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Abstract
It has been generally recognized that BigData analytics presently have most significant impact on computer inference in life 
sciences, such as genome wide association studies (GWAS) in basic research and personalized medicine, and its importance 
will further increase in near future. In this work non-parametric separation of responsive yeast genes from experimental data 
obtained in chemostat cultivation under dilution rate and nutrient limitations with basic biogenic elements (C,N,S,P), and the 
specific leucine and uracil auxothropic limitations. Elastic net models are applied for the detection of the key responsive genes 
for each of the specific limitations. Bootstrap and perturbation methods are used to determine the most important responsive 
genes and corresponding quantiles applied to the complete data set for all of the nutritional and growth rate limitations. The 
model predicts that response of gene YOR348C, involved in proline metabolism, as the key signature of stress. Based on 
literature data, the obtained result are confirmed experimentally by the biochemistry of plants under physical and chemical  
stress, also by functional genomics of bakers yeast, and also its important function in human tumorogenesis is observed.

Introduction
Great advances in the new generation of sequencing instrumentation (NSG) has led 
to a rate of data generation in life sciences that exceeds the one for solid state circuit 
integration known as Moore’s law (1). Large data sets with very diverse scales of 
measurement (single cell, microbiome, individual human, populations), and features 
(genome level, transcriptome, proteome, metabolome, and phenotypes), followed by their 
integration into BigData sets led to new challenges for automation of data management 
and statistical inference in the computer age (2,3). BigData sets are stored, managed and 
distributed on computer clouds and processed by cloud parallel computing software such 
as developed by the Hadoop and R projects (4).  Commonly, BigData are characterized by 
4V properties: volume, velocity, variety, and veracity (6). Especially, omics have become 
BigData science, which is referred as the 4th paradigm of science fundamentals, similar to 
4-th generation of the industrial revolution. Integrated large data sets enable development 
of computer models of complex systems and data based discoveries in contrast to classical 
hypothesis driven and biased research goals. Unbiased hypothesis-free concepts of data 
analysis and the application of parallel multiple and different algorithms, also preferably 
multi-institutional, can yield unbiased and unexpected novel scientific discoveries, which 
should create a statistically testable hypothesis as an end result and yield significant 
advancement in theoretical knowledge (7). Methodologies applied are developed within 
the frame of computer sciences, the dominant techniques being Artificial Intelligence 
(AI) and Machine Learning (ML). However, well proven methodologies are still not 
available. A variety of these techniques, including Elastic Nets, Artificial Neural Networks 
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(ANNs), Deep Learning Networks, Bayesian Networks 
(BNs), Support Vector Machines (SVMs), Markov models, 
Decision Trees and Forests (DTs) have been widely applied 
in life sciences research for the development of classification, 
pattern recognition, predictive models, and decision making 
(2,3). Outcomes of the application of ML models are always 
associated with “grey” logic and are subject to errors, multiple 
answers, and sometimes with conflicting conclusions. This 
makes thorough validation with independent data, and with 
different experimental designs and instrumental techniques, 
as the crucial focus in evaluation of the scientific contribution 
of automated, computer algorithmic inference and knowledge 
discovery. Open data access policy in the era of BigData life 
sciences is considered as the paramount for critical validation 
of computer inferences and new knowledge discovery.   

There are numerous studies with application of statistical and 
ML models for yeast genome-wide responses to various stresses. 
Yeast BigData from experimental studies of phenotypic growth, 
microarray experiments, physical and chemical stress tests, 
genome sequencing, mRNA abundance measurements, protein 
and metabolome profiles are available in open data literature. For 
example, yeast functional genomics with ML predictive models 
are applied for classification of unrecognized Open Reading 
Frame (ORF) functions (8). The application of Bayesian data 
integration is used for clustering of evolutionary conservation 
in yeast (9). Especially systemic and extended comprehensive 
data from the study of genome-wide transcription of yeast 
as model organism under various nutritional and growth 
limitation stress are available (12). Statistical models are 
developed for dynamic short and long term adaptation. The 
aim is to elucidate common and global regulatory phenomena 
that allows yeast to adapt its transcriptomic response (10). 
However, mechanisms that control system level cell responses 
are still a challenge and require an integrative and multiscale 
BigData approach. Machine learning Elastic Net regularization 
is applied to simplify the complexity of the model by removing 
the least important features kinases/phosphatases (K/Ps) by 
integrating with metabolomics measurements and in silico 
estimated metabolic fluxes (11).   

Experiment and Data Set
The objective of the experimental study (12) and this data 
analysis is to use BigData analytics methodologies for  
systematic identification and quantitative relations (models) 
of the most responsive genes in exponentially growing yeast 
chemostat populations limited by dilution rate and basic biotic 
(C,S,N,P) and auxothropic (leucin, uracil) nutrients. Especially 
is sought to determine global stress response (gene expression) 
independent of the specific environmental limiting factors. 

Analyzed data are the result of the experimental work of M. 
Brauer et al. (12) a study of  genome-wide responses of yeast 
at steady state conditions in a chemostat with reactor volume 
0.5 L during 36 continuous culture conditions at six different 
limitations and six dilution rates, i.e. at average exponential 
biomass specific growth rates  μ (1/h) =( 0.05, 0.1, 0.15, 0.2, 

0.25, 0.3). The cells were cultured on minimal defined  growth 
medium and limited by the four basic biotic nutrients (C, N, 
P, S) as C6H12O6, (NH4)2SO4, KH2(PO4)2, MgSO4·7H2O and 
two auxothropic components (L, U) leucin and uracil. For 
basic limitations (G, N, P, and S), was used strain DBY10085 
(relevant genotype Mata MAL2-8C), which is the prototrophic 
CEN.PK derived strain described by van Dijken et al. (13) . For 
limitations with uracil (U) or leucine (L), was used nonreverting 
mutant versions of the same strain,i.e., DBY9492 (ura3-52) or 
DBY9497 (leu2-3leu2-11), respectively (12).

The genome-wide responses of 5337 genes measured 
as mRNA abundance data were recorded. Details on the 
experimental procedure and the experimental data are 
available as a text file (csv) from (12). After upload of the data 
set missing data were imputed by linear interpolation and 
stored as a working data set in an excel file for further analysis. 
The excel data set was imported to R software (5) and saved for 
analysis by various BigData analytical methods.    

Methods
Regularized algorithms for Elastic Nets (EN) and Boosted 
Random Forest Decision Trees (BRFDT) were applied for 
extraction of the most probable important features, i.e. gene 
expressions under specific experimental conditions (2,3). The 
ill-condition properties of BigData models are regularized 
by appended objective function F of statistical criteria of 
minimization of sum of square errors (SSE), between model 
predictions and experimental data (x), with additional “cost” 
function h(x):                                                                                                                       
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For EN model the important features are associated with 
the indices of significant parameters βi for which significantly 
holds 02 >iβ . The crucial parameter for determination of 
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the untrained data set.
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Results
Graphical Venn diagrams of the responsive genes to the 
limitations are presented on Fig. 1-2 (19,20). Separated are 
the upregulated and downregulated genes illustrating relative 
balance between them. It can be observed that there is relatively 
little overlapping of the sets  among genes responsive to the 
specific nutrient limitations. There is no overlapping of the 
sets of responsive genes due to limitations between the basic 
biogenic elements (basic nutrients)  and leucine and uracil (not 
presented).  It also shows that the number of responsive genes 
for the basic biogenic elements (basic nutrients)  limitations 
considerably exceeds the ones with leucine and uracil. The 
greatest effect of basic the biogenic elements (natural nutrients)  
limitation on number of responsive genes occurs under 
phosphorus and sulphur limitations, while the least effect is 
observed for glucose. The cumulative effects (Fig. 2) clearly 
show that the yeast cell metabolism must adapt to phosphor 
limitation by greatest rearrangements of metabolic fluxes 
inferred from the maximum number of the upregulated and 
downregulated genes.  
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The summary of effects Gn, upregulated and downregulated genes, for limitation with nutrient 
n are obtained by: 
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Results 
 
Graphical Venn diagrams of the responsive genes to the limitations are presented on Fig. 1-
2. (19,20). Separated are the upregulated and downregulated genes illustrating relative 
balance between them. It can be observed that there is relatively little overlapping of the sets  
among genes responsive to the specific nutrient limitations. There is no overlapping of the 
sets of responsive genes due to limitations between the basic biogenic elements (basic 
nutrients)  and leucine and uracil (not presented).  It also shows that the number of 
responsive genes for the basic biogenic elements (basic nutrients)  limitations considerably 
exceeds the ones with leucine and uracil. The greatest effect of basic the biogenic elements 
(natural nutrients)  limitation on number of responsive genes occurs under phosphorus and 
sulphur limitations, while the least effect is observed for glucose. The cumulative effects (Fig. 
2.) clearly show that the yeast cell metabolism must adapt to phosphor limitation by greatest 
rearrangements of metabolic fluxes inferred from the maximum number of the upregulated 
and downregulated genes.   
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When genome-wide expressions are measured, as mRNA 
abundance, it is observed that most of the data, about 30 %, 
are linearly related to the specific biomass growth, either with 
positive of negative correlation under all limitations (12). They 
are the “master regulators” that are responsible for maintaining 
homeostasis under various limitations at steady state conditions 
(chemostat). Based on genome-wide correlation analysis with 
the growth rate under all of the limitations, in Table 1. listed 
are the first three genes with the highest correlation, positive 
and negative. The annotated biological functions are given 
by M.J. Brauer at al. (12) and Funspec Yeast Data Base (14). 
The table also includes the genes GENE4000X (SNF1) and 

Figure 2. Cumulative effects of the nutritional limitations on the 
responsive upregulated and downregulated genes.  

Figure 3. Prediction of the specific growth rate under glucose 
limitation based on mRNA abundance of the most responsive gene 
(GENE4821X).

GENE3004L. SNF1 gene is considered as the master gene 
which regulates catabolism and anabolism, and regulates the 
cellular growth and development in coordination with other 
signaling pathways (21).  Also included is the correlation with 
GENE3004X which is associated with neutral amino acid 
transmembrane transporter activity, proline catabolism and 
L-proline permease (12, 14).

The key most responsive genes under each individual 
specific nutrient limitations are presented in Table 2. Applied 
are linear models:

Table 1. The most linearly correlated mRNA abundances and YDR477W (“master gene”) and YOR348C („regulator of 
transmembrane transport“) with the biomass specific growth rate, positive and negative, based on the complete data set 
of the nutrient limitations

R
(mRNA/μ)

Gene ID
name Biological and molecular function

0.875 1739X
YDR489W

SLD5  DNA-dependent  DNA replication  DNA binding DNA replication preinitiation 
complex

0.875 5385X
YBR085W AAC3  anaerobic respiration  ATP, ADP antiporter activity heme transport

0.875 2219X
YDL064W

UBC9 G2/M transition of mitotic cell cycle ubiquitin-like conjugating enzyme activity, 
mitotic spindle elongation

-0.917 4175X
YGL156W  AMS1 carbohydrate metabolism, alphamannosidase activity

-0.902 5448X
YDR043C

NRG1 regulation of transcription from, glucose metabolic process RNA polymerase, 
promoter  DNA binding   

-0.890 4726X
YKL151C Biological process unknown,  molecular function unknown  

-0.400 4000X*
YDR477W

SNF1 protein amino acid phosphorylation, regulation of carbohydrate metabolic 
process, AMP-activated protein kinase activity  

-0.262 GENE3004X**
YOR348C

neutral amino acid transmembrane transporter activity, proline catabolism, L-proline 
permease activity
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where NS are number of most responsive genes, values given 
in Fig. 2, for each of the limitations determined by regularization 
method given in /8/. The model complexity parameters λ are 
evaluated separately for each individual limitation by cross-
validation.  About four to five genes are selected as the optimal 
dimensions for each of the limitations. In Table 2 are given the 
genes with the highest correlation with the biomass specific 
growth rate. Positive correlation coefficients R correspond 
to up-regulation and negative to down-regulation under cell 
adaptation pressure. Biological and molecular functions are 
given according to M. Brauer (12) and updated by on-line gene 
data bank Funspec (14).

For determination of a gene as a global stress signature, i.e. 
under all basic biogenic elements (basic nutrients) , leucine 
and uracil limitations, among the set of all responsive genes, 
applied is a model of random forest of decision trees (14-17):

                                                                           	         /11/

where N is the number of individual regression decision 
trees DTi  and Ns. is the number of all responsive genes.  Gene 
importance on the specific growth rate, under all of the nutrient 
limitations, is inferred from extensive bootstrap perturbation 
and permutation on “out of box” subsets. The results are 
depicted in Fig. 4 shows a prominent role of the YOR348C 
gene. According to the database (14) its biological functions 
are: neutral amino acid transport (p-value 0.00015), ammonia 

Table 2. Most important responsive gene determined by Elastic Nets (EN) for each of the specific nutrient limitations

R
(mRNA/μ) Limitation Gene Biological and molecular function

+0.893    glucose 4821X
YOR374W ALD4 ethanol metabolism, aldehyde dehydrogenase (NAD) activity

+0.983    ammonium 4616X
YPR108W

RPN7 ubiquitin-dependent protein catabolism, proteasome regulatory,  
structural molecule activity 

+1.000        phosphorus 3578X
YPR169W

protein monoubiquitination, molecular function, ribosomal large subunit 
biogenesis

 -0.989 sulphur 4197X
YDR059C

UBC5  endocytosis, ubiquitin conjugating enzyme activity, acid-amino 
acid ligase activity, post-translational protein modification

 -0.968 leucine 1532X
YGL141W

HUL5  ER-associated protein catabolic process, protein 
monoubiquitination,  ubiquitin-protein ligase activity 

+0.926 uracil 1460X
YOR154W protein folding in endoplasmic reticulum, molecular function unknown 
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Figure 4. Determination of the most important responsive genes by the random forest model under conditions of all nutrient limitations.
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assimilation cycle (p-value 0.0007), proline catabolism (p-value 
0.003), and proline transport (p-value 0.0003).  Its molecular 
function is in neutral amino acid transporter activity. The 
simulation data are presented as gene corresponding medians 
and upper and lower error boundaries in evaluation of relative 
importance. In Fig. 5 are presented “box and whiskers” 
plots, i.e. quantile distributions of the experimental data of 
mRNA abundances, for the genes directly related to proline 
metabolism. As presented, the gene selected by the model as 
the one with highest importance covers the largest range of 
expressions change from -2 to 5.

Detection of the gene that has the highest response under all 
six experiments of limitations can be considered as a common 
cell stress signature (reaction to stresses), which does not imply 
its key metabolic function.   

Discussion
Application of BigData analytics for inference from genome-
wide studies enables the power of non-parametric methodology 
to be used and captures the nonlinear effects of interaction 
and features of importance by elastic nets and decision trees 
models. Use of non-parametric quantile analysis provides 
effective separation of non-responsive (in homeostasis) from 
highly responsive genes in each individual stress experiment. 
By applying Venn set algebra it can be shown that most of the 
responsive genes for individual limitations do not overlap, 
indicating distinct adaptations to each of the limitations.

Especially, by comparison is shown that intersections 
between responsive genes for basic biotic and specific 
auxothropic limitations are empty, i.e. reflects basically 
different mechanism of adaptation to stress induced by the 

basic biotic and auxothropic nutrient deprivations. Of course, 
this imply (which is also observed in the complete data set) 
that prolin related gene expression under specific auxothropic 
limitations are not pronounced, although they follow the same 
general trend, as for the basic biogenic limitations, i.e. negative 
correlation of prolin metabolism with growth rate.

Although on a genome-wide scale most genes are linearly 
correlated with the biomass specific growth rates, information 
on key genes responding to specific limitations is extracted by 
the regularized linear models and cross validation of elastic 
nets. Dimensions obtained of feature spaces are relatively low, 
with three to four genes. Due to the relatively low number 
of degree of freedoms, only the one dimensional models 
are extracted indicating the gene signatures for each of the 
limitations (Table 2).

The result for determination of stress signature under all of 
the nutrient limitations by the random forest decision tree model 
indicates a prominent role of proline. Proline has been referred 
to as a stress signal in numerous studies with plants (22-24).  

Biochemical analysis of plants under stressful conditions 
(chemical, physical, temperature) shows that plants accumulate 
proline. Besides its role as an osmolyte regulator, it has a role as a 
metal chelator, and a signaling molecule. Proline is also utilized 
by different organisms to regulate metabolism perturbations 
caused by various environmental stresses. It is recognized from 
studies that proline affects signaling pathways through the 
mechanism of increased production of reactive oxygen species 
(ROS) in mitochondria (22). Besides plants (23, 24), the same 
biological function has been observed in worms, apoptosis, 
tumor suppression, and cell survival in animals. In human 
tumorogenesis and tumor development it has been found that 
proline degradative pathway, plays a special role in (25).

 
Figure 4. Determination of the most important responsive genes by the random forest model 
under conditions of all nutrient limitations. 
 

 
Figure 5. Quantiles of mRNA abundance of the genes related to proline metabolism under 
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Most of the studies on proline role in yeast has been published 
by Takagi H. et al (26-28). They proved that modification of 
the metabolic pathway by self cloning of trehalose and proline 
significantly increased tolerance by baking yeast to stress 
during different phases of technology in bread making. Also, 
applied were methods of phenomic and functional genomics 
to identify the key genes, resulting with the identification 
of V-ATPase as the main controller of the yeast protective 
mechanism resulting in proline accumulation and improved 
viability under stress conditions.

Conclusion
Genome-wide studies using the BigData analytical methods 
of computer age inference has great potential for practical 
applications but also for discovery of fundamental biological 
knowledge. The main aspect of the improvement of inference is 
to reduce ill-conditioned aspect of models with high dimension 
feature space and usually small dimension of row (sample) 
space. Use of non-parametric data separation enables us to 
untangle various factors in large data sets and provide crisp 
focus on key variables. Interactions of genes under external 
stresses are discrete phenomena and due to the main features 
of decision for discontinuous and non-linear models are 
appropriate to capture the complexity of interactions contained 
in big data sets.

In this work elastic nets for determination of the main yeast 
responsive genes for basic biogenic elements (basic nutrients 
C,S,N,P) and leucine and uracil have been successfully applied. 

The random forest decision tree model was applied for the 
extraction of the main stress signature (responsive gene) from 
the whole set of limitations. Bootstrap and perturbation of 
factors of the model provides quantiles and importance levels. 

The results clearly indicate that the gene responsible for 
proline metabolic functions is the dominant signature. This 
result is confirmed by numerous published literature studies on 
stress effects on the biochemistry of plants and yeast functional 
genomics.  

Also, proline, as a unique proteogenic secondary amino 
acid, has its own metabolic system with special features as a 
stress substrate in the microenvironment of inflammation and 
tumorigenesis (29).
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