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Abstract
Competitive polyhydroxyalkanoate (PHAs) production requires progress in microbial strain performance, feedstock selection, 
downstream processing, and more importantly according to the process design with process kinetics of the microbial growth 
phase and the phase of product formation.  The multistage continuous production in a bioreactor cascade was described for 
the first time in a continuously operated, flexible five-stage bioreactor cascade that mimics the characteristics involved in the 
engineering process of tubular plug flow reactors.  This process was developed and used for Cupriavidus necator-mediated 
PHA production at high volumetric and specific PHA productivity (up to 2.31 g/(Lh) and 0.105 g/(gh), respectively). Based 
on the experimental data, formal kinetic and high structured kinetic models were established, accompanied by footprint area 
analysis of binary imaged cells. 

As a result of the study, there has been an enhanced understanding of the long-term continuous PHA production under 
balanced, transient, and nutrient-deficient conditions that was achieved on both the micro and the macro kinetic level.  It can 
also be concluded that there were novel insights into the complex metabolic occurrences that developed during the multi-
stage-continuous production of PHA as a secondary metabolite.  This development was essential in paving the way for further 
process improvement. At the same time, a new method of specific growth rate and specific production rate based on footprint 
area analysis was established by using the electron microscope. 

Introduction
Polyhydroxyalkanoates (PHAs), a group of prokaryotic intracellular storage compounds, 
display high potential to replace conventional plastic materials in defined areas of appli-
cation, such as the compostable packaging market, the medical and pharmaceutical field, 
or nanoparticles (1-3), and even act beneficial during bioremediation processes (4,5). 
Therefore, PHAs have attracted increasing attention by both scientists and industrialists, 
as manifested in the considerable devotion currently devoted to them both on lab-scale 
and in white biotechnology. Based on renewable resources, PHAs are accumulated by 
various microbial production strains as granules (“carbonosomes”) predominantly under 
conditions characterized by excess carbon source availability and parallel limitation of a 
growth-essential component of the nutritional medium, e.g., depletion of the nitrogen- or 
the phosphate source (6). Hence, in most described production strains, PHA production 
occurs as an outcome of the secondary metabolism, enabling cells to survive periods of 
insufficient availability of exogenous carbon sources; further, PHA biosynthesis provides 
further protection mechanisms to the cells against various stress factors such as extreme 
temperature, oxidative damage or UV-radiation (7,8).

From the chemical point of view, PHAs are polyoxoesters mainly of hydroxyalkanoic 
and, rather rarely, of hydroxyalkenoic acids; an almost infinite number of different homo- 
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and heteropolyesters of different molecular mass, molecular 
mass distribution, and thermomechanical properties (melting 
point, glass transition temperature, onset of decomposition 
temperature, degree of crystallinity, etc.) can be found in living 
cells. These properties are determined by the monomers pres-
ent in a PHA sample, and by the distribution of the monomers 
in the PHA chains, the latter discriminating PHAs with ran-
domly distributed monomers from blocky structured represen-
tatives. Whereas the molecular mass of PHA is determined by 
the activity of the polymerizing enzyme PHA synthetase (de-
termined by process conditions and substrate availability), the 
applied carbon source, and by the production strain, the mo-
nomeric composition of PHA results from the combination of 
main carbon source and additional co-substrates with a chem-
ical structure related to defined monomers (9-11). To address 
the complex variety of different PHA molecules present in a 
biological system regarding chain length and composition, the 
terminus “PHAome” was recently coined by leading scientist in 
the steadily emerging field of PHA research (12). Fig. 1 shows 
the general chemical structure of PHAs. 
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The improvement of large-scale productivity and biochem-
ical/genetic properties of producing strains requires optimiza-
tion procedures of wild type and genetically modified microbes, 
process design adapted to the kinetic characteristics of both 
the microbial growth phase and the PHA production phase, 
mathematical modeling of the bioprocess based on experimen-
tally obtained kinetic data, and efficient and environmentally 
friendly methods for PHA recovery from microbial biomass. 
These are the prerequisites to make PHA production one the 
one hand ecologically feasible and, on the other hand, environ-
mentally sustainable (13-15). The review at hands summarizes 
our efforts dedicated to the development of a multistage bio-
reactor cascade for continuous PHA production, and different 
approaches to describe and assess this novel process by formal 
kinetic, metabolic, and footprint area analysis models.

Figure 1. General structure of polyhydroxyalkanoates (PHA). R in-
dicates the side chain of the monomers, x reflects the number of 
methylene groups in the monomers´ backbones, and y indicates 
the degree of polymerization (number of monomers in polyester 
chain). The asterisk indicates the asymmetric carbon atom found 
in most PHA building blocks (important exception: 4-hydroxybu-
tyrate).

PHA biosynthesis in multistage continuous mode
Continuous and discontinuous PHA production
Letting alone the vast number of PHA production process 
found in literature, which are carried out at tiny shaking flask 
scale without major control of the process conditions, PHA 
production under controlled conditions is predominately car-
ried out in stirred tank bioreactors operated in classical batch 
or fed batch mode (16). Some attempts are described to use 
more sophisticated solutions using e.g., membrane techniques 
for cell recycling to increase productivity (17), airlift reactors 
for photoautotrophic PHA production by cyanobacteria (18), 
or sequenced batch process to convert highly polluted waste-
water into PHA-rich mixed microbial cultures (19). The num-
ber of reported processes for continuous PHA production is 
definitely manageable; these processes are operated either in 
one-stage continuous mode, which makes it difficult to adapt 
the nutrient composition in such a way enabling high PHA 
contents in biomass and low non-utilized carbon source in the 
reactor´s effluent; such one-stage processes are only effective 
in the case of growth-associated product formation. Two-stage 
continuous PHA production divides the process in a first stage 
characterized by biomass growth under nutritionally balanced 
conditions, and a second stage dedicated to PHA accumulation 
by the cells provoked by nutritional stress such as nitrogen- or 
phosphate depletion (20-22).

The review at hands is dedicated to a novel process engineer-
ing approach to produce PHA biopolyesters more efficiently 
in terms of volumetric and specific productivity, aiming at ob-
taining constant product quality, and at providing an option to 
fine-tune the process conditions at different metabolic stages of 
the process. This novel process is based on theoretical consider-
ations which suggest that continuous PHA biosynthesis at high 
throughput is best achieved in a combination of a continuously 
operated stirred tank bioreactor (CSTR) for formation of cata-
lytically active biomass and a tubular plug flow reactor (TPFR) 
for formation of the secondary storage product PHA under pro-
gressing nitrogen- or phosphate limitation from the entrance 
of the TPFR until its exit (22). As known from basic chemical 
engineering considerations, the flow characteristics of the TPFR 
can be mimicked by a cascade of CSTRs (23). In contrast to a 
TPFR, a CSTR-cascade provides the additional benefit to adapt 
the process conditions (pH-value, dissolved oxygen concentra-
tion, co-substrate supply) in each individual stage of the cascade, 
which enables the production of PHA biopolyesters of pre-de-
fined composition and molecular mass (22).

The multistage continuous production process in a 
bioreactor cascade

We described for the first time the performance of a five-stage 
bioreactor cascade for PHA production in the case of a series 
of cultivations of the well-known eubacterial PHA producer 
Cupriavidus necator DSM545, a strain known for its high PHA 
accumulation efficiency (24). Glucose was selected a mod-
el substrate for this process. Based on the metabolic tools of 



VOLUME 1 ISSUE 3  |  JULY 2017  |  205The EuroBiotech Journal

the strain, glucose was used as an easily convertible substrate 
for biomass growth in the first stage of the cascade (R1), and 
for PHA accumulation in the subsequent stages (R2-R5). The 
process was started by “batching” the catalytically active, PHA-
poor biomass for all five bioreactors in the first stage (R1) to 
a concentration of 27 g/L and subsequently distributing equal 
volumes to R2-R5 before switching to continuous operation 
mode. The cultivations were carried out at a temperature of 
30°C and a pH-value of maintained at 6.8; pH-value was kept 
constant by automatic supply of aqueous ammonia solution 
acting also as nitrogen source for microbial growth in R1 (par-
allel acidification of fermentation broth and biomass growth!), 
or by NaOH solution and sulfuric acid in R2-R5. Dissolved ox-
ygen concentration was kept constant at 40% of air saturation 
in R1 and at 20% in R2-R5 by automatic adjustment of aeration 
rate and stirrer agitation in the individual stages. Complete nu-
trition medium was continuously supplied from a steam steril-
ized agitated 120 L storage tank. Feed solutions added to R2-R5 
contained each 500 g/L of glucose. The volume of each stage 
was kept constant by using immersion tubes at the desired 
height; transfer of the fermentation broth between the reactors 
was accomplished via silicone tubes and peristaltic pumps. The 
dilution rate for the entire process amounted to 0.139 1/h, for 
R5 to 0.130 1/h (24). Fig. 2 shows a schematic of the five-stage 
cascade process. 

Under steady state conditions, characterized by constant 
concentrations of substrates (ammonia, glucose) and prod-

ucts (PHA, biomass), samples were taken at regular intervals 
from all reactors and analyzed regarding substrate, biomass 
and PHA concentration, and properties of the produced bio-
polyester in terms of molecular mass, polydispersity (Di), and 
thermoanalytical data (melting point, crystallinity, glass transi-
tion temperature). After optimizing the operational conditions, 
the results of the experimental work with the reactor cascade 
demonstrated its potential in terms of volumetric (1.85 (g/Lh)) 
and specific PHA productivity (0.100 g/(gh)) for the entire 
cascade process, high intracellular polymer fraction (77 wt.-
% in R5), and polymer properties (weight average molecular 
mass Mw 665 kDa; Di 2.6; R5). R1, dedicated to nutritionally 
balanced biomass growth, reached its steady state after 68 h 
with a biomass concentration of 26 g/L and a low intracellular 
PHA fraction of 2-4 wt.-%. With a certain time delay, R2-R5 
also reached steady state conditions after 68 h (R2), 98 h (R3), 
116 h (R4), and 139 h (R5). Biomass concentration and PHA 
fractions in the individual reactors had steady state concentra-
tions of 42 g/L and 37 wt.-% (R2), 59 g/L and 60 wt.-% (R3), 
71 g/L and 72 wt.-% (R4) and 81 g/L and 77 wt.-% (R5). Steady 
state conditions remained until 261 h of running the cascade. 
Among the individual stages, R3 displayed the highest volu-
metric PHA productivity (3.27 g/L h), which decreased to 1.50 
g/(Lh) in R5. The same trend was observed for the specific PHB 
production rate with the highest value measured for R3 with 
0.139 g/(gh). For the entire process, yields for formation of bio-
mass and PHA from the substrate glucose amounted to 0.37 g/g 
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Figure 2.  Schematic of the multistage continuous bioreactor cascade for PHA production and three modelling approaches for process 
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and 0.29 g/g, respectively. The actual concentration of nitrogen 
source was 0 in all stages (immediate conversion by the cells 
in R1); the concentration of glucose was as low as 2.0 g/L in 
the outflow from R5. Residual biomass concentration dropped 
from 25 g/L (R1) to 19 g/L (R5) caused by cell death under 
long-term nitrogen starvation (24).

This process was repeated with some adaptations of the 
feeding strategy regarding the feeding rate, number of stages 
continuously supplied with fresh glucose solution, and the di-
lution rates in individual cascade stages. It was experimentally 
demonstrated that higher retention time (lower dilution rate) 
in stage R5 (0.102 1/h) increases the mass fraction of PHA in 

biomass to almost 79 wt.-%, and the PHA concentration to 73 
g/L, whereas shorter retention time (higher dilution rate of 
0.193 1/h) in R5 decreases both PHA fraction in biomass and 
PHA concentration to 71 wt.-% and 56 g/L, respectively (24).

Mathematical modelling of the multistage cascade 
process
General features of mathematical modelling of PHA 
biosynthesis
Mathematical models are useful tools for optimizing and con-
trolling microbial product formation and microbial metab-

Table 1. Principles, utilized software packages and major outcomes of formal kinetic modelling, metabolic modelling and footprint area 
analysis of the multistage continuous cascade process for PHA production

Modelling Approach
(Ref.)

Principle Applied Software Tools Major outcomes

Formal Kinetic Model
(29)

•	 Partially growth-asso-
ciated PHA production 
under N-limited growth: 
Luedeking-Piret’s model 
of partial growth-associ-
ated product synthesis. 

•	 Megee et al. and 
Mankad-Bunkay rela-
tions tested to reflect µ.

•	 Basic formal ki-
netic model with 
growth-associated and 
non-growth-associated 
PHB synthesis under 
nitrogen limitation ad-
opted from Koller et al. 
(2006)

•	Berkeley-Madonna quick 
solver using four-step 
Runge–Kutta numerical in-
tegration method for solv-
ing differential equations.

•	 Model predicts well the cascade system if glucose 
is added in all reactors

•	 PHB productivity of the whole system could be 
significantly increased (from experimentally 
achieved 2.14 g/(L h) to 9.95 g/(L h) if certain 
experimental conditions would have been opti-
mized (dilution rate, C- and N-source feed con-
centration)

•	 No difference in the simulated end-state values if 
“Megee et al.” or “Mankad–Bungay” relation for 
µ are applied.

•	 Mankad-Bungay relation predicts better the in-
creased glucose concentration after switching 
from batch to continuous mode

Metabolic Model
(34)

•	 Calculation of Elementa-
ry Flux Modes; Two-di-
mension Yield Space 
Analysis (YBIO/GLU, YPHA/GLU)

•	Metatool, version 5.1 
based on scripts writ-
ten for Matlab software 
package (calculation of 
stoichiometric matrix and 
elementary modes)

•	Matlab (metabolic yield 
analysis).

•	Matlab function fmincon 
(calculation of weighting 
factors)

•	 Model predicts well the cascade system if glucose 
is added in all reactors 

•	 All possible metabolic states of cells in different 
cascade stages were illustrated by applying ex-
perimental yields and metabolic flux calculations

•	 Glucose feeding in all five reactors turned out as 
the most suitable strategy to perform multistage 
continuous PHB synthesis.

•	 Suitable option for detailed optimization of such 
production systems concerning biomass degrada-
tion under long-term nitrogen starvation.

Footprint Area 
Analysis
(28)

•	 Binary Imaging of cells 
to visualize whole cell 
and PHA granule areas; 
analysis of obtained ar-
eas for whole cells and 
carbonosomes

•	 Image J software (inaging 
of picture)

•	STATISTICA software ver-
sion 8.0 (analysis of sizes 
of cells and granules and 
distribution of sizes)

•	 Model describes well long-term continuous PHA 
production under balanced, transient, and nutri-
ent-deficient conditions and their impact on the 
granules size, granules number and cell structure 
on the microscopic level.

•	 Reactor R1 (balanced biomass synthesis) pre-
dominately contains cells with rather small PHA 
granules

•	 With increasing residence time (R2-R5), maxi-
mum and average granule sizes by trend increase, 
approaching an upper limit.

•	 Number of granules per cell decreases along the 
cascade. Data for µ and specific productivity cor-
relate well with the experimental results
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olism, encompassing the modeling of cultivation techniques, 
the design of single cell metabolic models, or the modelling 
of whole cell populations. The segregated nature of biological 
systems and the complexity of cell reactions are burdensome 
for mathematical illustration of bioengineering processes. In 
addition, linking experimental data with mathematical model-
ing can reveal new aspects of microbial physiology, providing 
reasonable interpretations of results from experimental work. 
This enables the broadening of knowledge and the design of 
more call-oriented experiments (15).

Currently available models dealing with structurally diversi-
fied PHAs, of both structured and unstructured nature, can be 
divided in formal kinetic, low-structured, dynamic, metabol-
ic (high-structured), cybernetic, neural networks and hybrid 
models, as comprehensively summarized before (15, 25). Char-
acteristic properties of specific groups of models are underlined 
in light of their benefit to better understand PHA biosynthesis, 
and their applicability for enhanced productivity, respectively. 
This is especially valid in the case of complex multi-compound 
substrates, e.g., surplus materials from (agro)industrial pro-
cesses like cheese manufacturing (26) or biodiesel production 
from tallow (27).

Unfortunately, there is no unique model type able to ex-
presses all the characteristics of combinations of microbial 
production strains and applied substrates. Moreover, model-
ling of PHA production by pure or mixed microbial cultures 
have different requirements. Therefore, it is crucial to adapt, as 
the case arises, the modelling strategy in accordance to the par-
ticularities of a given process. For most “simple” standard cases, 
formal-kinetic and low-structured models will be sufficient to 
describe kinetics of a PHA production process in a satisfying 
way. These models are relatively simple and of manageable 
computational requirements. In contrast, metabolic mathe-
matical models reflect the real biochemical metabolic situation 
of living microbes. They refer either to simple cases where the 
metabolic pathway with at least two or three enzymatic reac-
tions is investigated, or to metabolic networks representing the 
major catabolic and anabolic pathways (15). As a new approach 
in modelling PHA biosynthesis, foot print areas of whole cells 

and the included PHA granules from binary imaged electron 
microscope pictures can be analyzed to describe the distribu-
tion of PHA granules in cells, cell size, granule size and number 
of PHA granules per cell at different environmental conditions. 
As shown later, this approach is especially useful for describ-
ing PHA biosynthesis on a microscopic level under balanced, 
transient, and limited cultivation conditions, as it is the case in 
the multistage cascade process (28). Table 1 summarizes the in-
dividual principles, utilized software packages and major out-
comes of formal kinetic modelling, metabolic modelling and 
footprint area analysis of the multistage continuous cascade 
process for PHA production.

Formal kinetic modelling of the multistage cascade process
Formal kinetic modelling of the above described five-stage 
cascade process was based on assuming partially growth-as-
sociated PHA biosynthesis under nitrogen limited cultivation 
conditions (29), applying a well-established equation originally 
used by Luedeking and Piret to describe lactic acid production 
in batch mode under pH-controlled conditions (30) as working 
hypothesis; the basic mass flows of nitrogen- (ammonium) and 
carbon source (glucose) on the multistage-continuous PHA 
production process are shown in Fig. 3.

In order to reflect specific growth rate (µ) as realistic as pos-
sible, both relations adjusted for dual (nitrogen and carbon) 
limited growth according to Megee et al. (31) or according 
to Mankad-Bungay (32) were tested. Hence, the first cascade 
stage (R1) was modelled as nutritionally balanced continuous 
biomass production system. R2 was considered a two-substrate 
(carbon, nitrogen) controlled process, whereas stages R3-R5 
were dedicated to produce PHA under continuous carbon fed, 
but permanent nitrogen deficiency. The developed model con-
sisted of 20 differential equations and 49 model parameters: 
20 initial values for PHA, biomass, glucose, and nitrogen con-
centration, 10 flow parameters for in- and outflow for R1-R5, 
7 kinetic constants for substrate saturation and inhibition, 5 
parameters related to tank volumes R1-R5, 4 conversion fac-
tors, 3 inlet stream substrate concentrations. For fine-tuning 

Growth-associated
PHA biosynthesis

Not growth-associated
PHA biosynthesis

CO2 plus minor 
metabolites

Residual Biomass

Substrate (Glucose)

Nitrogen Source (Ammonium)

Maintainance energy

Figure 3. Schematic of the partially growth associated PHA biosynthesis in C. necator (sketched as a flagellated cell containing white PHA 
granules) based on nitrogen flow (towards residual biomass production) and glucose (towards growth-associated and not growth-associ-
ated PHA production, residual biomass formation, production of CO2 and minor metabolites, and maintenance energy).
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the parameters and for model validation, three experimental 
runs were carried out in the cascade, differing in the feeding 
strategy (supply of glucose to all stages or not) and dilution rate 
in individual stages (29).

Simulated results, obtained by the applied models and com-
putational optimization, predicted well the experimental data 
for glucose, biomass, and PHA when glucose is added in all 
five stages. Importantly, the in silico obtained values signify that 
the system´s productivity and the maximum specific growth 
rate µmax. could be further drastically increased from 2.14 g/
(Lh) (experimental) to 9.95 g/(Lh) (simulated) and 0.25 1/h 
(experimental) to 0.85 1/h (simulated), respectively, provided 
the optimization of certain experimental conditions, such as 
the overall dilution rate, the substrate inflow rate, and substrate 
(nitrogen and carbon source) feed concentration in individual 
stages. Under these modelled conditions, up to 164 g/L bio-
mass and 123 g/L PHA could be obtained. Regarding the two 
tested relations for µ, it turned out that both relations result in 
the same in silico final values of PHA and biomass concentra-
tions. Remarkably, the Mankad and Bungay relation better pre-
dicts the sudden increase of glucose concentration occurring 
after switching from batch to continuous cultivation mode, 
when cells have to adapt to this new process regime. In addi-
tion, it should be emphasized that the oxygen transfer rate of 
the cascade constitutes another limiting factor for both growth 
and the PHA production rate. If biomass concentrations as 
high as calculated in silico can be definitely achieved in realitas, 
the required oxygen consumption is definitely higher than the 
oxygen transfer rate, which negatively affects the cell metabo-
lism by oxygen limitation. To overcome this problem, technical 
adaptation of the production system will be needed, e.g., using 
oxygen-enriched air for aerating the cascade (29).

Apart from describing the multistage-continuous process, 
a similar low-structured (formal kinetic) model was estab-
lished for a fed-batch cultivation of C. necator on glycerol as 
an inexpensive raw material accruing as surplus stream from 
the biodiesel production. Five relations for specific growth rate 
µ were tested using mathematical models. In silico performed 
optimization procedures based on varied glycerol/nitrogen ra-
tios and feeding strategies show the way to achieve a high PHA 
content of 71%, shorter cultivation time reduced to 23 h, and 
increased PHA yield of 0.347 g/g. It was shown that an initial 
concentration of biomass of 16.8 g/L, and a permanent glycerol 
concentration in the cultivation medium between 3 and 5 g/L 
were the optimum parameters to increase the biopolyester pro-
ductivity (33).

High-Structured metabolic model of the multistage cascade 
process
In order to get deeper insights into the metabolic fluxes of C. 
necator cells cultivated in this multistage cascade process for 
PHA production, a high structured metabolic model with ex-
cellent predictive power for growth and PHA synthesis was es-
tablished (34). This model constitutes the first metabolic model 
for a multistage production process, and describes a metabolic 

network consisting of 43 mass balance equations representing 
43 intracellular compounds. Metabolic states of cells in the 
individual cascade stages were analyzed via elementary flux 
modes, which were projected to a two-dimensional yield space, 
composed of the yields for biomass and PHA, respectively, 
from glucose. The elementary flux modes represented the min-
imal subset of metabolic network reactions that can operate 
at steady state; such subsets cannot be decomposed/reduced 
anymore without destroying the functionality of the system to 
operate in steady state. From each elementary mode, an overall 
reaction containing substrates (glucose, ammonia, oxygen) and 
products (biomass, PHA, CO2) with the related stoichiomet-
ric coefficients was obtained. These stoichiometric coefficients 
were normalized with respect to glucose, which delivers the 
amount of products per unit of this substrate. Normalized stoi-
chiometric coefficients were represented in yield spaces: Un-
bounded polyhedral convex cone from the flux space were pro-
jected onto the yield space resulting in a bounded convex hull. 
Because glucose acts as reference substrate, the elementary 
modes are represented in a two-dimensional yield space (YBIO/

GLU, YPHB/GLU); experimental yields located inside the convex hull 
were represented in the yield space as linear combination of 
elementary modes. This approach favors those modes whose 
yield data in the yield space are closer to experimental yield 
data. Calculation of the stoichiometric matrix and elementary 
modes was done using the program Metatool, whereas Mat-
lab, equipped with the “fmincon” function, delivered meta-
bolic yield analysis and the essential weighting factors. Hence, 
all possible metabolic states of cells in different cascade stages 
were illustrated by applying experimental yields and metabolic 
flux calculations performed by the Metatool software (34).

Henceforward, all calculations were based on experimen-
tal PHA and biomass yields by applying the quadratic pro-
gramming approach, which minimizes the sum of squared 
weighting factors. Two different carbon source-feeding strat-
egies were performed. Concerning PHB and biomass yields, 
values of the more efficient strategy were used as the data 
source for elementary modes and metabolic flux calculations, 
respectively. The high structured metabolic model was val-
idated by comparison of experimental data from 24 h batch 
cultivation and simulated results. Excellent agreement of the 
metabolic model with experimental results was achieved for 
the growth-associated PHA synthesis phase of cultivation. 
Concerning biomass and PHA yields, in silico calculated yield 
space data reflect well the experimental results in all cascade 
stages. Most of all, this high-structured model provides addi-
tional hints to optimally operate the cascade by further opti-
mizing the feeding strategy. It provides an especially suitable 
option for detailed optimization of such production systems, 
which are confronted with biomass degradation under long-
term nitrogen starvation, as it is needed to boost PHA pro-
ductivity. Consistent with the outcomes from the formal ki-
netic modelling, glucose feeding in all five stages turned out 
as the most suitable strategy to perform multistage continu-
ous PHB synthesis (34).



VOLUME 1 ISSUE 3  |  JULY 2017  |  209The EuroBiotech Journal

In order to get additional information on metabolic fluxes 
in the network which are currently not unambiguously clari-
fied when consulting the available literature, two different met-
abolic scenarios for glucose-6-phosphate isomerase´s (G6PI) 
function and catalytic mechanism in this process were sim-
ulated. This enzyme is responsible for the catalytic step from 
glucose-6-phosphate (G6P) to fructose-6-phosphate (F6P), 
and is pivotal for the maintenance of the NADH/NADPH ra-
tio, which is decisive for PHA biosynthesis. On the one hand, 
G6PI was considered bidirectional (G6P to F6P and opposite 
direction), on the other hand, the unidirectional function from 
G6P to F6P was modelled. Dependent on the situation (uni-
or bidirectional reaction), the metabolic fluxes in the network 
change tremendously their rates, or even change the direction. 
Nevertheless, the in silico results indicate that both situations 
are theoretically possible. Which of the scenarios de facto oc-
curs in living cultures can unambiguously only be clarified after 
experimental determination of the impacted fluxes (34).

Later, a similar approach was used for metabolic network 
analysis for glycerol-based fed batch PHA biosynthesis by C. 
necator. Also here, a two-dimensional yield space was created 
based on elementary flux mode calculations (35). The major 
question to be clarified for this process was, if C. necator´s met-
abolic network was capable to reach the same specific growth 
rate µ and the same PHA productivity rate on the inexpensive 
substrate glycerol as reached on glucose. Further, it was if in-
terest to learn wheatear the Entner–Doudoroff pathway (ED, 
KDPG) or the Embden–Meyerhof–Parnas pathway (glycolyt-
ic pathway) are dominant in the glycerol metabolism, if the 
pair NAD/NADH or FAD/FADH2 contribute to the reaction 
of glycerol-3-phosphate dehydrogenase (GLY-3-P DH), and if 
the crucial enzyme 6-phosphogluconate dehydrogenase (6-PG 
DH) was present in the metabolic pathway or not. The ana-
lyzed metabolic network consisted of 48 individual reactions. 
Four sets of elementary modes were obtained, depending on 
whether NAD/NADH or FAD/FADH2 contributes to the GLY-
3-P DH reaction, and whether 6-PG DH is present or not. As 
major outcome, experimentally determined yields for biomass 
and PHB (with respect to glycerol) fit well to the in silico ob-
tained values both when the ED dominates over the glycolytic 
pathway and if the glycolytic pathway dominates over the ED; 
this outcome signifies the high metabolic adaptability of this 
organism. Further, it was revealed that not the intracellular 
metabolic network constitutes the rate-determining step for 
glycerol uptake, but the cellular glycerol import system. Both 
pairs of coenzymes (NAD/NADH or FAD/FADH2, respective-
ly) can contribute in the GLY-3-P DH reaction: the same final 
yields were obtained for both scenarios. Finally, some fluxes of 
the pentose phosphate pathway have changed their direction 
when 6-PG DH is considered absent (35).

Footprint area analysis to describe the multistage cascade 
process
Microscopic observations of cells and their inclusion bodies, 
e.g., PHA, provides a possibility to directly study the mor-

phological changes of cells during fluctuating environmental 
conditions (36). Mravec et al. used confocal fluorescence mi-
croscopy analysis of C. necator cells to study changes in the 
diameters of cells as well as PHA granules (“carbonosomes”) 
during growth and PHA accumulation in shaking flask cultiva-
tions. These authors came to the conclusion that bacterial cells 
increased their length during growth and PHA accumulation, 
although the width of the cells remained constant. The volume 
fraction of PHA granules in cells increased during PHA accu-
mulation, but did never exceed 40 vol. % independent on the 
PHA mass fraction (37).

As a follow-up, we investigated statistical distribution of 
cell- and PHA granule size and granules number per cell mi-
croscopically for all individual stages R1-R5 in the multistage 
cascade process (28). These investigations provide in insight 
into the cellular morphology and PHA granules formation un-
der balanced (R1), transient (R2), and nutrient-limited (R3-R5) 
conditions in the cascade process. For this purpose, electron 
microscopic pictures of cells were converted to binary images 
using the Image J software tool, thus visualizing PHA (white) 
and non-PHA biomass (black) footprint areas (see also Fig. 1). 
For each cascade stage, results for μ and specific PHA produc-
tion rate correlated well with experimentally determined kinet-
ics. Log-normal and gamma distribution best describe granule 
size distribution in the individual cascade stages. In R1, pre-
dominately cells with rather small granules were found; with 
increasing residence time, granule sizes gradually increased, 
approaching an upper limit, which seems to be determined by 
steric hindrance factors when the ratio of carbonosomes/cell 
volume comes near to its biochemical maximum. These larger 
PHA granules are of practical importance due to their ease to 
be separated from cell debris during downstream processing, a 
benefit originating from their lower density in comparison to 
the non-PHA (residual) biomass (38). Generally, granule-to-
cell area ratios increase along the cascade until a value of 64% is 
reached in R5 (28), which is considerably higher than reported 
by Mravec et al. (40%) (37). In addition, it was noticed that the 
increase of the intracellular PHA content and the granule-to-
cell area ratio slow down along the cascade from R1 to R5, and 
also the number of granules per cell decreases with increasing 
retention time. These data assist in optimizing the cascade set-
up, mainly by evaluating the optimum number of stages. 

Table 1 summarizes the principles, utilized software packag-
es and major outcomes of formal kinetic modelling, metabolic 
modelling and footprint area analysis of the multistage contin-
uous cascade process for PHA production.

Conclusions
It is demonstrated that the multistage bioreactor cascade pro-
vides a powerful process-engineering tool for high-throughput 
continuous PHA production regarding the product formation 
rates and the constant product quality, together with the addi-
tional benefit of having the possibility to adapt the process con-
ditions at each individual process stage. Formal kinetic model-
ling shows the route to optimize the process in terms of reactor 
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volumes, dilution rate, and feed concentration, whereas meta-
bolic modelling based on elementary flux modes calculations 
and yield space analysis reflects individual reactions and met-
abolic states of the cells at different potential scenarios, such 
as changing enzymatic activity or direction, or preferences of 
defined enzymes for different co-factors. Thus, the high-struc-
tured metabolic network contributes to the identification of 
metabolic bottlenecks to be overcome in order to enhance the 
performance of the cascade. Footprint area analysis serves for 
an understanding of the morphological changes of the cells and 
their PHA inclusions under fluctuating environmental condi-
tions, as it is the case along the continuous cascade process; 
this facilitates the design of the cascade on larger scale, e.g., 
regarding the optimum number of stages.
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