Indoor air pollution and the contribution of biosensors

Open access


A vast majority of people today spend more time indoors than outdoors. However, the air quality indoors may be as bad as or even worse than the air quality outside. This is due to the continuous circulation of the same air without proper ventilation and filtration systems, causing a buildup of pollutants. As such, indoor air quality monitoring should be considered more seriously. Indoor air quality (IAQ) is a measure of the air quality within and around buildings and relates to the health and comfort of building occupants. To determine the IAQ, computer modeling is done to simulate the air flow and human exposure to the pollutant. Currently, very few instruments are available to measure the indoor air pollution index. In this paper, we will review the list of techniques available for measuring IAQ, but our emphasis will be on indoor air toxicity monitoring.

1. Etzov E, Cohen A,Marks RS, Bioluminescent Liquid Light Guide Pad Biosensor for Indoor Air Toxicity Monitoring. Analytical Chemistry, 2015; 87(7): p. 3655-3661.

2. Antikainen R, Lappalainen S, Lonnqvist A, Maksi-Mainen K, Reijula K,Uusi-Rauva E, Exploring the relationship between indoor air and productivity. Scandinavian Journal of Work Environment & Health, 2008: p. 79-82.

3. Wargocki P, Wyon DP, Baik YK, Clausen G,Fanger PO, Perceived air quality, Sick Building Syndrome (SBS) symptoms and productivity in an office with two different pollution loads. Indoor Air-International Journal of Indoor Air Quality and Climate, 1999; 9(3): p. 165-179.

4. Molhave L, Clausen G, Berglund B, de Ceaurriz J, Kettrup A, Lindvall T, Maroni M, Pickering AC, Risse U, Rothweiler H, Seifert B,Younes M, Total volatile organic compounds (TVOC) in indoor air quality investigations. Indoor Air-International Journal of Indoor Air Quality and Climate, 1997; 7(4): p. 225-240.

5. Bari MA, Kindzierski WB, Wheeler AJ, Heroux ME,Wallace LA, Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, Canada. Building and Environment, 2015; 90: p. 114-124.

6. Bako-Biro Z, Wargocki P, Weschler CJ,Fanger PO, Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in offices. Indoor Air, 2004; 14(3): p. 178-187.

7. Lee SC, Chan LY,Chiu MY, Indoor and outdoor air quality investigation at 14 public places in Hong Kong. Environment International, 1999; 25(4): p. 443-450.

8. Hong T, Kim J,Lee M, Integrated task performance score for the building occupants based on the CO2 concentration and indoor climate factors changes. Applied Energy, 2018; 228: p. 1707-1713.

9. Hodgson AT, Beal D,McIlvaine JER, Sources of formaldehyde, other aldehydes and terpenes in a new manufactured house. Indoor Air, 2002; 12(4): p. 235-242.

10. Kelly TJ, Smith DL,Satola J, Emission rates of formaldehyde from materials and consumer products found in California homes. Environmental Science & Technology, 1999; 33(1): p. 81-88.

11. Kawamura K, Kerman K, Fujihara M, Nagatani N, Hashiba T,Tamiya E, Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sensors and Actuators B-Chemical, 2005; 105(2): p. 495-501.

12. Dirksen JA, Duval K,Ring TA, NiO thin-film formaldehyde gas sensor. Sensors and Actuators B-Chemical, 2001; 80(2): p. 106-115.

13. Seiyama T, Kato A, Fujiishi K,Nagatani M, A New Detector for gaseous Components using Semiconductive Thin Films. Analytical Chemistry, 1962; 34(11): p. 1502-1503.

14. Weschler CJ, Shields HC,Nalk DV, Indoor Chemistry involving O3, NO, and NO2 as Evidenced by 14 Months of Measurements at a site in Southern California. Environmental Science & Technology, 1994; 28(12): p. 2120-2132.

15. Petit PC, Fine DH, Vasquez GB, Gamero L, Slaughter MS,Dasse KA, The Pathophysiology of Nitrogen Dioxide During Inhaled Nitric Oxide Therapy. Asaio Journal, 2017; 63(1): p. 7-13.

16. Blomberg A, Krishna MT, Bocchino V, Biscione GL, Shute JK, Kelly FJ, Frew AJ, Holgate ST,Sandstrom T, The inflammatory effects of 2 ppm NO2 on the airways of healthy subjects. American Journal of Respiratory and Critical Care Medicine, 1997; 156(2): p. 418-424.

17. Hui PS, Wong LT, Mui KW,Law KY, Survey of unsatisfactory levels of airborne bacteria in air-conditioned offices. Indoor and Built Environment, 2007; 16(2): p. 130-138.

18. Peltola J, Andersson MA, Haahtela T, Mussalo-Rauhamaa H, Rainey FA, Kroppenstedt RM, Samson RA,Salkinoja-Salonen MS, Toxic-metabolite-producing bacteria and fungus in an indoor environment. Applied and Environmental Microbiology, 2001; 67(7): p. 3269-3274.

19. Salonen H, Lappalainen S, Lindroos O, Harju R,Reijula K, Fungi and bacteria in mould-damaged and non-damaged office environments in a subarctic climate. Atmospheric Environment, 2007; 41(32): p. 6797-6807.

20. Gołofit-Szymczak M,Górny RL, Microbiological air quality in office buildings equipped with different ventilation systems. Indoor Air; 0(0).

21. Harrison J, Pickering CAC, Faragher EB, Austwick PKC, Little SA,Lawton L, An Investigation of the Relationship between Microbial and Particulate Indoor Air-Pollution and the Sick Building Syndrome. Respiratory Medicine, 1992; 86(3): p. 225-235.

22. Jaakkola JJK,Miettinen P, Type of Ventilation System in Office Buildings and Sick Building Syndrome. American Journal of Epidemiology, 1995; 141(8): p. 755-765.

23. Mendell MJ, Fisk WJ, Deddens JA, Seavey WG, Smith AH, Smith DF, Hodgson AT, Daisey JM,Goldman LR, Elevated symptom prevalence associated with ventilation type in office buildings. Epidemiology, 1996; 7(6): p. 583-589.

24. Becher R, Øvrevik J, Schwarze EP, Nilsen S, Hongslo KJ,Bakke VJ, Do Carpets Impair Indoor Air Quality and Cause Adverse Health Outcomes: A Review. International Journal of Environmental Research and Public Health, 2018; 15(2).

25. Zuskin E, Schachter E, Mustajbegovic J, Pucarin-Cvetkovic J, Doko-Jelinic J,Mucic-Pucic B, Indoor air pollution and effects on human health. Periodicum Biologorum, 2009; 111(1): p. 37-40.

26. Bernstein JA, Alexis N, Bacchus H, Bernstein IL, Fritz P, Horner E, Li N, Mason S, Nel A, Oullette J, Reijula K, Reponen T, Seltzer J, Smith A,Tarlo SM, The health effects of nonindustrial indoor air pollution. Journal of Allergy and Clinical Immunology, 2008; 121(3): p. 585-591.

27. Hardin BD, Kelmen BJ,Saxon A, Adverse human health effects associated with molds in the indoor environment. Journal of Occupational and Environmental Medicine, 2003; 45(5): p. 470-478.

28. Hizrri A, Zati Nabilah MG, Nurul Amni Z, Shahida N, Maryam Z, Hazrin AH, Mohd Faez S,Mohd Shukri MA, Indoor air quality (IAQ) characteristics and its microbial community identifications at two selected schools in Pahang, Malaysia: a preliminary study. Asian Journal of Agriculture and Biology, 2018(No.Special Issue): p. 88-96.

29. Yu BF, Hu ZB, Liu M, Yang HL, Kong QX,Liu YH, Review of research on air-conditioning systems and indoor air quality control for human health. International Journal of Refrigeration, 2009; 32(1): p. 3-20.

30. Kim H,Bernstein JA, Air pollution and allergic disease. Current Allergy and Asthma Reports, 2009; 9(2): p. 128-133.

31. Maroni M, Seifert B,Lindvall T, eds. Indoor Air Quality - A Comprehensive Reference Book. 1995, Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo: Elsevier.

32. Ruano-Ravina A,Miguel Barros-Dios J, Randon and lung cancer. Implications for health workers, citizens and public administrations. Medicina Clinica, 2007; 128(14): p. 545-549.

33. Lee YCA, Cohet C, Yang YC, Stayner L, Hashibe M,Straif K, Meta-analysis of epidemiologic studies on cigarette smoking and liver cancer. International Journal of Epidemiology, 2009; 38(6): p. 1497-1511.

34. Jones AP, Indoor air quality and health. Atmospheric Environment, 1999; 33(28): p. 4535-4564.

35. Kim S-H, Hwang WJ, Cho J-S,Kang DR, Attributable risk of lung cancer deaths due to indoor radon exposure. Annals of Occupational and Environmental Medicine, 2016; 28(1): p. 8.

36. Lyman GH, Radon, in Indoor Air Pollution and Health, E.J. Bardana and A. Montanaro, Editors. 1997, Marcel Dekker: New York. p. 83-103.

37. Nielson KK, Rogers VC, Holt RB, Pugh TD, Grondzik WA,deMeijer RJ, Radon penetration of concrete slab cracks, joints, pipe penetrations, and sealants. Health Physics, 1997; 73(4): p. 668-678.

38. Cohen BS, Xiong JQ, Fang CP,Li W, Deposition of charged particles on lung airways. Health Physics, 1998; 74(5): p. 554-560.

39. Klemm R, Mason RJ, Heilig C, Neas L,Dockery D, Is daily mortality associated specifically with fine particles? Data reconstruction and replication of analyses. Journal of Air Waste Management Association, 2000; 50(7): p. 1215-22.

40. Ostro B, Broadwin R, Green S, Feng WY,Lipsett M, Fine particulate air pollution and mortality in nine California counties: Results from CALFINE. Environmental Health Perspectives, 2006; 114(1): p. 29-33.

41. Rashed MN, Total and Extractable Heavy Metals in Indoor, Outdoor and Street Dust from Aswan City, Egypt. Clean-Soil Air Water, 2008; 36(10-11): p. 850-857.

42. Kumar R, Nagar JK,Gaur SN, Indoor Air Pollutants and Respiratory Morbidity - A Review. Indian Journal of Allergy Asthma and Immunology, 2005; 19(1): p. 1-9.

43. Covaci A, Voorspoels S,de Boer J, Determination of brominated flame retardants, with emphasis on polybrominated diphenyl ethers (PBDEs) in environmental and human samples - a review. Environment International, 2003; 29(6): p. 735-756.

44. Kharlyngdoh JB, Pradhan A, Asnake S, Walstad A, Ivarsson P,Olsson P-E, Identification of a group of brominated flame retardants as novel androgen receptor antagonists and potential neuronal and endocrine disrupters. Environment International, 2015; 74: p. 60-70.

45. Costa LG, de Laat R, Tagliaferri S,Pellacani C, A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicology Letters, 2014; 230(2): p. 282-294.

46. Jin X, Lee S, Jeong Y, Yu J-P, Baek WK, Shin K-H, Kannan K,Moon H-B, Species-specific accumulation of polybrominated diphenyl ethers (PBDEs) and other emerging flame retardants in several species of birds from Korea. Environmental Pollution, 2016; 219: p. 191-200.

47. Lee Y-H, Kim H-H, Lee J-I, Lee J-H, Kang H,Lee J-Y, Indoor contamination from pesticides used for outdoor insect control. Science of the Total Environment, 2018; 625: p. 994-1002.

48. Chen YL,Wen J, Sensor system design for building indoor air protection. Building and Environment, 2008; 43(7): p. 1278-1285.

49. Liu X,Zhai Z, Protecting a whole building from critical indoor contamination with optimal sensor network design and source identification methods. Building and Environment, 2009; 44(11): p. 2276-2283.

50. Methods for Monitoring Indoor Air Quality in Schools. 2011, World Health Organization Regional Office for Europe, JRC European Commission

51. Weschler CJ,Shields HC, Potential reactions among indoor pollutants. Atmospheric Environment, 1997; 31(21): p. 3487-3495.

52. Wang DKW,Austin CC, Determination of complex mixtures of volatile organic compounds in ambient air: canister methodology. Analytical and Bioanalytical Chemistry, 2006; 386(4): p. 1099-1120.

53. Mui KW, Wong LT,Ho WL, Evaluation on sampling point densities for assessing indoor air quality. Building and Environment, 2006; 41(11): p. 1515-1521.

54. Praveen K. S, Eric L. B, Rangachary M,Fernando H. G, Chemical Sensors for Environmental Monitoring and Homeland Security. The Electrochemical Society Interface, 2010: p. 35-40.

55. Persaud K,Dodd G, Analysis of Discrimination Mechanisms in the Mammalian Olfactory System using a Model Nose. Nature, 1982; 299(5881): p. 352-355.

56. Dusastre V, Electronic noses: Principles and applications. Nature, 1999; 402(6760): p. 351-352.

57. Fang X, Qi G, Guo M, Pan M, Chen YQ,Ieee, An improved integrated electronic nose for online measurement of VOCs in indoor air, in 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols 1-7. 2005. p. 2894-2897.

58. Zampolli S, Elmi I, Ahmed F, Passini M, Cardinali GC, Nicoletti S,Dori L, An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sensors and Actuators B-Chemical, 2004; 101(1-2): p. 39-46.

59. Xu K, Fu C, Gao Z, Wei F, Ying Y, Xu C,Fu G, Nanomaterial-based gas sensors: A review. Instrumentation Science & Technology, 2018; 46(2): p. 115-145.

60. Mohan VB, Lau KT, Hui D,Bhattacharyya D, Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B-Engineering, 2018; 142: p. 200-220.

61. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI,Novoselov KS, Detection of individual gas molecules adsorbed on graphene. Nature Materials, 2007; 6(9): p. 652-655.

62. Cretu V, Postica V, Mishra AK, Hoppe M, Tiginyanu I, Mishra YK, Chow L, de Leeuw NH, Adelung R,Lupan O, Synthesis, characterization and DFT studies of zinc-doped copper oxide nanocrystals for gas sensing applications. Journal of Materials Chemistry A, 2016; 4(17): p. 6527-6539.

63. Li TM, Zeng W, Long HW,Wang ZC, Nanosheet-assembled hierarchical SnO2 nanostructures for efficient gas-sensing applications. Sensors and Actuators B-Chemical, 2016; 231: p. 120-128.

64. Gonzalez O, Roso S, Vilanova X,Llobet E, Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra. Beilstein Journal of Nanotechnology, 2016; 7: p. 1507-1518.

65. Yoo R, Kim J, Song MJ, Lee W,Noh JS, Nano-composite sensors composed of single-walled carbon nanotubes and polyaniline for the detection of a nerve agent simulant gas. Sensors and Actuators B-Chemical, 2015; 209: p. 444-448.

66. Yoosefian M, Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube. Applied Surface Science, 2017; 392: p. 225-230.

67. Dong CK, Luo HJ, Cai JQ, Wang FQ, Zhao YY,Li DT, Hydrogen sensing characteristics from carbon nanotube field emissions. Nanoscale, 2016; 8(10): p. 5599-5604.

68. Xiao ZH, Kong LB, Ruan SC, Li XL, Yu SJ, Li XY, Jiang Y, Yao ZJ, Ye S, Wang CH, Zhang TS, Zhou K,Li S, Recent development in nanocarbon materials for gas sensor applications. Sensors and Actuators B-Chemical, 2018; 274: p. 235-267.

69. Wei BY, Hsu MC, Su PG, Lin HM, Wu RJ,Lai HJ, A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sensors and Actuators B-Chemical, 2004; 101(1-2): p. 81-89.

70. Wang J, Liu L, Cong S-Y, Qi J-Q,Xu B-K, An enrichment method to detect low concentration formaldehyde. Sensors and Actuators B-Chemical, 2008; 134(2): p. 1010-1015.

71. Bittencourt C, Felten A, Espinosa EH, Ionescu R, Llobet E, Corteig X,Pireaux JJ, WO3 films modified with functionalised multi-wall carbon nanotubes: Morphological, compositional and gas response studies. Sensors and Actuators B-Chemical, 2006; 115(1): p. 33-41.

72. Li Y, Wang H-c,Yang M-j, n-Type gas sensing characteristics of chemically modified multi-walled carbon nanotubes and PMMA composite. Sensors and Actuators B-Chemical, 2007; 121(2): p. 496-500.

73. Liu YL, Yang HF, Yang Y, Liu ZM, Shen GL,Yu RQ, Gas sensing properties of tin dioxide coated onto multi-walled carbon nanotubes. Thin Solid Films, 2006; 497(1-2): p. 355-360.

74. Penza M, Rossi R, Alvisi M, Cassano G, Signore MA, Serra E,Giorgi R, Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors. Sensors and Actuators B-Chemical, 2008; 135(1): p. 289-297.

75. Arnold C, Harms M,Goschnick J, Air Quality Monitoring and Fire Detection With The Karlsruhe Electronic Micronose KAMINA. Ieee Sensors Journal, 2002; 2(3): p. 179-188.

76. Yang L, Yin CB, Zhang ZL, Zhou JJ,Xu HH, The investigation of hydrogen gas sensing properties of SAW gas sensor based on palladium surface modified SnO2 thin film. Materials Science in Semiconductor Processing, 2017; 60: p. 16-28.

77. Singh H, Raj VB, Kumar J, Durani F, Mishra M, Nimal AT,Sharma MU, SAW mono sensor for identification of harmful vapors using PCA and ANN. Process Safety and Environmental Protection, 2016; 102: p. 577-588.

78. Rana L, Gupta R, Tomar M,Gupta V, ZnO/ST-Quartz SAW resonator: An efficient NO2 gas sensor. Sensors and Actuators B-Chemical, 2017; 252: p. 840-845.

79. Staline J,Dr TS, Design and Analysis of SAW Based MEMS Gas Sensor for the Detection of Volatile Organic Gases. International Journal of Engineering Research and Applications, 2014; 4(3): p. 254-258.

80. Wang W, Hu HL, Liu XL, He ST, Pan Y, Zhang CH,Dong C, Development of a Room Temperature SAW Methane Gas Sensor Incorporating a Supramolecular Cryptophane A Coating. Sensors, 2016; 16(1).

81. Thomas S, Cole M, Villa-López FH,Gardner JW, High frequency surface acoustic wave resonator-based sensor for particulate matter detection. Sensors and Actuators A: Physical, 2016; 244: p. 138-145.

82. Zhou J, Li P, Zhang S, Long YC, Zhou F, Huang YP, Yang PY,Bao MH, Zeolite-modified microcantilever gas sensor for indoor air quality control. Sensors and Actuators B-Chemical, 2003; 94(3): p. 337-342.

83. Bearzotti A, Macagnano A, Papa P, Venditti I,Zampetti E, A study of a QCM sensor based on pentacene for the detection of BTX vapors in air. Sensors and Actuators B: Chemical, 2017; 240: p. 1160-1164.

84. Kumar A, Brunet J, Varenne C, Ndiaye A, Pauly A, Penza M,Alvisi M, Tetra-tert-butyl copper phthalocyanine-based QCM sensor for toluene detection in air at room temperature. Sensors and Actuators B: Chemical, 2015; 210: p. 398-407.

85. Clément P, Llobet E, Lucat C,Debéda H, Use of a CNT-coated Piezoelectric Cantilever with Double Transduction As a Gas Sensor for Benzene Detection at Room Temperature. Procedia Engineering, 2014; 87: p. 708-711.

86. Clément P, Llobet E, Lucat C,Debéda H, Gas Discrimination Using Screen-printed Piezoelectric Cantilevers Coated with Carbon Nanotubes. Procedia Engineering, 2015; 120: p. 987-992.

87. Shi LQ, Hasegawa Y, Katsube T, Nakano M, Nakamura K,Ieee, Highly sensitive SnO2-based gas sensor for indoor air quality monitoring. Transducers ‘05, Digest of Technical Papers, Vols 1 and 2. 2005. 1203-1206.

88. Lv P, Tang ZA, Yu J, Zhang FT, Wei GF, Huang ZX,Hu Y, Study on a micro-gas sensor with SnO2-NiO sensitive film for indoor formaldehyde detection. Sensors and Actuators B-Chemical, 2008; 132(1): p. 74-80.

89. Zhou K, Ji X, Zhang N,Zhang X, On-line monitoring of formaldehyde in air by cataluminescence-based gas sensor. Sensors and Actuators B-Chemical, 2006; 119(2): p. 392-397.

90. Lee C-Y, Chiang C-M, Wang Y-H,Ma R-H, A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection. Sensors and Actuators B-Chemical, 2007; 122(2): p. 503-510.

91. Sasahara T, Kato H, Saito A, Nishimura M,Egashira M, Development of a ppb-level sensor based on catalytic combustion for total volatile organic compounds in indoor air. Sensors and Actuators B-Chemical, 2007; 126(2): p. 536-543.

92. Schwandt C, Kumar RV,Hills MP, Solid state electrochemical gas sensor for the quantitative determination of carbon dioxide. Sensors and Actuators B: Chemical, 2018; 265: p. 27-34.

93. Menart E, Jovanovski V,Hočevar SB, Novel hydrazinium polyacrylate-based electrochemical gas sensor for formaldehyde. Sensors and Actuators B: Chemical, 2017; 238: p. 71-75.

94. Wan H, Yin H, Lin L, Zeng X,Mason AJ, Miniaturized planar room temperature ionic liquid electrochemical gas sensor for rapid multiple gas pollutants monitoring. Sensors and Actuators B: Chemical, 2018; 255: p. 638-646.

95. Kuberský P, Syrový T, Hamáček A, Nešpůrek S,Syrová L, Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sensors and Actuators B: Chemical, 2015; 209: p. 1084-1090.

96. Rao Z, Liu L, Xie J,Zeng Y, Development of a benzene vapour sensor utilizing chemiluminescence on Y2O3. Luminescence, 2008; 23(3): p. 163-168.

97. Maruo YY, Nakamura J, Uchiyama M, Higuchi M,Izunli K, Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent. Sensors and Actuators B-Chemical, 2008; 129(2): p. 544-550.

98. Yi SH, Park YH, Han SO, Min NK, Kim ES, Ahn TH,Ieee, Novel NDIR CO2 sensor for indoor air quality monitoring. Transducers ‘05, Digest of Technical Papers, Vols 1 and 2. 2005. 1211-1214.

99. Tavoli F,Alizadeh N, Optical ammonia gas sensor based on nanostructure dye-doped polypyrrole. Sensors and Actuators B-Chemical, 2013; 176: p. 761-767.

100. Burratti L, De Matteis F, Casalboni M, Francini R, Pizzoferrato R,Prosposito P, Polystyrene photonic crystals as optical sensors for volatile organic compounds. Materials Chemistry and Physics, 2018; 212: p. 274-281.

101. Paliwal A, Sharma A, Tomar M,Gupta V, Carbon monoxide (CO) optical gas sensor based on ZnO thin films. Sensors and Actuators B: Chemical, 2017; 250: p. 679-685.

102. Subramanian M, Dhayabaran VV, Sastikumar D,Shanmugavadivel M, Development of room temperature fiber optic gas sensor using clad modified Zn3 (VO4)2. Journal of Alloys and Compounds, 2018; 750: p. 153-163.

103. Manjula M, Karthikeyan B,Sastikumar D, Sensing characteristics of clad-modified (Ho-doped Bi2O3 nanoparticles) fibre optic gas sensor. Optical Fiber Technology, 2018; 45: p. 35-39.

104. Khan MRR, Kang B-H, Yeom S-H, Kwon D-H,Kang S-W, Fiber-optic pulse width modulation sensor for low concentration VOC gas. Sensors and Actuators B: Chemical, 2013; 188: p. 689-696.

105. Renganathan B,Ganesan AR, Fiber optic gas sensor with nanocrystalline ZnO. Optical Fiber Technology, 2014; 20(1): p. 48-52.

106. Girotti S, Ferri EN, Fumo MG,Maiolini E, Monitoring of environmental pollutants by bioluminescent bacteria. Analytica Chimica Acta, 2008; 608(1): p. 2-29.

107. Roda A, Pasini P, Mirasoli M, Michelini E,Guardigli M, Biotechnological applications of bioluminescence and chemiluminescence. Trends in Biotechnology, 2004; 22(6): p. 295-303.

108. Valdman E, Valdman B, Battaglini F,Leite SGF, On-line detection of low naphthalene concentrations with a bioluminescent sensor. Process Biochemistry, 2004; 39(10): p. 1217-1222.

109. Valdman E,Gutz IGR, Bioluminescent sensor for naphthalene in air: Cell immobilization and evaluation with a dynamic standard atmosphere generator. Sensors and Actuators B-Chemical, 2008; 133(2): p. 656-663.

110. Werlen C, Jaspers MCM,van der Meer JR, Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Applied and Environmental Microbiology, 2004; 70(1): p. 43-51.

111. Eltzov E, Pavluchkov V, Burstain M,Marks R, Creation of a fiber optic based biosensor for air toxicity monitoring. Sensors & Actuators: B. Chemical, 2011; in print (SNB12864).

112. Shakeel S, A., F.,Shraddha P, Bioluminescent bacteria: The sparkling hope for pollution detection. Indian Journal of Scientific Research, 2018; 8(1): p. 125-130.

113. Podola B,Melkonian M, A long-term operating algal biosensor for the rapid detection of volatile toxic compounds. Journal of Applied Phycology, 2003; 15(5): p. 415-424.

114. Podola B, Nowack ECM,Melkonian M, The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compounds. Biosensors and Bioelectronics, 2004; 19(10): p. 1253-1260.

115. Jiang Y, Liang P, Huang X,Ren ZJ, A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring. Chemosphere, 2018; 203: p. 21-25.

116. Zhou S, Huang S, Li Y, Zhao N, Li H, Angelidaki I,Zhang Y, Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring. Talanta, 2018; 186: p. 368-371.

117. Rasinger JD, Marrazza G, Briganti F, Scozzafava A, Mascini M,Turner APF, Evaluation of an FIA operated amperometric bacterial biosensor, based on pseudomonas putida F1 for the detection of benzene, toluene, ethylbenzene, and xylenes (BTEX). Analytical Letters, 2005; 38(10): p. 1531-1547.

118. Berno E, Marcondes DFP, Gamalero SR,Eandi M, Recombinant Escherichia coli for the biomonitoring of benzene and its derivatives in the air. Ecotoxicology and Environmental Safety, 2004; 57(2): p. 118-122.

119. Knopf GK, Bassi AS, Singh S,Macleod R, Biosensor for remote monitoring of airborne toxins, in Environmental Monitoring and Remediation Technologies Ii, T. VoDinh and R.L. Spellicy, Editors. 1999. p. 185-193.

120. Seo J, Kato S, Tatsuma T, Chino S, Takada K,Notsu H, Biosensing of an indoor volatile organic compound on the basis of fungal growth Chemosphere, 2008; 72(9): p. 1286-1291

121. Keiko A, A Method For Numerical Characterization Of Indoor Climates By A Biosensor Using A Xerophilic Fungus. Indoor Air, 1993; 3(4): p. 344-348.

122. Mitsubayashi K, Nishio G, Sawai M, Kazawa E, Yoshida H, Saito T, Kudo H, Otsuka K, Takao M,Saito H, A biochemical sniffer-chip for convenient analysis of gaseous formaldehyde from timber materials. Microchimica Acta, 2008; 160(4): p. 427-433.

123. Shimomura T, Itoh T, Sumiya T, Mizukami F,Ono M, Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sensors and Actuators B-Chemical, 2008; 135(1): p. 268-275.

124. Sigawi S, Smutok O, Demkiv O, Gayda G, Vus B, Nitzan Y, Gonchar M,Nisnevitch M, Detection of Waterborne and Airborne Formaldehyde: From Amperometric Chemosensing to a Visual Biosensor Based on Alcohol Oxidase. Materials, 2014; 7(2): p. 1055.

125. Vianello F, Boscolo-Chio R, Signorini S,Rigo A, On-line detection of atmospheric formaldehyde by a conductometric biosensor. Biosensors and Bioelectronics, 2007; 22(6): p. 920-925.

126. Ray S, Panjikar S,Anand R, Design of Protein-Based Biosensors for Selective Detection of Benzene Groups of Pollutants. ACS Sensors, 2018; 3(9): p. 1632-1638.

127. Li S, Liu H, Yang G, Liu S, Liu R,Lv C, Detection of radon with biosensors based on the lead(II)-induced conformational change of aptamer HTG and malachite green fluorescence probe. Journal of Environmental Radioactivity, 2018; 195: p. 60-66.

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 232 167
PDF Downloads 107 107 55