Lachish River event monitored for toxicity using bioluminescent reporter organisms

Open access

Abstract

The Lachish River has suffered from recurring pollution incidents for the past decade. On October 11th, 2017, another contamination in the river was sighted, as thousands of dead fish were found floating. Samples from the river were retrieved and tested through a whole cell bioluminescent bacterial bioreporter system as well as conventional analytical methods, and the results from both methods were analyzed and compared, even though initially these two collecting events were not coordinated. The information acquired from the whole cell reporter was consistent with that obtained from conventional methods. Both approaches indicated a large concentration of microorganisms as deduced from K802NR E. coli strain reaction and coliforms count. The high water conductivity measured in collected samples were closer downstream, and attributed to the diffusion of salts from the Mediterranean Sea which affected bacterial viability as seen from the decreased reaction of E. coli strains TV1061 and DPD2794. In addition, the bacterial indicators’ kinetic patterns have shown indication for the presence of a genotoxic substance from only one of the collection sites, which was tested positive for the herbicide Metazachlor, itself known to have genotoxic effects. The correlation between both approaches, along with the biosensor’s ability to assess biological influences, suggests that the whole cell bioluminescent bacterial bioreporter bioassay as an easy, simple and efficient approach for water toxicity monitoring.

References

  • 1. Zalul. Lachish River identity card [Internet]. Available from: http://www.zalul.org.il/?page_id=383

  • 2. Mapa site. Lachish River park [Internet]. Available from: http://www.mapa.co.il/ 80771 /תויצקרטא/הפמ

  • 3. Gabbay S. Rehabilitation of Israel’s Rivers. Israel Information Center; 2001. 1-7 p.

  • 4. Ashtukar O. The Lachish River - the never ending story. ashdodnet [Internet]. 2015; Available from: https://www.ashdodnet.com/article/61353

  • 5. Zalul. Category archive: the Lachish River. 2017; Available from: http://www.zalul.org.il/?cat=30

  • 6. Datz E. Another obstacle in the restoration of the Lachish River. Walla news [Internet]. 2009; Available from: https://news.walla.co.il/item/1425965

  • 7. Ashtukar O. Historical: the health department has authorized sailing in the Lachish River. ashdodnet [Internet]. 2014; Available from: http://www.ashdodnet.com/article/53147

  • 8. Ashtukar O. The office of environmental protection: the Lachish River is one of the three cleanest rivers in Israel. ashdodnet [Internet]. 2017; Available from: https://www.ashdodnet.com/article/252481/3

  • 9. Curiel I. Tzuri M. Pollution kills thousands of fish in Lachish River. Ynet news [Internet]. 2017; Available from: https://www.ynetnews.com/articles/0,7340,L-5027357,00.html

  • 10. Owa F. Water pollution : sources , effects , control and management. Int Lett Nat Sci. 2014;3:1-6.

  • 11. Beauchemin D. Inductively Coupled Plasma Mass Spectrometry. 2008;78(12):4111-36.

  • 12. Velikonja Bolta Ŝ. Zupanĉiĉ-Kralj L. Marsel J. Gas chromatographic determination of formaldehyde in air using solid-phase microextraction sampling. Chromatographia. 1998;48(1-2):95-100.

  • 13. Lawton LA. Edwards C. Codd GA. Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst. 1994;119(7):1525.

  • 14. Axelrod T. Eltzov E. Marks RS. Bioluminescent bioreporter pad biosensor for monitoring water toxicity. Talanta. 2016;149:290-7.

  • 15. Eltzov E. Ben-Yosef DZ. Kushmaro A. Marks R. Detection of sub-inhibitory antibiotic concentrations via luminescent sensing bacteria and prediction of their mode of action. Sensors Actuators, B Chem. 2008;129(2):685-92.

  • 16. Eltzov E. Yehuda A. Marks RS. Creation of a new portable biosensor for water toxicity determination. Sensors Actuators B Chem. 2015;221:1044-54.

  • 17. Vollmer AC. Belkin S. Smulski DR. Van Dyk TK. Larossa RA. Detection of DNA damage by use of Escherichia coli carrying recA’::lux, uvrA’::lux, or alkA’::lux reporter plasmids. Appl Environ Microbiol. 1997;63(7):2566-71.

  • 18. Arsene F. Tomoyasu T. The heat shock response of Escherichia coli. Int J food. 2000;55:3-9.

  • 19. Miller MB. Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165-99.

  • 20. Bechor O. Smulski DR. Van Dyk TK. LaRossa RA. Belkin S. Recombinant microorganisms as environmental biosensors: Pollutants detection by Escherichia coli bearing fabA′::lux fusions. J Biotechnol. 2002;94(1):125-32.

  • 21. Meighen EA. Bacterial bioluminescence: organization, regulation, and application of the lux genes. FASEB J. 1993;7(11):1016-22.

  • 22. Hubalek Z. Protectants used in the cryopreservation of microorganisms. Cryobiology. 2003;46(3):205-29.

  • 23. Goh EB. Yim G. Tsui W. McClure J. Surette MG. Davies J. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci. 2002;99(26):17025-30.

  • 24. American Society for Microbiology. Applied and Environmental Microbiology. 60(4). Evanston, Illinois: American Society for Microbiology; 1994. 1414 p.

  • 25. American Society for Microbiology. Applied and Environmental Microbiology. 60(4). Evanston, Illinois: American Society for Microbiology; 1994. 2566 p.

  • 26. Davidov Y. Rozen R. Smulski DR. Van Dyk TK. Vollmer AC. Elsemore DA. et al. Improved bacterial SOS promoter::lux fusions for genotoxicity detection. Mutat Res - Genet Toxicol Environ Mutagen. 2000;466(1):97-107.

  • 27. Miller JH. Experiments in molecular genetics. New York: Cold spring harbor laboratory press; 1972.

  • 28. Premkumar JR. Lev O. Marks RS. Polyak B. Rosen R. Belkin S. Antibody- based immobilization of bioluminescent bacterial sensor cells. Talanta. 2001;55(5):1029-38.

  • 29. Hanley A. Pruitt ES. Clean Water Act methods update rule for the analysis of effluent. Fed Regist. 2017;82(165):40836-941.

  • 30. Bactochem. Final Report 384442. 2017. p. 1-4.

  • 31. APHA (American Public Health Association). AWWA (American Water Works Association). WEF (Water Environment Federation). 5210 biochemical oxygen demand ( Bod ). Stand Methods Exam Water Wastewater. 2001;(5000):2-13.

  • 32. APHA-American Public Health Association. 4500-Oxygen (Dissolved): Iodometric Methods. Stand Methods Exam Wastewater. 2005;(4000):136-43.

  • 33. Greenberg AE. Clesceri LS. Eaton AD. Franson MAH. Method 2510. Stand Methods Exam Water Wastewater. 1992;552.

  • 34. Nzila A. Thukair A. Sankara S. Abdur Razzak S. Characterization of aerobic oil and grease-degrading bacteria in wastewater. Environ Technol (United Kingdom). 2017;38(6):661-70.

  • 35. Greenberg AE. Clesceri LS. Eaton AD. 3120 Metals by Plasma Emission Spectroscopy. Stand methods Exam water wastewater. 1992;552:34-40.

  • 36. Eaton AD. Clesceri LS. Greenberg AE. Franson MAH. 4500-NH3 C. Titrimetric Method. Standard Methods for the Examination of Water and Wastewater. 2016. p. 4-75.

  • 37. Greenberg AE. Clesceri LS. Eaton AD. Franson MAH. Method 4500- H. Stand Methods Exam Water Wastewater. 1992;552.

  • 38. Rice E. Baird R. Eaton A.. Clesceri L. 5310 Total Organic Carbon (TOC). Stand Methods Exam Water Wastewater. 2005;(5310):1-16.

  • 39. Analitical E. Total Solids Dried at 103 - 105 ° C. 1997;(2540):55-61.

  • 40. Greenberg A. Clesceri L. Eaton A. APHA Method 2130: Standard Methods for the Examination of Water and Wastewater. 1992;552:1-11.

  • 41. watch the photos: the first rain has arrived to Ashdod. Ashdod online [Internet]. 2017; Available from: https://ashdodonline.co.il/59032//דודשאל-עיגה-םשגה

  • 42. Kennedy SD. Health of the people regulations (wastewater quality regulation and purification rules). 2011;816(28):1-23. Available from: https://www.google.co.il/url?sa=t&rct=j&q=&esrc=s&-source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjzqJ3hqbTYAhWKyKQKHX9bAAIQFggnMAA&url=https%3A%2F%2Fwww.health.gov.il%2FLegislationLibrary%2FBriut01.pdf&usg=AOv-Vaw2SWIgoAVBRJt6ykPKuZmmX

  • 43. Twort AC. Ratnayaka DD. Brandt MJ. Water Supply. Oxford, UK: Butterworth-Heinemann; 2000. 200 p.

  • 44. Twort AC. Ratnayaka DD. Brandt MJ. water supply. Oxford, UK: Butterworth-Heinemann; 2000. 206-207 p.

  • 45. Brines evacuation procedure [Internet]. Ministry of Environmental Protection; 2010. Available from: http://www.sviva.gov.il/subjectsEnv/Wastewater/IndustrialWastewater/PollutionComponents/Documents/NohalPinuyTimlachot.pdf

  • 46. Frieder-Shoham E. Kress N. Gordon N. Monitoring the drainage of of Adama Agan, Paz Ashdod Refinery and the Bney Darom and Gan Yavne pickle factories. Isr Oceanogr Limnol Res Ltd [Internet]. 2014; Available from: http://www.sviva.gov.il/InfoServices/ReservoirInfo/FreedomofInformation/Documents/ינכות/םיפוחו םי תוימוקמ רוטינ/NiturMekomiBaza2014.pdf

  • 47. Kanti Y. The wonder that became a stench. Nrg Maariv [Internet]. 2006; Available from: http://www.nrg.co.il/online/1/ART1/495/411.html

  • 48. Weiner ER. Applications of Environmental Aquatic Chemistry - A practical guide. Applications of Environmental Aquatic Chemistry A Practical Guide. 2008. 98-99 p.

  • 49. Zobell CE. Some factors which influence oxygen consumption by bacteria in lake water. Biol Bull. 1940;78(3):388-402.

  • 50. Hoar WS. Randall DJ. Farrell AP. Anderson PM. Wright PA. Fish Physiology: Nitrogen Excretion. Elsevier; 2001. 111-115 p.

  • 51. Wade A. Maher B. Lawrence I. Davis N. Zoppou C. Bell C. Estimating the allowable ammonia concentrations in wastewater treatment plant discharge to ensure protection of aquatic biota. Environ Technol (United Kingdom). 1998;19(7):749-54.

  • 52. James Stuart Schepers WR. Nitrogen in Agricultural Systems. James Stuart Schepers WR, editor. ASA-CSSA-SSSA; 2008. 186 p.

  • 53. Environnement. Canada. Priority substances list assessment report. 1999;

  • 54. Environment Canada H canada. Ammonia in the Aquatic Environment. Environment Canada; 2000. 103 p.

  • 55. Jurčikova J. Mikula P. Dobšikova R. Nemethova D. Svobodova Z. Effects of metazachlor on vitellogenin induction in Zebrafish (Danio rerio). Acta Vet Brno. 2007;76(SUPPL. 8):61-6.

  • 56. Q. Ashton Acton. Endocrine Cells-Advances in Research and Application. Atlanta, Georgia, United States: ScholarlyEditions; 2013. 40 p.

  • 57. Cavas T. In vivo genotoxicity evaluation of atrazine and atrazine- based herbicide on fish Carassius auratus using the micronucleus test and the comet assay. Food Chem Toxicol. 2011;49(6):1431-5.

  • 58. Safety Information Atrazine. Sigma-Aldrich;

  • 59. Safety Information Metazachlor. Sigma-Aldrich;

  • 60. Milov M. Popadin A. On rainwater usage in Ashdod. Cent Ecol Syst Technol. 2009;54.

  • 61. Carpenter SR. Caraco NF. Correll DL. W.Howarth R. Sharpley AN. Smith VH. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl. 1998;8(1998):559-68.

  • 62. Sharpley A. Wang X. Managing agricultural phosphorus for water quality: Lessons from the USA and China. J Environ Sci (China). 2014;26(9):1770-82.

  • 63. Perkins DL. Kann J. Scoppettone GG. The Role of Poor Water Quality and Fish Kills in the Decline of Endangered Lost River and Shortnose Suckers in Upper Klamath Lake. 2000;(September).

  • 64. Alrumman SA. El-kott AF. Keshk SMAS. Water Pollution : Source & Treatment. Am J Environ Eng. 2016;6(3):88-98.

  • 65. Hunter PR. Waite M. Ronchi E. Drinking Water and Infectious Disease. Boca Raton, Florida, United States: CRC Press; 2002. 160 p.

  • 66. Lehtola MJ. Laxander M. Miettinen IT. Hirvonen A. Vartiainen T. Martikainen PJ. The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes. Water Res. 2006;40(11):2151-60.

  • 67. Faust M. Altenburger R. Backhaus T. Blanck H. Boedeker W. Gramatica P. et al. Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat Toxicol. 2001;56(1):13-32.

  • 68. Sumpter JP. Johnson AC. Williams RJ. Kortenkamp A. Scholze M. Modeling Effects of Mixtures of Endocrine Disrupting Chemicals at the River Catchment Scale. Environ Sci Technol. 2006;40(17):5478-89.

  • 69. Winson MK. Swift S. Fish L. Throup JP. JA,rgensen F. Chhabra SR. et al. Construction and analysis of luxCDABE -based plasmid sensors for investigating N -acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett. 1998;163(2):185-92.

  • 70. Van Dyk TK. Majarian WR. Konstantinov KB. Young RM. Dhurjati PS. LaRossa R a. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol. 1994;60(5):1414-20.

  • 71. Dohner E. Abby M. Barbour M. Simpson J. Byrne J. Dates G. et al. Volunteer Stream Monitoring : A Methods Manual. Environ Prot. 1997;1-227.

  • 72. Grady C. P. Leslie. Lim Henry C. Biological wastewater treatment : theory and applications / C. P. Leslie Grady, Jr., and Henry C. Lim. M. Dekker New York; 1980. xiv, 963 :

  • 73. The Lachish River: a high concentration of dangerous substances. Nrg Maariv [Internet]. 2009; Available from: http://www.nrg.co.il/online/1/ART1/846/439.html

  • 74. Eltzov E. Marks RS. Voost S. Wullings BA. Heringa MB. Flow-through real time bacterial biosensor for toxic compounds in water. Sensors Actuators, B Chem. 2009;142(1):11-8.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 20
PDF Downloads 6 6 6