Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion

Open access


Polyhydroxyalkanoates (PHA), the only group of “bioplastics” sensu stricto, are accumulated by various prokaryotes as intracellular “carbonosomes”. When exposed to exogenous stress or starvation, presence of these microbial polyoxoesters of hydroxyalkanoates assists microbes to survive.

“Bioplastics” such as PHA must be competitive with petrochemically manufactured plastics both in terms of material quality and manufacturing economics. Cost-effectiveness calculations clearly show that PHA production costs, in addition to bioreactor equipment and downstream technology, are mainly due to raw material costs. The reason for this is PHA production on an industrial scale currently relying on expensive, nutritionally relevant “1st-generation feedstocks”, such as like glucose, starch or edible oils. As a way out, carbon-rich industrial waste streams (“2nd-generation feedstocks”) can be used that are not in competition with the supply of food; this strategy not only reduces PHA production costs, but can also make a significant contribution to safeguarding food supplies in various disadvantaged parts of the world. This approach increases the economics of PHA production, improves the sustainability of the entire lifecycle of these materials, and makes them unassailable from an ethical perspective.

In this context, our EU-funded projects ANIMPOL and WHEYPOL, carried out by collaborative consortia of academic and industrial partners, successfully developed PHA production processes, which resort to waste streams amply available in Europe. As real 2nd-generation feedstocks”, waste lipids and crude glycerol from animal-processing and biodiesel industry, and surplus whey from dairy and cheese making industry were used in these processes. Cost estimations made by our project partners determine PHA production prices below 3 € (WHEYPOL) and even less than 2 € (ANIMPOL), respectively, per kg; these values already reach the benchmark of economic feasibility.

The presented studies clearly show that the use of selected high-carbon waste streams of (agro)industrial origin contributes significantly to the cost-effectiveness and sustainability of PHA biopolyester production on an industrial scale.

1. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017; 3(7): e1700782.

2. Online resource 1: last access April 6th, 2018

3. Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F. Recycling of plastic solid waste: A state of art review and future applications. Composites Part B: Engineering 2017; 115: 409-422.

4. Lebreton LC, Van der Zwet J, Damsteeg JW, Slat B, Andrady A, Reisser J. River plastic emissions to the world’s oceans. Nat Comm 2017; 8: 15611.

5. Braunegg G, Bona R, Koller M. Sustainable polymer production. Polym-Plast Technol Eng 2004; 43(6): 1779-1793.

6. Koller M, Maršálek L, Miranda de Sousa Dias M, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 2017; 37(A): 24-38.

7. Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017; 4(2): 55.

8. Lemoigne M. Produits de deshydration et de polymerisation de l’acide β-oxybutyrique. Bull Soc Chim Biol 1926; 8: 770-782.

9. Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol Adv 2018 (online ahead of print; doi: 10.1016/j.biotechadv.2017.12.006.

10. Obruca S, Marova I, Stankova M, Mravcova L, Svoboda Z. Effect of ethanol and hydrogen peroxide on poly (3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16. World J Microbiol Biotechnol 2010; 26(7): 1261-1267.

11. Obruca S, Sedlacek P, Mravec F, Samek O, Marova I. Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly (3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 2016; 100(3): 1365-1376.

12. Obruca S, Sedlacek P, Mravec F. Krzyzanek V, Nebesarova J, Samek O, et al. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol 2017; 39: 68-80.

13. Slaninova E, Sedlacek P, Mravec F, Mullerova L, Samek O, Koller M, et al. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl Microbiol Biotechnol 2018; 102(4): 1923–1931.

14. Obruca S, Sedlacek P, Krzyzanek V, Mravec F, Hrubanova K, Samek O, et al. Accumulation of poly (3-hydroxybutyrate) helps bacterial cells to survive freezing. PloS one 2016; 11(6): e0157778.

15. Jiang G, Hill DJ, Kowalczuk M, Johnston B, Adamus G, Irorere V, Radecka I. Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 2016; 17(7): 1157.

16. Dietrich K, Dumont MJ, Del Rio LF, Orsat V. Producing PHAs in the bioeconomy—Towards a sustainable bioplastic. Sust Prod Consum 2017; 9: 58-70.

17. Koller M, Sandholzer D, Salerno A, Braunegg G, Narodoslawsky M. Biopolymer from industrial residues: Life cycle assessment of poly (hydroxyalkanoates) from whey. Res Cons Recyc 2013; 73: 64-71.

18. Obruca S, Benesova P, Marsalek L, Marova I. Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 2015; 29(2): 135-144.

19. Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MAM. Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol 2007; 130: 411–421.

20. Queirós D, Rossetti S, Serafim LS. PHA production by mixed cultures: a way to valorize wastes from pulp industry. Biores Technol 2014; 157: 197-205.

21. Pittmann T, Steinmetz H. Polyhydroxyalkanoate production on waste water treatment plants: Process scheme, operating conditions and potential analysis for German and European municipal waste water treatment plants. Bioengineering 2017; 4(2): 54.

22. Kourmentza C, Koutra E, Venetsaneas N, Kornaros M. Integrated biorefinery approach for the valorization of olive mill waste streams towards sustainable biofuels and bio-based products. In: Microbial Applications Vol. 1; 2017, pp. 211-238, Springer, Cham.

23. Troschl C, Meixner K, Drosg B. Cyanobacterial PHA production—Review of recent advances and a summary of three years’ working experience running a pilot plant. Bioengineering 2017: 4(2): 26.

24. Shahzad K, Narodoslawsky M, Sagir M, Ali N, Ali S, Rashid MI, et al. Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production. Waste Manage 2017; 67: 73-85.

25. Koller M, Niebelschütz H, Braunegg G. Strategies for recovery and purification of poly [(R)-3-hydroxyalkanoates)(PHA) biopolyesters from surrounding biomass. Eng Life Sci 2013; 13(6): 549-562.

26. Kosseva MR, Rusbandi E. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int J Biol Macromolecul 2018; 107(A): 762-778

27. Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbüchel A. PHA recovery from biomass. Biomacromolecules 2013; 14(9): 2963-2972.

28. Koller M, Bona R, Chiellini E, Braunegg G. Extraction of short-chain-length poly-[(R)-hydroxyalkanoates] (scl-PHA) by the “anti-solvent” acetone under elevated temperature and pressure. Biotechnol Lett 2013; 35(7): 1023-1028.

29. Daly SR, Fathi A, Bahramian B, Manavitehrani I, McClure DD, Valtchev P, et al. A green process for the purification of biodegradable poly(β-hydroxybutyrate). J Supercrit Fluids 2018; 135: 84-90.

30. Dubey S, Bharmoria P, Gehlot PS, Agrawal V, Kumar A, Mishra S. 1-Ethyl-3-methylimidazolium diethylphosphate based extraction of bioplastic “Polyhydroxyalkanoates” from bacteria: Green and Sustainable Approach. ACS Sust Chem Eng 2017; 6(1): 766-773.

31. Ong SY, Zainab-L I, Pyary S, Sudesh K. A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl Microbiol Biotechnol 2018; 122(5): 2117–2127.

32. Hsiao LJ, Lee MC, Chuang PJ, Kuo YY, Lin JH, Wu TM, Li SY. The production of poly (3-hydroxybutyrate) by thermophilic Caldimonas manganoxidans from glycerol. J Polym Res 2018; 25(4): 85.

33. Koller M. Production of Polyhydroxyalkanoate (PHA) Biopolyesters by Extremophiles. MOJ Polym Sci 2017; 1(2): 1-19.

34. Kucera D, Pernicová I, Kovalcik A, Koller M, Mullerova L, Sedlacek P, et al. Characterization of the promising poly (3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Biores Technol 2018; 256: 552-556.

35. Rodriguez-Contreras A, Koller M, Braunegg G, Marqués-Calvo MS. Poly[(R)-3-hydroxybutyrate] production under different salinity conditions by a novel Bacillus megaterium strain. New Biotechnol 2016; 33(1): 73-77.

36. Chen GQ, Hajnal I. The ‘PHAome’. Trends Biotechnol 2015; 33(10): 559-564.

37. Rodriguez-Perez S, Serrano A, Pantión AA, Alonso-Fariñas B. Challenges of scaling-up PHA production from waste streams. A review. J Environ Manage 2018; 205: 215-230.

38. Kaur G, Roy I. Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng Q 2015; 29(2): 157-172.

39. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, et al. Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 2005; 6(2): 561-565.

40. Braunegg G, Genser K, Bona R, Haage G, Schellauf F, Winkler E. Production of PHAs from agricultural waste material. Macromol Symp 1999; 144(1): 375-383.

41. Moita R, Freches A, Lemos PC. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res 2014; 58: 9-20.

42. Perez Amaro L, Abdelwahab MA, Morelli A, Chiellini F, Chiellini E. Bacterial polyesters: The issue of their market acceptance and potential solutions. In: Koller M. (Ed.), Recent Advances in Biotechnology, 2016, Vol. 2, pp. 3-74; Bentham Science Publishers

43. Koller M, Bona R, Hermann C, Horvat P, Martinz J, Neto J, et al. Biotechnological production of poly(3-hydroxybutyrate) with Wautersia eutropha by application of green grass juice and silage juice as additional complex substrates. Biocat Biotrans 2005; 23(5): 329-337.

44. Obruca S, Benesova P, Marsalek L, Marova I. Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 2015; 29(2): 135-144.

45. Ahn WS, Park SJ, Lee SY. Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 2000; 66: 3624-3627.

46. Koller M, Salerno A, Muhr A, Reiterer A, Chiellini E, Casella S, et al. Chapter 2: Whey lactose as a raw material for microbial production of biodegradable polyester. In: Saleh HE-DM (Ed.). Polyesters. InTech, Rijeka; 2012, pp.19-60.

47. Ahn WS, Park SJ, Lee SY. Production of poly(3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia coli. Biotechnol Lett 2001; 23: 235-240.

48. Haas C, El-Najjar T, Virgolini N, Smerilli M, Neureiter M. High cell-density production of poly(3-hydroxybutyrate) in a membrane bioreactor. New Biotechnol 2017; 37: 117-122.

49. Kucera D, Benesova P, Ladicky P, Pekar M, Sedlacek P, Obruca S. Production of polyhydroxyalkanoates using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of overliming, active carbon, and lignite. Bioengineering 2017: 4(2): 53.

50. Silva LF, Taciro MK, Ramos MM, Carter JM, Pradella JGC, Gomez JGC. Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J Ind Microbiol Biot 2004; 31(6): 245-254

51. Haas C, Steinwandter V, Diaz De Apodaca E, Maestro Madurga B, Smerilli M, Dietrich T, et al. Production of PHB from chicory roots–comparison of three Cupriavidus necator strains. Chem Biochem Eng Q 2015; 29(2): 99-112

52. Hájek M, Skopal F, Čapek L, Černoch M, Kutálek P. Ethanolysis of rapeseed oil by KOH as homogeneous and as heterogeneous catalyst supported on alumina and CaO. Energy 2012; 48(1): 392-397.

53. Xiao Y, Xiao G, Varma A. A universal procedure for crude glycerol purification from different feedstocks in biodiesel production: experimental and simulation study. Ind Eng Chem Res 2013; 52(39): 14291-14296.

54. Koncar M, Mittelbach M, Gössler H, Hammer W. Catalytic trans esterification of a triglycerides and fatty acids. U.S. Patent No. 6,696,583, 24 Feb. 2004.

55. Skopal F, Komers K, Machek J. A new method of dealcoholization of crude biodiesel fuel. Lipid/Fett 1997;99(3):87-90.

56. Moita R, Freches A, Lemos PC. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res 2014; 58: 9-20.

57. Ward PG, Goff M, Donner M, Kaminsky W, O’Connor KE. A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 2006; 40(7): 2433-2437.

58. Johnston B, Jiang G, Hill D, Adamus G, Kwiecień I, Zięba M, et al. The molecular level characterization of biodegradable polymers originated from polyethylene using non-oxygenated polyethylene wax as a carbon source for polyhydroxyalkanoate production. Bioengineering 2017; 4(3): 73.

59. Guimarães PMR, Teixeira JA, Domingues L. Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv 2010; 28(3): 375-84.

60. Kosikowski FV. Whey utilisation and whey products. J Dairy Sci 1979; 62: 1149-60.

61. Illanes A. Whey upgrading by enzyme biocatalysis. Electron J Biotechnol 2011; 14(6): 15.

62. Ghaley AE, El-Taweel AA. Kinetic modelling of continuous production of ethanol from cheese whey. Biomass Bioenerg 1997; 12(6): 461-472.

63. Aneja RP, Mathur BN, Chandan RC, Banerjee AK. Technology of Indian milk products: Handbook on process technology modernization for professionals, entrepreneurs and scientists. Dairy India Yearbook 2002.

64. Corgneau M, Scher J, Ritie-Pertusa L, Le D, Petit, J, Nikolova Y, et al. Recent advances on lactose intolerance: Tolerance thresholds and currently available answers. Crit Rev Food Sci Nutr 2017; 57(15): 3344-3356.

65. Viñas M, Borzacconi L, Martínez J. Anaerobic treatment of yeast manufacturing wastewater in UASB reactors. Environ Technol 1994; 15: 79–85.

66. Gonzales Siso MI. The biotechnological utilization of cheese whey: A review. Bioresource Technol 1996; 57: 1-11.

67. Koller M, Marsalek L, Braunegg G. PHA Biopolyester production from surplus whey: microbiological and engineering aspects. In: Koller M. (Ed.), Recent Advances in Biotechnology, 2016, Vol. 1, pp. 100-174, Bentham Science Publishers.

68. Koller M, Hesse P, Bona R, Kutschera C, Atlić A, Braunegg G. Potential of various archae-and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol Biosci 2007; 7(2): 218-226.

69. Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutscher C., et al. Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Biores Technol 2008; 99(11): 4854-4863.

70. Koller M, Atlić A, Gonzalez-Garcia Y, Kutschera C, Braunegg G. Polyhydroxyalkanoate (PHA) biosynthesis from whey lactose. Macromol Symp 2008; 272(1): 87-92).

71. Han J, Hou J, Zhang F, Ai G, Li M, Cai S, et al. Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei. Appl Environ Microbiol 2013; 79(9): 2922-2931.

72. Koller M. Recycling of waste streams of the biotechnological poly (hydroxyalkanoate) production by Haloferax mediterranei on whey. Int J Polym Sci 2015; 2015: article ID 370164

73. Pais J, Serafim LS, Freitas F, Reis MAM. Conversion of cheese whey into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. New Biotechnol 2015; 33(1): 224-30.

74. Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G. Archaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-products. Archaea 2013; 2013: article ID 129268.

75. Huang TY, Duan KJ, Huang SY, Chen CW. Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 2006; 33(8): 701-6.

76. Chen CW, Don TM, Yen HF. Enzymatic extruded starch as a carbon source for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. Process Biochem 2006; 41(11): 2289-96.

77. Alsafadi D, Al-Mashaqbeh O. A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New biotechnol 2017; 34: 47-53.

78. Obruca S, Marova I, Melusova S, Mravcova L. Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann Microbiol 2011; 61(4): 947-953.

79. Koller M, Puppi D, Chiellini F, Braunegg G. Comparing chemical and enzymatic Hydrolysis of whey lactose to generate feedstocks for haloarchaeal poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesis. Int J Pharm Sci Res 2016; 3(1).

80. Obruca S, Benesova P, Oborna J, Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol Lett 2014; 36(4): 775-781.

81. Koller M. Poly(hydroxyalkanoates) for food packaging: Application and attempts towards implementation. App Food Biotechnol 2014; 1(1): 3-15.

82. Cinelli P, Schmid M, Bugnicourt E, et al. Whey protein layer applied on biodegradable packaging film to improve barrier properties while maintaining biodegradability. Polym Degrad Stabil 2014; 108: 151-7.

83. Koller M, Braunegg G. Biomediated production of structurally diverse poly(hydroxyalkanoates) from surplus streams of the animal processing industry. Polimery 2015;60:298-308. doi:10.14314/polimery.2015.298

84. Online resource 2: (last accessed April 13th, 2018)

85. Ebringer A. The problem of Bovine Spongiform Encephalopathy also known as “mad cow disease” in the United Kingdom. In: Multiple sclerosis, mad cow disease and Acinetobacter, 2015, pp. 15-20. Springer, Cham.

86. Schober S, Seidl I, Mittelbach M. Ester content evaluation in biodiesel from animal fats and lauric oils. Europ J Lipid Sci Technol. 2006; 108: 309-314.

87. Koller M, Maršálek L. Principles of glycerol-based Polyhydroxyalkanoate (PHA) production. Appl Food Biotechnol. 2015; 2(4): 3-10.

88. Koller M, Maršalek L. Potential of diverse prokaryotic organisms for glycerol-based Polyhydroxyalkanoate production. Appl Food Biotechnol. 2015; 2(3): 3-15.

89. Špoljarić IV, Lopar M, Koller, M., Muhr A, Salerno A, Reiterer A, Horvat P. In silico optimization and low structured kinetic model of poly[(R)-3-hydroxybutyrate] synthesis by Cupriavidus necator DSM 545 by fed-batch cultivation on glycerol. J Biotechnol. 2013; 168: 625-635.

90. Koller M, Salerno A, Muhr A, Reiterer A, Braunegg G. Polyhydroxyalkanoates: Biodegradable polymers and plastics from renewable resources. Mater Tehnol. 2013; 47: 5-12.

91. Titz M, Kettl KH, Shahzad K, Koller M, Schnitzer H, Narodoslawsky M. Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol Environ Pol. 2012; 14: 495-503.

92. Shahzad K, Kettl KH, Titz M, Koller M, Schnitzer H, Narodoslawsky M. Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources. Clean Technol Environ Pol. 2013; 15: 525-536.

93. Cromwick AM, Foglia T, Lenz RW. The microbial production of poly (hydroxyalkanoates) from tallow. Appl Microbiol Biotechnol. 1996; 46: 464-469.

94. Ashby RD, Foglia TA. Poly(hydroxyalkanoate) biosynthesis from triglyceride substrates. Appl Microbiol Biotechnol. 1998; 49: 431-437.

95. Nonato R, Mantelatto P, Rossell C. Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol. 2001; 57(1-2): 1-5.

96. Koller M, Salerno A, Strohmeier K, Schober S, Mittelbach M, Illieva V, Chiellini E, Braunegg G. Novel precursors for production of 3-hydroxyvalerate-containing poly[(R)-hydroxyalkanoate]s. Biocat Biotrans. 2014; 32: 161-167.

97. Muhr A, Rechberger EM, Salerno A, Reiterer A, Schiller M, Kwiecien M, Adamus G, Kowalczuk M, Strohmeier K, Schober S, Mittelbach M, Koller M. Biodegradable latexes from animal-derived waste: Biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis. React Funct Polym. 2013; 73: 1391-1398.

98. Muhr A, Rechberger, EM, Salerno A, Reiterer A, Malli K, Strohmeier K, Schober S, Mittelbach M, Koller M. Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste. J Biotechnol. 2013; 165: 45-51.

99. Riedel SL, Jahns S, Koenig S, Bock MC, Brigham CJ, Bader J, Stahl U. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J Biotechnol. 2015; 214: 119-127.

100. Kettl K-H, Titz M, Koller M, Shahzad K, Schnitzer H, Narodoslawsky M. Process design and evaluation of biobased polyhydroxyalkanoates (PHA) production. Chem Eng Trans. 2011; 25: 983–988

101. Schnitzer H, Ulgiati S. Less bad is not good enough: approaching zero emissions techniques and systems. J Cleaner Prod. 2007; 15: 1185-1189.

102. Narodoslawsky M, Shahzad K, Kollmann R, Schnitzer H. LCA of PHA production–identifying the ecological potential of bio-plastic. Chem Biochem Eng Q. 2015; 29: 299-305.

Journal Information

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 451 451 72
PDF Downloads 299 299 70