.201801221).

124. Puppi D, Morelli A, Chiellini F. Additive manufacturing of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(ε-caprolactone) blend scaffolds for tissue engineering. Bioengineering 2017; 4(2), 49.

125. Mota C, Wang SY, Puppi D, Gazzarri M, Migone C, Chiellini F, et al. (2017). Additive manufacturing of poly [(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development. J Tissue Eng Regen M 2017; 11(1): 175-186.

126. Sanhueza C, Acevedo F, Rocha S, Villegas P, Seeger M, Navia R. Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int J Biol Macromol 2018; online ahead of print; doi: 10.1016/j.ijbiomac.2018.11.068

127. Puppi D, Pirosa A, Morelli A, Chiellini F. Design, fabrication and characterization of tailored poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyexanoate] scaffolds by computer-aided wet-spinning. Rapid Prototyping J 2018; 24(1): 1-8.

128. Ellis G, Cano P, Jadraque M, Martín M, López L, Núñez T, et al. Laser microperforated biodegradable microbial polyhydroxyalkanoate substrates for tissue repair strategies: an infrared microspectroscopy study. Anal Bioanal Chem 2011; 399(7): 2379-2388.

129. Chang CK, Wang HMD, Lan JCW. Investigation and characterization of plasma-treated poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopolymers for an in vitro cellular study of mouse adipose-derived stem cells. Polymers 2018; 10(4): 355.

130. Bhatia SK, Wadhwa P, Hong JW, Hong YG, Jeon JM, Lee ES, Yang YH. Lipase mediated functionalization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with ascorbic acid into an antioxidant active biomaterial. Int J Biol Macromol 2019; 123(15): 117-123.

131. Zhang J, Cao Q, Li S, Lu X, Zhao Y, Guan JS, et al. 3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanism. Biomaterials 2013; 34(30), 7552-7562.

132. Rydz J, Musioł M, Zawidlak-Węgrzyńska B, Sikorska W. Present and Future of Biodegradable Polymers for Food Packaging Applications. In: (Grumezescu AM, Holban AM, Eds.): Biopolymers for Food Design - A volume in Handbook of Food Bioengineering 2018: pp. 431-467.

133. Plackett D, Siró I. Polyhydroxyalkanoates (PHAs) for food packaging. In: Lagarón JM (Ed.): Multifunctional and nanoreinforced polymers for food packaging. Elsevier, 2011; pp. 498-526.

134. Koller M. Poly(hydroxyalkanoates) for food packaging: Application and attempts towards implementation. App Food Biotechnol 2014; 1(1): 3-15.

135. Khosravi-Darani K, Bucci DZ. Application of poly(hydroxyalkanoate) in food packaging: Improvements by nanotechnology. Chem Biochem Engineering Q 2015; 29(2): 275-285.

136. Sun J, Shen J, Chen S, Cooper M, Fu H, Wu D, Yang Z. Nanofiller reinforced biodegradable PLA/PHA composites: Current status and future trends. Polymers 2018; 10(5): 505.

137. Kovalcik A, Machovsky M, Kozakova Z, Koller M. Designing packaging materials with viscoelastic and gas barrier properties by optimized processing of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with lignin. React Funct Polym 2015; 94: 25-34.

138. Fabra MJ, López-Rubio A, Ambrosio-Martín J, Lagaron JM. Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocolloid 2016; 61: 261-268.

139. Bordes P, Pollet E, Bourbigot S, Averous L. Structure and Properties of PHA/Clay Nano-Biocomposites Prepared by Melt Intercalation. Macromol Chem Physic 2008; 209(14): 1473-1484.

140. Akin O, Tihminlioglu F. Effects of organo-modified clay addition and temperature on the water vapor barrier properties of polyhydroxy butyrate homo and copolymer nanocomposite films for packaging applications. J Polym Environ 2018; 26(3): 1121-1132.

141. Harding KG, Dennis JS, Von Blottnitz H, Harrison STL. Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J Biotechnol 2007; 130(1): 57-66.

142. Titz M, Kettl KH, Shahzad K, Koller M, Schnitzer H, Narodoslawsky M. Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol Environ Pol. 2012; 14: 495-503.

143. Shahzad K, Kettl KH, Titz M, Koller M, Schnitzer H, Narodoslawsky M. Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources. Clean Technol Environ Pol. 2013; 15: 525-536.

144. Shahzad K, Narodoslawsky M, Sagir M, Ali N, Ali S, Rashid MI, et al. Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production. Waste Manage 2017; 67: 73-85.

145. Kookos IK, Koutinas A, Vlysidis A. Life cycle assessment of bioprocessing schemes for poly (3-hydroxybutyrate) production using soybean oil and sucrose as carbon sources. Resour Conserv Recy 2019; 141: 317-328.

146. Jiang G, Hill DJ, Kowalczuk M, Johnston B, Adamus G, Irorere V, Radecka I. Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 2016; 17(7): 1157.

147. Dietrich K, Dumont MJ, Del Rio LF, Orsat V. Producing PHAs in the bioeconomy—Towards a sustainable bioplastic. Sust Prod Consum 2017; 9: 58-70.

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 632 632 274
PDF Downloads 131 131 67