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EBTNA UTILITY GENE TEST

Abstract
Vascular anomalies (VAs) have phenotypic variability within the same entity, overlapping clinical features between different 
conditions, allelic and locus heterogeneity and the same disorder can be inherited in different ways. Most VAs are sporadic 
(paradominant inheritance or de novo somatic or germline mutations), but hereditary forms (autosomal dominant or recessive) 
have been described. This Utility Gene Test  was developed on the basis of an analysis of the literature and existing diagnostic 
protocols. The genetic test is useful for confirming diagnosis, as well as for differential diagnosis, couple risk assessment and 
access to clinical trials.
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Vascular anomalies
(Other synonyms: Vascular anomalies are a group of diseases; see phenotypic variants)

General information about the disease
Vascular anomalies (VAs) combine an extremely heterogeneous group of congenital 
abnormalities of the vascular system. VAs include vascular tumours, such as hemangioma, 
and malformations of veins, arteries, capillaries and the lymphatic system. Anomalies may 
occur during embryogenesis. They may be morphological, structural and/or functional 
defects affecting different types and calibers of vessels in any anatomical area (1). When 
more than one type of vessel is affected, the term mixed anomaly is used. Vascular 
anomalies can also occur in the context of syndromes (2). Disorders characterized by 
VAs have phenotypic variability within the same entity, overlapping clinical features 
between different conditions, allelic and locus heterogeneity, and the same disorder 
can be inherited in different ways. Although most vascular anomalies are sporadic 
(paradominant inheritance or de novo somatic mutations), there are well-described 
syndromic and hereditary forms of VAs (autosomal dominant or recessive). VAs have 
high clinical variability: indeed they may manifest as monofocal or multifocal lesions and 
they may be congenital or appear/develop later (3, 4). 

Prevalence is unknown.
Diagnostic work-up may include clinical history, clinical examination, vascular echo-

Doppler and vascular magnetic resonance imaging.
Vascular anomalies can be classified on the basis of the vessels affected:

Vascular tumours
•	 Capillary infantile hemangioma (OMIM disease 602089) can be sporadic or have 

autosomal dominant inheritance. It can be caused either by somatic mutations in KDR, 
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FLT4 (OMIM gene 136352), DUSP5 (OMIM gene 603069), 
GNAQ (OMIM gene 600998), GNA11 (OMIM gene 39313) 
or GNA14 (OMIM gene 604397) or by germline mutations 
in ANTXR1 (OMIM gene 606410) or KDR (OMIM gene 
191306) (5-8).

•	 Verrucous venous malformation (OMIM disease not 
available) is sporadic and is caused by somatic mutations in 
MAP3K3 (OMIM gene 602539) (9).

•	 Pyogenic granuloma (OMIM disease not available) is 
sporadic and is caused by somatic mutations in BRAF, 
NRAS or KRAS (10)

Venous malformations
•	 Multiple cutaneous and mucosal venous malformations 

(VMCM, OMIM disease 600195) can be caused either by 
mutations in TEK (OMIM gene 600221) with dominant or 
paradominant inheritance, or by sporadic somatic mutations 
in PIK3CA (OMIM gene 171834) (11, 12).

•	 Glomuvenous malformations (GVM, OMIM disease 
138000) can have dominant or paradominant inheritance 
and are caused by mutations in GLMN (OMIM gene 
601749) (13).

•	 Cerebral cavernous malformations type 1 (CCM1, OMIM 
disease 116860), type 2 (CCM2, OMIM disease 603284) and 
type 3 (CCM3, OMIM disease 603285) have dominant or 
paradominant inheritance and are caused by mutations in 
KRIT1 (OMIM gene 604214), CCM2 (OMIM gene 607929) 
and PDCD10 (OMIM gene 609118), respectively (14-16).

•	 Blue rubber bleb nevus syndrome (OMIM disease 12200) is 
sporadic and is caused by somatic mutations in TEK (17).

Capillary malformations
•	 Congenital capillary malformations (CMC, OMIM disease 

163000) are sporadic and are caused by somatic mutations 
in GNAQ or GNA11 (18, 19).

•	 Parkes Weber syndrome (PKWS, OMIM disease 608355) 
has dominant or paradominant inheritance and is caused by 
mutations in RASA1 (OMIM gene 139150) (20).

•	 Sturge-Weber syndrome (SWS, OMIM 185300) is sporadic 
and is caused by somatic mutations in GNAQ (21).

•	 Capillary malformations-arteriovenous malformations 
(CMAVM, OMIM 608354) can be sporadic or have 
dominant inheritance and are caused either by somatic 
mutations in RASA1 or by germline mutations in RASA1 or 
EPHB4 (OMIM gene 600011) (20, 22).

•	 Hereditary hemorrhagic telangiectasia type 1 (HHT1, 
OMIM disease 187300) and type 2 (HHT2, OMIM disease 
600376) have dominant or paradominant inheritance and 
are caused by mutations in ENG (OMIM gene 131195) and 
ACVRL1 (OMIM gene 601284), respectively. Hereditary 
hemorrhagic telangiectasia type 5 (HHT5, OMIM disease 
615506) has autosomal dominant inheritance. It is caused 
by mutations in GDF2 (OMIM gene 605120). Pathogenic 
mutations in RASA1 have been reported in patients with 
a form of dominant hereditary hemorrhagic telangiectasia 

(23, 24).
•	 Juvenile polyposis/hereditary hemorrhagic telangiectasia 

syndrome (JPHT, OMIM disease 175050) has autosomal 
dominant inheritance. It is caused by mutations in SMAD4 
(OMIM gene 600993) (25).

Syndromic arteriovenous anomalies
•	 Klippel-Trénauny-Weber syndrome (OMIM disease 

149000) and congenital lipomatous overgrowth, vascular 
malformations and epidermal nevi syndrome (CLOVES, 
OMIM disease 612918) are sporadic and are caused by 
somatic mutations in PIK3CA (26).

•	 Multiple enchondromatosis, Maffucci type (OMIM disease 
614569) is sporadic and is caused by somatic mutations 
in IDH1 (OMIM gene 147700) and IDH2 (OMIM gene 
147650) (27).

•	 Proteus syndrome (OMIM disease 176920) is sporadic 
and is caused by somatic mutations in AKT1 (OMIM gene 
164730) (28).

•	 Loeys-Dietz syndrome type 1 (OMIM disease 609192), 
type 2 (OMIM disease 600168), type 3 (OMIM disease 
613795) and type 4 (OMIM disease 614816) have autosomal 
dominant inheritance. They are caused by mutations in 
TGFBR1 (OMIM gene 606145), TGFBR2 (OMIM gene 
190182), SMAD3 (OMIM gene 603109) and TGFB2 (OMIM 
gene 190220), respectively (29-31).

•	 Ehlers-Danlos syndrome, vascular type (EDSVASC, OMIM 
disease 130050) has autosomal dominant inheritance. It is 
caused by mutations in COL3A1 (OMIM gene 120180) (32).

•	 Arterial tortuosity syndrome (ATS, OMIM disease 208050) 
has autosomal recessive inheritance. It is caused by mutations 
in SLC2A10 (OMIM gene 606145) (33).

•	 Cowden syndrome type 1 (CWS1, OMIM disease 158350), 
type 5 (CWS5, OMIM disease 615108) and type 6 (CWS6, 
OMIM disease 615109) have autosomal dominant 
inheritance. They are caused by mutations in PTEN (OMIM 
gene 601728), PIK3CA, and AKT1, respectively (34, 35).

•	 Marfan syndrome (MFS, OMIM disease 154700) has 
autosomal dominant inheritance. It is caused by mutations 
in FBN1 (OMIM gene 134797) (36).

•	 Pseudoxanthoma elasticum (PXE, OMIM disease 264800) 
has autosomal recessive inheritance. It is caused by mutations 
in ABCC6 (OMIM gene 603234) and ENPP1 (OMIM gene 
173335) (37).

•	 Microcephaly-capillary malformation syndrome; (MIC-
CAP, OMIM disease 614261) has autosomal recessive inher-
itance. It is caused by mutations in STAMBP (OMIM gene 
606247) (38).

Recently, somatic mutations in MAP2K1 (OMIM gene 
176872) were found in patients with sporadic extracranial 
arteriovenous malformations (39), and germline mutations 
in ELMO2 (OMIM gene  606421) were found in patients 
with intraosseous vascular malformations (it is unclear if this 
malformations affect capillary or veins) (40).
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Other likely genes
SOX17 (OMIM gene 610928), TMEM100 (OMIM gene616334), 
NOTCH4 (OMIM gene 164951), BMP4 (OMIM gene 112262), 
BMPR1A (OMIM gene 601299), SMAD5 (OMIM gene 603110), 
NOTCH3 (OMIM gene 600276), ACTN4 (OMIM gene 604638), 
BMP10 (OMIM gene 608748), CHST11 (OMIM gene 610128), 
CHTOP (OMIM gene 614206), DLL4 (OMIM gene 605185), 
MGP (OMIM gene 154870), MYO9A (OMIM gene 604875), 
NOTCH1 (OMIM gene 190198), PRRC2B (OMIM gene not 
available), RBPJ (OMIM gene 147183), SH3PXD2A (OMIM 
gene not available), SLC20A2 (OMIM gene 158378), SLC25A20 
(OMIM gene 613698), FOXF1 (OMIM gene 601089), BMPR2 
(OMIM gene 600799).

Pathogenic variants may include missense, nonsense, 
splicing, small insertions and deletions, small indels, gross 
insertions, duplications and complex rearrangements.

Aims of the test
•	 To determine the gene defect responsible for the disease;
•	 To confirm clinical diagnosis;
•	 To assess the recurrence risk and perform genetic counsel-

ling for at-risk/affected individuals.

Test characteristics
Specialist centers/Published guidelines
The test is listed in the Orphanet database and is offered by 27 
accredited medical genetic laboratories in the EU, and in the 
GTR database, offered by 4 accredited medical genetic labora-
tories in the US.

Guidelines for clinical use of the test are described in dis-
ease-specific chapters of Genetics Home Reference (ghr.nlm.
nih.gov) and Gene Reviews (41).

Test strategy 
Clinically distinguishable syndromes can be analyzed by se-
quencing only those genes known to be associated with that 
specific disease using Sanger or Next Generation Sequencing 
(NGS); if the results are negative, or more generally if clinical 
signs are ambiguous for diagnosis, a multi-gene NGS panel is 
used to detect nucleotide variations in coding exons and flank-
ing introns of the above genes.

The efficiency of targeted NGS is precious for VAs because of 
their complex inheritance pattern and genetic and phenotypic 
heterogeneity. DNA extracted from blood (or saliva) should 
always be analyzed in tandem with DNA extracted from af-
fected tissues (Fig. 1). In fact, performed in this way, the test 

Figure 1. Flow chart of genetic testing for vascular anomalies.
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makes it possible to identify variants specific for the affected 
tissue and to determine whether the variant is inherited from 
the parents or occurred as a sporadic somatic event. In a single 
experiment, it is possible to identify germline pathogenic var-
iants and/or somatic pathogenic variants (an allelic imbalance 
of ≥6% is the cut-off for a positive test). The results obtained 
from targeted NGS are analyzed using an in-house bioinfor-
matic tool that compares results obtained from the germinal 
lineage (blood or saliva specimens) and affected tissue. For 
variant selection, a cut-off value (related to biopsy and blood 
results) is used, and if the variant frequency is higher than the 
cut-off value it is considered for further analysis. The cut-off 
depends on tissue quality, extraction method, biocomputing 
software and other parameters. Potentially causative variants 
and regions with low coverage are Sanger-sequenced. Sanger 
sequencing is also used for family segregation studies.

Multiplex Ligation Probe Amplification (MLPA) is used to 
detect duplications and deletions in ABCC6, ACVRL1, CCM2, 
COL3A1, ENG, FBN1, KRIT1, PDCD10, PTEN, RASA1, SL-
C2A10, TGFBR1 and TGFB2. 

Sporadic cases with negative test outcome or positive re-
sults in genes with paradominant inheritance (ANTXR1, 
CCM2, ENG, GLMN, KDR, KRIT1, PDCD10, PTEN, RASA1 
and TEK) should be tested for somatic variations. Potentially 
causative variants need to be verified by further means (e.g. 
cloning + Sanger sequencing, Sanger sequencing, minise-
quencing).

To perform molecular diagnosis, a single sample of biologi-
cal material is normally sufficient. This may be 1 ml peripheral 
blood in a sterile tube with 0.5 ml K3EDTA or 1 ml saliva in 
a sterile tube with 0.5 ml ethanol 95%. Sampling rarely has to 
be repeated.

A frozen intra-lesional biopsy specimen, in addition to 
blood or saliva, is necessary to test for somatic variations.

Gene-disease associations and the interpretation of genetic 
variants are rapidly developing fields. It is therefore possible 
that the genes mentioned in this note may change as new sci-
entific data is acquired. It is also possible that genetic variants 
today defined as of “unknown or uncertain significance” may 
acquire clinical importance.

Genetic test results
Positive
Identification of pathogenic variants in the above genes con-
firms the clinical diagnosis and is an indication for family 
studies.

A pathogenic variant is known to be causative for a given 
genetic disorder based on previous reports or predicted to be 
causative based on loss of protein function or expected signifi-
cant damage to protein or protein/protein interactions. In this 
way it is possible to obtain a molecular diagnosis in new/other 
subjects, establish the risk of recurrence in family members 
and plan preventive and/or therapeutic measures.

Inconclusive
Detection of a variant of unknown or uncertain significance 
(VUS): a new variation without any evident pathogenic 
significance or a known variation with insufficient evidence 
(or with conflicting evidence) to indicate it is likely benign or 
likely pathogenic for a given genetic disorder. In these cases, it 
is advisable to extend testing to the patient’s relatives to assess 
variant segregation and clarify its contribution. In some cases, 
it could be necessary to perform further examinations/tests or 
to do a clinical reassessment of pathological signs.

Negative
The absence of variations in the genomic regions investigated 
does not exclude a clinical diagnosis but suggests the following 
possibilities
•	 Alterations that cannot be identified by sequencing, such 

as large rearrangements that cause loss (deletion) or gain 
(duplication) of extended gene fragments.

•	 Sequence variations in genomic regions not investigated by 
the test, such as regulatory regions, 5’- and 3’-UTR) and 
deep intronic regions.

•	 Variations in other genes not investigated by the present test.

Unexpected
Unexpected results may emerge from the test, for example in-
formation regarding consanguinity, absence of family correla-
tion or other genetically-based diseases.

Risk for progeny
If the identified pathogenic variant has autosomal dominant 
transmission, the probability that an affected carrier transmit 
the disease variant to his/her children is 50% in any pregnancy, 
irrespective of the sex of the child conceived.

In autosomal recessive mutations, both parents are usually 
healthy carriers. In this case, the probability of transmitting 
the disorder to the offspring is 25% in any pregnancy of the 
couple, irrespective of the sex of the child. An affected individ-
ual generates healthy carrier sons and daughters in all cases, 
except in pregnancies with a healthy carrier partner. In these 
cases, the risk of an affected son or daughter is 50%. 

De novo somatic variations cannot be inherited or 
transmitted.

In paradominant inheritance, only the germline genetic 
variant is transmitted in an autosomal dominant fashion and 
the probability that carriers transmit the germline pathogenic 
variant to their children is 50% in any pregnancy, irrespective 
of the sex of the child conceived.

Limits of the test
The test is limited by current scientific knowledge regarding 
the genes and diseases.

Currently, there is no evidence of a genotype-phenotype 
correlation between mosaicism level and the severity of clini-
cal manifestation.
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Analytical sensitivity (proportion of positive tests 
when the genotype is truly present) and specificity 
(proportion of negative tests when the genotype is 
not present)
NGS Analytical sensitivity >99.99%, with a minimum coverage 
of 10X; Analytical specificity 99.99%.
SANGER Analytical sensitivity >99.99%; Analytical specificity 
99.99%.
MINISEQUENCING Analytical sensitivity >99.99%; Analyti-
cal specificity 99.99%.
MLPA Analytical sensitivity >99.99%; Analytical specificity 
99.99%.

Clinical sensitivity (proportion of positive tests 
if the disease is present) and clinical specificity 
(proportion of negative tests if the disease is not 
present)
The variations in the aforementioned genes depend closely on 
the specific disorder. Clinical sensitivity and specificity, based 
on current genetic knowledge and internal case studies, can be 
estimated at 20-30% and 99.78%, respectively (42).

No epidemiological data is available for private variants 
(specific to one or very few families). In such cases, clinical 
sensitivity is estimated on the basis of internal case studies (42).

Prescription appropriateness
The genetic test is appropriate when:
a) the patient meets the diagnostic criteria for Vas (43);
b) the sensitivity of the test is greater than or equal to that of 
tests described in the literature.

Clinical utility
Clinical management Utility

Confirmation of clinical diagnosis Yes

Differential diagnosis Yes

Couple risk assessment Yes

Availability of clinical trials can be checked on-line at 
https://clinicaltrials.gov/
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