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Abstract
Next Generation Sequencing (NGS) or deep sequencing technology enables parallel reading of multiple individual DNA frag-
ments, thereby enabling the identification of millions of base pairs in several hours. Recent research has clearly shown that 
machine learning technologies can efficiently analyse large sets of genomic data and help to identify novel gene functions and 
regulation regions. A deep artificial neural network consists of a group of artificial neurons that mimic the properties of living 
neurons. These mathematical models, termed Artificial Neural Networks (ANN), can be used to solve artificial intelligence 
engineering problems in several different technological fields (e.g., biology, genomics, proteomics, and metabolomics). In 
practical terms, neural networks are non-linear statistical structures that are organized as modelling tools and are used to 
simulate complex genomic relationships between inputs and outputs. To date, Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNN) have been demonstrated to be the best tools for improving performance in problem solving 
tasks within the genomic field.
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Introduction
According to a recent study, artificial intelligence could stimulate employment and in-
crease the general business revenues by 38% in 2020 (1,2). For the global economy, this 
effect would mean a profit growth of approximately $4.8 trillion and, above all, a profound 
rethinking of the production system. In this model, the information (input) (e.g., genom-
ic data) is entered into the node (simulated neuron) and processed. This approach leads 
to an initial transient result that is passed to the upper level, where the process is repeat-
ed. From the multiple levels, we arrive at the final stage of information processing (e.g., 
prediction of gene function and structure). The input (initial information) is defined as 
specific data, and the output (final information) must be consistent with the input (3- 7). 

Artificial intelligence methods
The design of learning elements must consider three fundamental aspects: 

	which components of the executive element (e.g. gene regulation and structures) 
should be learned;

	the type of feedback available;
	the type of representation used. 

The feedback step is the most important because it enables us to determine the nature 
of the problem. We can distinguish three types of learning:
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Supervised learning: A number of input independent 
variables (x) and one dependent variable are supplied to the 
output (y). Through the use of an algorithm, the programme 
attempts to apply the function corresponding to the given x, 
with the appropriate y (8). The goal of this type of learning is 
to build prediction models under conditions of uncertainty. 
In such a way, it is possible to predict the variable y when a 
new input is provided. This process is termed “supervised” 
because the algorithm iteratively performs the prediction (9). 
If the prediction is not correct, the system is corrected by a 
supervisor, until the accuracy of the programme is sufficient. 
The logical steps of a supervised learning method are as fol-
lows:

	 prepare the data;
	 choose the algorithm;
	 adapt a model;
	 choose a validation method;
	 perform evaluations;
	 use the model to make predictions.

Unsupervised learning: An unsupervised machine learn-
ing method occurs when the input (x) is supplied without 
correspondence with the outputs (y) (10). In this case, the 
goal is to find hidden patterns or intrinsic structures that have 
been provided in the data. Through this process, it is possible 
to make inferences regarding data without having an exact 
answer and a supervisor to correct possible errors (11). 

Reinforcement learning: Reinforcement learning differs 
from the supervised method in that there is no supervisor; 
hence, the model is based on the reward (measured as  the 
evaluation of the achievied performance) (12). Based on this 
signal, the algorithm changes its own strategy to achieve the 
best reward. It is also possible to identify two-way learning 
methods: passive and active. The passive reinforcement learn-
ing method uses a pre-determined fixed action. On the other 
hand, the active method utilizes a complete model (with all 
possible results) (13,14). 

Deep learning: Deep learning (DL) is an approach devel-
oped in recent decades to solve such problems as the increas-
ing size of available datasets. Technological and computing 
progress have facilitated this development through new pro-
cessing units, which have significantly reduced the time re-
quired to train neural networks (15-17). DL allows data to be 
represented in a hierarchical way on various levels. DL meth-
ods are created and learned automatically through the use of 
advanced learning algorithms. Input information is manipu-
lated to define the concepts at the highest levels through lin-
ear transformations on the lower floors (18-20).

Artificial neurons: The simplest neural network is made 
up of one neuron and is shown in Fig.1. A neuron can be in-
terpreted as a computational unit, which takes inputs x1, x2, x3 

and produces an output h w, b (x), called the neuron activation. 
It can also be noted that there is an additional input, which is 
a constant +1 (21).

Figure 1. Example of an artificial neuron.

A single neuron receives a numerical input (the weighted 
sum of different inputs), and it can be activated to process the 
received value, and its activation can be calculated through 
a specific function, or it can remain inactive, depending on 
whether its threshold is exceeded or if it is not activated. 
Therefore, the neuron will be characterized by a function of 
activation and an activation threshold. Given a certain func-
tion of activation, in a fraction of cases, it may be difficult, if 
not impossible, to obtain certain output values. Specifically, 
there may not be a combination of input and weight values 
for that function that produces the desired output. Therefore, 
it is necessary to use an additional coefficient b, known as the 
bias, the purpose of which is to allow the translation of the 
function activation of the neuron such that it is possible to 
obtain certain inputs and weight for all desired outputs. We 
can distinguish two basic types of neural networks: feedfor-
ward neural networks and recurrent neural networks (RNN) 
(also called feedback neural networks) (22). In the former, the 
connections between neurons never form a cycle and there-
fore information always travels in one direction. In contrast, 
recurrent neural networks form a cycle with the creation of an 
internal state of the network, which enables the performance 
of dynamic process behaviour over time. The RNN can use 
its own internal memory to process various types of inputs. It 
is also possible to distinguish between completely connected 
networks (fully connected), in which every neuron is con-
nected to all of the others, and stratified networks in which 
the neurons are organized in layers. In stratified networks, all 
of the neurons of a layer are connected with all the neurons of 
the next layer. There are not connections between neurons of 
one layer, nor are there connections betwee

n neurons of non-adjacent layers. A layered network with 
three layers is shown in Fig. 2. 

The left layer in Figure 2 with neurons denoted by blue cir-
cles, is generally referred to as an input layer; alternatively, the 
rightmost layer with a unique orange neuron constitutes the 
output layer. Finally, the central layer is called hidden layer 
because there is no connection with the training set.
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Figure 2. A layered network with three layers.

Training of a neural network: One of the most well-known 
and effective methods for training neural networks is the so-
called error retro-propagation algorithm (error back-propa-
gation), which systematically modifies the weight of the con-
nections between the neurons such that the network’s response 
gets closer to the goal. Training this type of neural network oc-
curs in two different ways: forward propagation and backward 
propagation. In the first phase, activations of all the neurons 
of the network are calculated, starting from the first and pro-
ceeding to the last layer. During this step, values of the synaptic 
weights are all fixed (default values) (23). In the second phase, 
the response of the network or the real output are compared to 
the desired output, thereby obtaining the network error. The 
calculated error is propagated in the reverse direction of the 
first phase. At the end of the second phase, based on the errors, 
weights are modified to minimize the difference between the 
current output and the desired output. The whole process is 
subsequently reiterated, beginning with a forward propagation. 
In deep learning, all of the layers of the “deep” neurons apply 
non-linear operations (24,25). Deep networks are character-
ized by having a number of neurons and layers much greater 
than the ANNs. Deep networks do not need to work on feature 
extraction starting from the input data but rather develop a set 
of criteria during the learning phase to obtain comparable or 
even superior performance to the classic neural networks. The 
main types of machine learning tools are briefly described:

	 Decision trees. This is a technique that makes use of 
tree graphs (that  are equipped with “leaves”, which describe 
states or events associated with a system, and “branches”, which 
represent transitions between states and conditions necessary 
for such transitions). 

	 Bayesian network. A Bayesian network (BN) is a 

probabilistic model that represents a set of random variables 
and their conditional dependences (26,27). Bayesian networks 
are direct, acyclic graphs whose nodes represent random 
variables. Therefore, they can be observable quantities, latent 
variables, unknown parameters or hypotheses. The  edges rep-
resent conditional dependencies, and nodes, which are not 
connected, are variables that are conditionally independent 
of each other. Each node is associated with a probability func-
tion that takes as an in input a particular set of  variable values 
from its parental nodes(. The Bayesian Networks that model 
sequences (for example protein sequences) are called Dynamic 
Bayesian Networks (28,29). A Bayesian network could be ap-
plied to represent probabilistic relationships between diseases 
and symptoms. Considering the symptoms, the network can 
be used to calculate the probabilities of the presence of various 
diseases (30).

	 Hidden Markov model. A hidden Markov model 
(HMM) is a statistic model in which the modelled system is 
a process of Markov (transition between states associated with 
probability weights) with an un-noticed state (31). An HMM 
can be considered as the simpler version of the Bayesian net-
work. In a classic Markov model, the state is directly visible to 
the observer and therefore their transition probabilities are the 
only parameters. On the other hand, in an HMM the state is not 
directly visible. The adjective ‘hidden’ refers to the sequence of 
states through which the model passes and is not referred to 
with the parameters.

	 Cluster analysis. Cluster analysis is a set of multivar-
iate data analyses aimed at the selection and grouping of ho-
mogeneous elements in a data set. All clustering techniques are 
based on the concept of the distance between two elements. 
The quality of the analysis obtained from clustering algorithms 
greatly depends on the choice of the metric, and therefore how 
the distance is calculated. The more common distance func-
tions are the following:

	 Euclidean distance
	 Manhattan distance
 
The Euclidean distance d2 (x,y) is equal to the square root of 

the sum of squares of the two coordinate vector differences. The 
distance of Manhattan is a simple modification of the Euclide-
an distance. Cluster analysis can use symmetrical or asymmet-
ric distances. Many of the distance functions listed above are 
symmetrical (the distance between object A and B is equal to 
the distance from B to A). Clustering techniques can be based 
mainly on two ways: 1.) from bottom to top (Bottom-Up) and 
2.) from top to bottom (Top-Down). In the Bottom-Up meth-
od, initially all elements are considered as separate clusters and 
then the algorithm joins the nearest clusters. The algorithm 
continues to merge elements to the cluster until a fixed number 
of clusters is obtained or until the minimum distance between 
the clusters is achivied. With the Top-Down method, initially 
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all the elements share a single cluster and then the algorithm 
begins to divide the cluster into many smaller clusters. The cri-
terion used always tries to obtain homogeneous elements, and 
proceeds until a predetermined number of clusters is reached.

	 Artificial neural network (ANN). An artificial neural 
network or neural network (Neural Network, NN) is a math-
ematical model based on biological neural networks (32-35). 
This model consists of information derived from artificial 
neurons that mimic the properties of living neurons. These 
mathematical models can be used to solve artificial intelligence 
engineering problems in different technological fields (e.g., in-
formation technology, biology, genomics, proteomics, and me-
tabolomics). In practical terms, neural networks are non-lin-
ear statistical structures organized as modelling tools (36,37). 
The networks can be used to simulate complex relationships 
between inputs and outputs. An artificial neural network con-
sists of numerous nodes (neurons) connected to each other. 
There are two types of neurons: input and elaboration neurons. 
The weight value indicates the synaptic efficacy  (ability to in-
crease or decrease its activity) of the input line, and is used to 
quantify its importance. A very important input variable has a 
high weight, while a low input has a lower weight. An artificial 
neural network receives external signals via the input neurons, 
each of which is connected with numerous internal nodes, or-
ganized in additional levels. Each node processes the received 
signals and transmits the result to the later nodes, and this pro-
cess continues until the exit level is reached (37-43).

	 Deep neural network (DNN). The term DNN (deep 
neural network) refers to deep networks composed of many 
levels (at least 2 hidden) that are hierarchically organized (44). 
Hierarchical organization allows for the sharing and reuse of 
information. The most widely used DNNs consist of a number 
of levels, between 7 and 50. Deeper networks (100 levels and 

above) have proven to be able to guarantee slightly better per-
formance, but do so at the expense of efficiency. The number of 
neurons, connections and weights also characterizes the com-
plexity of a DNN. The greater the number of weights (i.e., pa-
rameters to be learned), the higher the complexity of the train-
ing (45-50). At the same time, a large number of neurons (and 
connections) increases the forward and backward propagation, 
as the number of necessary operations increases. The training 
of complex models (deep and with many weights and connec-
tions) requires high computational power. The availability of 
Graphics Processing Units (GPUs) with thousands of cores and 
high internal memory has made it possible to drastically re-
duce training time (51-61)(Fig. 3).

	 Convolutional neural networks (CNN). Convolu-
tional neural networks (CNN) are a type of artificial network 
in which neurons are connected to each other by weighted 
branches (62,63). Therefore, it is always possible to measure the 
weights and trainable bias. Training of a neural network occurs 
via forward/backward propagation, and the updating of the 
weights is also valid in this context. Moreover, a convolutional 
neural network always uses a single differentiable cost function 
(a scalar value indicating how good is your model). However, 
CNN use the specific assumption that the input has a precise 
data structure and a more efficient forward propagation in or-
der to reduce the amount of parameters of the network. The 
capacity of a CNN can vary in relation of the number of layers. 
In addition, a CNN can have multiple layers of the same type. 
In a convolutional neural network, there are different types 
of layers, with each having its own specific function. Some of 
these have trainable parameters (weight and bias), while other 
layers simply use fixed functions. Usually, a CNN has a series of 
convolutional layers, the first of these, starting from the input 
layer and going to the output layer, are used to obtain low-lev-
el features, such as horizontal or vertical lines, angles, various 
contours, etc. (64-66). Features increase with the depth in the 
network (to the output layer). Generally, the more convolution-
al layers a network has, the more detailed features it can process 
(67-69). Compared to a multi-layer perception model (MLP) 
(a feedforward artificial neural network with non linear activa-
tion functions), a CNN method shows substantial changes in 
the architecture of the convolutional layers (70,71):

	 Local processing. Neurons are only locally connected 
to the neurons of the previous level, and each neuron then per-
forms local processing. In this manner, there is a strong reduc-
tion in the number of connections.

	 Shared weights: Weights are shared in groups, and 
different neurons of the same level perform the same type of 
processing on different portions of the input. In this way, there 
is a strong reduction in the number of weights.

	 Spontaneous connectivity. In a CNN, neurons be-
longing to different layers of a convolutional layer are connect-

Figure 3. Increase of the prediction accuracy as a function of the 
data training size.
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ed to each other through a regular pyramidal architecture. Each 
neuron of a given layer receives information from a specific 
number of neurons of the previous layer. Each unit is sensitive 
only to variations from a specific area of expertise, as shown 
in Fig. 4. This architecture ensures that the patterns learned 
from the individual units provide strong responses to spatial-
ly contained inputs. A sufficient depth of this structure allows 
local information to be gradually grouped together, leading to 
the creation of increasingly linear non-linear filters in the layers 
closer to the output.

 

Figure 4. Example of sparse connectivity of neurons between 
different  convolutional layers: the neurons of a layer m  are con-
nected  only to some of the neurons of the previous layer m-1.  

	 Weight Sharing. In a CNN, each layer has the same 
weights and biases (activation thresholds), and the set of pa-
rameters of all similar neurons forms a feature map (see Fig. 
5), i.e., the set of characteristics common to all neurons present 
at a certain level of the network. This property is required once 
the pyramidal architecture described above is set to achieve in-
variance of the translation network response, i.e., the ability to 
recognize a target regardless of its position within the scene. 

Figure 5. Example of weight sharing (feature map) between dif-
ferent neurons convolutional layers, a link of the same color cor-
responds to equal weight

	 Pooling. A pooling layer is responsible for aggregat-
ing data. Typically, the areas where the pooling is applied are 
built in such a way as to be partially overlapping in order to 
preserve local information despite deletions. This operation 
has two consequences, the first is the reduction of the num-
ber of inputs in the next layer, and the second is an increase 
in the invariance due to the translations introduced by weight 
sharing. In fact, pooling allows dimensions to be reabsorbed 
(reducing the computation amount).

	 ReLU. The rectified and linear unit is an activation 
layer that acts on the entry data in precise terms. The ReLU 

maintains all the unaltered inputs as positive and multiplies all 
the negative inputs by a constant (typically 0). It is often used 
instead of more regular activation functions, such as sigmoid 
or hyperbolic functions, due to the simplicity of implementa-
tion and the nearly negligible computational load introduced 
by this layer. Since ReLU are inserted between convolution and 
pooling layers, they help to further decrease the number of cal-
culations performed in the target layers. 

Artificial intelligence system applied to NGS studies
In the last ten years, new generation sequencing technologies 
(NGS) have demonstrated their potential, and with the pro-
duction of short reads, the throughput process has become 
increasingly larger NGS techniques, combined with advances 
in various subjects, ranging from chemistry to bioinformatics, 
have led to the capability of DNA sequencing at reasonable 
prices. Specifically, bioinformatics has been fundamental in 
this development process. Owing to the development of multi-
ple algorithms based on different techniques, such as hash ta-
bles, indexes, and spaced-seed, it has been possible to optimize 
the analysis of increasingly large data sets. NGS technologies 
are used in a variety of different areas, such as cancer research, 
human DNA analysis, and animal studies. In Table 1 are re-
ported several genomic programs concerned with cancer and 
rare diseases.

Next Generation Sequencing allows for parallel reading of 
multiple individual DNA fragments, thereby enabling the iden-
tification of millions of base pairs in several hours. All of the 
available NGS platforms have a common technological feature: 
massive parallel sequencing of clonally amplified DNA mole-
cules or single spatially separated DNA molecules in a flow cell. 
The main NGS platforms are the following:

	  HiSeq
	 MiSeq
	 Ion Torrent
	 SOLiD
	 Pacbio Rs II and Sequel System.

This strategy represents a radical change with respect to the 
sequencing method described by Sanger, which is based on the 
electrophoretic separation of fragments of different lengths 
obtained by single sequencing reactions (95). Conversely, with 
NGS technologies, sequencing is performed by repeated cycles 
of nucleotide extensions by a DNA polymerase or alternative-
ly by iterative cycles of oligonucleotide ligation. Because the 
procedure is parallel and massive, these platforms allow for 
the sequencing of hundreds of millions of base pairs (Mb) to 
billions of base pairs (Gb) of DNA in a single analytical ses-
sion, depending on the type of NGS technology used. These 
technologies are versatile because they can be used both for 
diagnostic and basic and translational research. Traditionally, 
genomic data analysis is performed with software such as Var 
Direct, Free Bayes and GATK that are based on statistical anal-
ysis (83). Sequencing of genomic sub-regions and gene groups 
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are currently used to identify polymorphisms and mutations 
in genes implicated in tumours, and regions of the human ge-
nome involved in genetic diseases, through “linkage” and ge-
nome-wide association studies (investigation using a panel of 
genes of different individuals to determine gene variations and 
associations). These instruments are also used for genetic and 
molecular analysis in various fields, including the diagnosis of 
rare genetic diseases, as well as neoplastic and endocrine-met-
abolic diseases. The field of application of these technologies is 
expanding and will cover more diagnostic aspects in the future. 
Several NGS platforms can be used to generate different sourc-
es of genomic data:

	 whole genomes;
	 microarrays;
	 RNAseq;
	 capture arrays (exomes) (Illumina TrueSeq Exome 
            Enrichment (62 Mb); Agilent SureSelect (50 Mb);
	 targeted regions;
	 specific genes;
	 chromatin interactions (DNAseq, MNareseq; FAIRE);
	 chip-seq;
	 expression profiles.
Computer programmes that predict genes are becoming 

increasingly sophisticated. Most software recognizes genes by 
identifying distinctive patterns in DNA sequences, such as the 
start and end signals of translation, promoters, and exon-in-

tron splicing junctions (72). However, open reading modules 
(ORFs) may be difficult to find when genes are short or when 
they undergo an appreciable amount of RNA splicing with 
small exons divided by large introns. Prokaryotic genomes are 
predicted more accurately (sensitivity and specificity > 90%) 
than eukaryotic genomes. The main features of genomic anal-
ysis consist of the following: identification of the gene location 
and structure, identification of regulatory elements, identifica-
tion of non-coding RNA genes, prediction of gene function, 
and prediction of RNA secondary structure. Another approach 
discovers new genes based on their similarity to known genes. 
However, this approach is only able to identify new genes when 
there is an obvious homology with other genes. Eventually, the 
function of the gene must be confirmed by numerous molecu-
lar biology methods. In fact, some genes could be pseudogenes. 
Pseudogenes have a sequence similar to the normal genes, but 
usually contain interruptions such as displacements of the 
reading frame or stop codons in the middle of coding do-
mains. This prevents the pseudogenes from generating a func-
tional product or having a detectable effect on the phenotype. 
Pseudogenes are present in a wide variety of animals, fungi, 
plants and bacteria. Predictive methods aim to derive general 
rules starting from a large number of examples (nucleotide la-
bels within sequences) represented by observations referring to 
the past, and accumulated in international databases. 

Predictive models based on machine learning aim to draw 
conclusions from a sample of past observations and to transfer 

Table 1. Main genomic programs concerned with  cancer and rare diseases

Internet site Program Thematic area

www. allofus.nih.gov/        All of Us Research Program Cancer, rare diseases, complex traits

www.australiangenomics.org.au Australian Genomics Cancer, rare diseases, complex traits

www.brcaexchange.org BRCA Challenge Cancer, rare diseases, complex traits

www.candig.github.io                    Canadian Distributed Infrastructure  for Genom-
ics

Cancer, rare diseases, basic biology

www.clinicalgenome.org Clinical Genome Resource Rare diseases

www.elixir-europe.org ELIXIR Beacon Rare diseases, basic biology

www.ebi.ac.uk                              European Genome-Phenome Archive Rare diseases, basic biology 

www.genomicsengland.co.uk Genomics England Cancer, rare diseases, complex traits

www.humancellatlas.org/ Human Cell Atlas Cancer, rare diseases, complex traits, basic bi-
ology

www.icgcmed.org                         ICGC-ARGO Cancer

www.matchmakerexchange.org Matchmaker Exchange Rare diseases

www.gdc.cancer.gov  National Cancer Institute Genomic Data Com-
mons

Cancer, rare diseases

www.monarchinitiative.org         Monarch Initiative Rare diseases, complex traits, basic biology         

www.nhlbiwgs.org      Trans-Omics for Precision Medicine Rare diseases, complex traits, basic biology         

www.cancervariants.org Variant Interpretation for Cancer Consortium Cancer
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these conclusions to the entire population. Identified patterns 
can take different forms, such as linear, non-linear, cluster, 
graph, and tree functions (73-75). 

The machine learning workflows are usually organized in 
four steps:

	 filtering and data pre-processing;
	 feature extraction;
	 model fitting;
	 model evaluation.

Machine learning methods may use supervised or unsuper-
vised systems. The supervised method requires a set of DNA 
sequences (with all the genetic information including the start 
and end of the gene, splicing sites, regulatory regions, etc.) for 
the training step, in order to build the predictive model. This 
model is then used to find new genes that are similar to the 
genes of the training set. Supervised methods can only be used 
if a known training set of sequences is available. Unsupervised 
methods are used if we are interested in finding the best set 
of unlabelled sequences that explain the data (76). In Table 2 
are listed the main software tools used for machine learning 
studies.

Machine learning methodologies have a wide range of ap-
plication areas:

	 non-coding variants (73,77); 
	 identification of protein coding regions and pro-

tein-DNA  interactions (78,79);
	 identify regulatory regions (e.g., promoters, en-

hancers, and  
	 polyadenylation signals) (80-95);
	 prediction of splice sites (Bayesian classification);
	 identification of functional RNA genes (96);
	 chromatin fragment interactions;
	 histones marks (77);
	 transcriptional factor (TF) binding sites (96);

	 prediction of amino acid sequences and RNA second-
ary structures (97-106);
	 metabolomics (107-110).

Convolutional neural networks (CNNs) can substantially 
improve performance in problem sequence solving, compared 
to previous methods (111). Recurring patterns of sequences 
in the genome can be efficiently identified by means of CNNs 
methods (111,112). In this method, the genome sequence is 
analysed as a 1D window using four channels (A,C,G,T) (113). 
The protein-DNA interactions are analysed and solved as a 
two class identification problem (114). Genomic data used in 
machine learning models should be divided into three propor-
tions training (60%), model testing (30%) and model valida-
tion (10%). The main advantages of the CNNs method can be 
summarized as follows:

	 training on sequence;
	 no feature definition;
	 reduction of number of model parameters
	 use only small regions and share parameters between 

regions;
	 train wider sequence windows;
	 make in silico mutation predictions;

In the CNN method, the following parameters should be 
optimized:
	 the number of feature map;
	 window size (DNA sequences);
	 kernel size;
	 convolution kernel design;
	 pooling design.

Chen et al. (114) used a multi-layer neural model called 
D-GEX to analyse microarray and RNAseq expression data re-
sults. Torracina and Campagne (115) analysed genomic data 
(variant calling and indel analysis) using deep learning meth-

Table 2. Main software  tools used for machine learning studies

Internet site Program name Thematic area

www.sourceforge.net/p/fingerid FingerID Molecular fingerprinting

https://bio.informatik.uni-jena.de/software/sirius/ SIRIUS Molecular fingerprinting

http://www.metaboanalyst.ca/ Metaboanalyst Metabolomics analysis

www.knime.com/ KNIME Machine learning tool

www.cs.waikato.ac.nz/ml/weka/ Weka Machine learning tool

https://orange.biolab.si/ Orange Machine learning tool

https://www.tensorflow.org/ TensorFlow Machine learning tool

http://caffe.berkeleyvision.org/ Caffe Machine learning tool

http://deeplearning.net/software/theano/ Theano Machine learning tool

http://torch.ch/ Torch Machine learning tool
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ods (642 features for each genetic variant) and Popolin et al. 
(116) developed a new software tool called Deep Variant with 
a precision > 99% (at 90% recall) for SNPs and indel detection. 
Mutation effects can be predicted using the software Deep Se-
quence (117), which also uses latent variables (a model using an 
encoder and decoder network to identify the input sequence).

Recurrent neural networks (RNN) have been proposed to 
improve the performance of the CNN method. RNN are very 
useful in the case of ordered sequences (e.g., sequential genom-
ic data). Several applications have recently been reported:

	 base calling (118);
	 non-coding DNA (119);
	 protein prediction (97);
	 clinical medical data (56,120).

Google genomics has recently developed a new software 
called Deep Variant (Google Brain Team) that uses AI tech-
niques to determine the characteristics of the genome starting 
from the information of reference sequences. Deep Genomics 
and WUXI (with offices in Shanghai, Reykiavik and Boston) 
use the latest generation of AI techniques to study several ge-
netic diseases in an attempt to find possible therapies. AI meth-
ods have also been used for metabolomic data analysis includ-
ing the following:

	 metabolite identification from spectrograms 
(121,122);
	 metabolite concentration identification using high 

throughput data (123,124).

Use of CRISPRCas9  for genetic diseases treatments
Attempts to correct the genome for the treatment of genetic 
diseases have been going on for a long time. Until several years 
ago, this type of research required long and complex proce-
dures. In 2012, a decisive change came when it was discovered 
that a protein present in bacteria (Cas9), in association with an 
RNA sequence, can be used as a device to probe the DNA and 
identify the point of genetic damage (125). To use Cas9 as a tool 
of genetic engineering, it is necessary to produce a RNA guide, 
identify the corresponding DNA segment and delete the gene 
(125-130). Although this method is highly efficient and rapid 
compared to the older technologies, the limitation has been its 
precision. The recognition sequences, i.e., the guides, are small, 
consisting of approximately twenty nucleotides. In several lab-
oratories around the world, approaches were already underway 
to make this technology more precise. Recently, Casini et al. 
(130) inserted the protein into specialized yeast cells and lat-
er selected the yeasts in which Cas9 made the cut in the most 
precise way. When tested in human cells, the new method has 
been shown to reduce mutations by 99%.

Big data analysis
Currently, even the smallest of lab or company can generate an 
incredibly large volume of data. These data sets are referred to as 

big data (the term indicates large sets of data, the size of which 
requires different instruments than those traditionally used) 
and can be analysed with various techniques, including pre-
dictive analysis and data mining. It is important to thoroughly 
understand what is meant by big data. Since 2011, this term 
has powerfully entered into common language. For the mo-
ment, big data refers to a database that contains data from both 
structured (from databases) and from unstructured (from new 
sources as sensors, devices, images) sources, coming from areas 
internal and external to a facility which can provide valuable 
information if used and analysed in the correct way. The data 
can be of two types: structured and unstructured data (131). 
The former refers to a variety of formats and types that can 
be acquired from interactions between people and machines, 
such as all information derived from consumer behaviour on 
internet sites or users of social networks. Unstructured data, 
conversely, are usually “text” and consist of information that is 
not organized or easily interpretable through models. To define 
the big data more formally, we can use the following four vari-
ables (132):

	 Volume: the amount of data has increased in the past 
years, and it is still increasing significantly. It is extremely easy 
for a company to store terabytes and petabytes of data.
	 Speed: compared to fifteen years ago, currently data 

becomes obsolete after a very short period of time. This is one 
of the reasons why there are no longer long-term plans. New 
factory leaders should be able to perform a preliminary analy-
sis of the data in order to anticipate trends.
	 Variety: the available data have many formats. Con-

tinuous changes of the formats creates many problems in the 
acquisition and classification of the data.
	 Complexity: being able to manage numerous sources 

of data is becoming highly difficult.

The analysis of big data is carried out using the following 
applications:

	 Descriptive Analytics (DA)
	 Prescriptive Analytics (PA)
	 Automated Analytics (AA)

The DA implementation tools aimed at describing the cur-
rent or past data situation. The PA uses advanced tools that per-
form data analysis to predict future scenarios. These tools use 
algorithms that play an active role to find hidden patterns and 
correlations in the past data, and make prediction models for 
future use (133-135). PA are advanced tools that, together with 
data analysis, are able to propose operational/strategic solu-
tions. The AA are tools capable of autonomously implement-
ing proposed actions according to the results. A practical tool 
that can aid in providing an overview of the benefits that can 
be derived from a project in the field of big data is the Value 
Tree. The Value Tree allows tracking of all the benefits that can 
emerge from a big data project and helps to identify non-pre-
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ventable benefits. In the value tree, the benefits are defined as 
being quantifiable or non-quantifiable, without distinguishing 
benefits that are directly quantifiable in an economic/financial 
way. The awareness of the existence of big data have forced sev-
eral companies to create new effective strategies. Appropriate 
analytical tools are needed that can translate the data into us-
able information. However, data mining processes, in graphical 
or numerical form, large collections of continuous flows of data 
for the purpose of extracting useful information. The need to 
anticipate certain situations has become extremely important 
and can lead to a competitive advantage. Thus, data analysis 
serves to identify current trends and also to predict future 
strategies. In particular, predictive models, as well as machine 
learning and data mining, attempt to identify relationships 
within the data to identify future trends. Therefore, through the 
process of automatic learning, the task of the model is to anal-
yse the variables, both individually and together, and provide 
a predictive score by reducing the margin of error. Predictive 
Analysis (P.A.) is a science that is already widely used and has 
been continuously improved in terms of its features and pre-
dictions. Persons and companies who use personal and med-
ical data cannot ignore the legal and ethical aspects related to 
the acquisition and use of such data and information and must 
comply with current legislation. 

Conclusions
Machine learning is the science that enables computers to per-
form future predictions, and it represents one of the fundamen-
tal areas of artificial intelligence. Deep learning is a branch of 
machine learning and is based on a set of algorithms organized 
hierarchically with many levels (at least of which are 2 hidden). 
Generally, these algorithms provide multiple stages of process-
ing (training, model fitting, model evaluation) that often have 
complex structures and are normally composed of a series of 
non-linear transformations. Recently, CNN and RNN have 
been widely used in deep learning, especially for the identifi-
cation of protein coding regions, protein-DNA interactions, 
regulatory regions (e.g., promoters, enhancers, and polyade-
nylation signals), splicing sites and functional RNA gene ap-
plications. 
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